
Electronic Preprint for Journal of Information Processing Vol.22 No.4

Regular Paper

A Method for Embedding Context
to Sound-based Life Log

HirokiWatanabe1,a) Tsutomu Terada1,2,b) Masahiko Tsukamoto1,c)

Received: November 20, 2013, Accepted: May 17, 2014

Abstract: Wearable computing technologies are attracting a great deal of attention on context-aware systems. They
recognize user context by using wearable sensors. Though conventional context-aware systems use accelerometers or
microphones, the former requires wearing many sensors and a storage such as PC for data storing, and the latter cannot
recognize complex user motions. In this paper, we propose an activity and context recognition method where the user
carries a neck-worn receiver comprising a microphone, and small speakers on his/her wrists that generate ultrasounds.
The system recognizes gestures on the basis of the volume of the received sound and the Doppler effect. The former
indicates the distance between the neck and wrists, and the latter indicates the speed of motions. We combine the
gesture recognition by using ultrasound and conventional MFCC-based environmental-context recognition to recog-
nize complex contexts from the recorded sound. Thus, our approach substitutes the wired or wireless communication
typically required in body area motion sensing networks by ultrasounds. Our system also recognizes the place where
the user is in and the people who are near the user by ID signals generated from speakers placed in rooms and on peo-
ple. The strength of the approach is that, for offline recognition, a simple audio recorder can be used for the receiver.
Contexts are embedded in the recorded sound all together, and this recorded sound creates a sound-based life log with
context information. We evaluate the approach on nine gestures/activities with 10 users. Evaluation results confirmed
that when there was no environmental sound generated from other people, the recognition rate was 86.6% on average.
When there was environmental sound generated from other people, we compare an approach that selects used feature
values depending on a situation against standard approach, which uses feature value of ultrasound and environmental
sound. Results for the proposed approach are 64.3%, for the standard approach are 57.3%.

Keywords: wearable computing, gesture recognition, environment recognition, ultrasonic sound, life log, location
recognition, person recognition

1. Introduction

In wearable computing, the human activity recognition tech-
nologies enable novel activity-aware services (Lifelog, Gesture
operation, etc.). Typical sensors used for activity recognition in-
clude wearable motion sensors sensing limb movements (e.g.,
accelerometers, inertial measurement units) [1], [2], or on-body
microphones sensing sound generated by the user’s activities [3].
Wearable motion sensors may sense the user’s own activities pre-
cisely, but cannot be used to recognize the activities of surround-
ing users. Furthermore, to recognize complex activities, data
from motion sensors placed on each part of the body should be
integrated. On-body networking poses its own challenges, such
as energy use in wireless networks, or clothing integration wired
networks. A wearable microphone, on the other hand, captures
the sound generated by human activities performed by the user
itself, or other persons in his/her neighborhood. Some activities
that are challenging to recognize from a network of motion sen-
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sors may be easier to identify from the sound if it is itself very
characteristic. However, this approach cannot be used to recog-
nize precise body movements.

In this paper, we propose a context recognition method that
uses only sound to sense both gestures and environment sounds.
In our system, the user wears a receiver comprising a microphone
on chest and wears one or more small speakers to generate ultra-
sonic sound on the wrists. The system recognizes gestures on the
basis of the volume of the received sound that determines the dis-
tance between the speaker and the microphone. Additionally, our
method uses the Doppler effect to estimate the speed of motions.
Our system also recognizes the place where the user is in and
the people who are near the user by ID signals generated from
speakers placed in rooms and on people. The strengths and the
novelty of the proposed approach are that a single microphone
can be used for gesture recognition, for the recognition of places,
and for the sensing of neighboring users. Contexts are therefore
embedded to the sound-based life-log data. In other words, user
contexts are recorded in only one audio file. The technical nov-
elty is that a user wear small ultrasound speakers on both wrists,
and we use a volume of ultrasound and shift of ultrasound fre-
quency caused by Doppler effect for gesture recognition. Since
the receiver (microphone) and transmitters (speakers) are within
a body of one person, the system does not need any wired or wire-
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less communication function. Finally, for offline context recogni-
tion, the receiver can be a simple off-the-shelf audio recorder.

We implemented a prototype of our proposed method using
an audio recorder for offline context recognition. We evaluated
the method on nine activities with 10 users. When there was en-
vironmental sound generated from other people, the recognition
rate decreases 30% on average. We propose a feature selection
method to increase the recognition rate in such condition. We
also evaluated the recognition rate of person recognition, loca-
tion recognition, and activity recognition in a daily scenario. We
discuss how this method could be used for online recognition as
well.

This paper is organized as follows. In Section 2, we describe
related work. In Section 3, the recognition method is presented.
The implementation is described in Section 4. The recognition
rate of our method is discussed in Section 5. We discuss possible
problems in Section 6. Finally, Section 7 concludes our research.

2. Related Work

2.1 Acceleration Based Recognition
Many studies on gesture recognition with accelerometers have

been reported. Bao et al. developed and evaluated a new method
to detect physical activities from data acquired from five small
biaxial accelerometers worn simultaneously on different parts of
the body [1]. Murao et al. evaluated recognition accuracy for 27
kinds of gestures with nine accelerometers and nine gyroscopes
on a board and demonstrated the differences in recognition ac-
curacy by changing the number, positions, and kinds of sensors
and the number and kinds of gestures [4]. In these studies, it is
difficult to recognize the contexts related to environmental sound
such as talking because a user’s surroundings cannot be recog-
nized with only accelerometers. Moreover, each accelerometer
should have a wireless/wired communication function to com-
municate with the devices for data integration. There are some
studies using mobile phones to recognize context [5], [6]. Al-
though these researches achieved practical context recognition in
daily life since many people have already carried with their own
mobilephones, they cannot recognize detailed context including
user arm motions unless combined with additional acceleration
sensors.

2.2 Other Sensor Based Recognition
There are many context recognition methods using various

types of sensors. Some activity recognition methods using acous-
tic features are studied [7], [8], [9], [10]. In these studies, they
use only environmental sound recognition.

Pirkl et al. demonstrate motion tracking systems by using mag-
netic field [2]. Starner et al. present a wearable device to con-
trol home automation systems via hand gestures [11]. The ges-
tures are recognized using a small camera worn like a pendant.
Mattmann et al. present a garment using strain sensors to rec-
ognize upper body postures [12]. Strain sensors are attached to
the back region of a tight-fitting clothing. These sensors measure
strain in the garment caused by different body movements and
allow distinguishing and allow identifying/recognizing between
a predefined set of body postures. Naya et al. studied nurse’s

routine activity recognition system [13]. Nurses have to memo-
rize what they did in a day to communicate with each other and
should not make mistakes such as giving an unnecessary dose
of medicine. This system recognizes nurses’ activities with an
accelerometer and their locations with RF-ID receivers. Ward
et al. described nine consecutive contexts in woodwork (sawing,
hammering, filing, drilling, grinding, sanding, opening a drawer,
tightening a vice, and turning a screwdriver) that are recognized
by using microphones and three-axis accelerometers mounted at
two positions on the user’s arms [3]. However, in these studies,
when multiple sensors are placed on the user’s body separately,
there is a need to have wireless/wired communication functions
to communicate with the devices for storing/processing data.

2.3 Ultrasonic Based Recognition
Ultrasonic transmissions are used for tracking people [14],

[15]. User’s location is recognized by Doppler shift or times-
of-flight of sound pulses from an ultrasonic transmitter to re-
ceivers placed at known positions. Combining ultrasonic with
other sensors, hand tracking systems are proposed [16], and ges-
ture recognition methods by using ultrasonic Doppler shift are
developed [17], [18]. In these studies, ultrasonic is used for only
location tracking or gesture recognition in fixed place.

3. Recognition Method

Our method requires the user to wear small ultrasonic speakers
to recognize the user’s motions, placed on that person’s wrist. A
speakers emitting the person’s ID are worn on the chest. Addi-
tional speakers for location recognition are set-up on office desks.
In our evaluation we use a simple voice recorder, worn on the
chest, as receiver and analyze the data offline. Figures 1 and 2
show the device configurations for gesture recognition, location
recognition, and person recognition. To recognize the difference
between the right hand and the left hand gestures, the frequency
for both hands is set to be different. More specifically, in this re-
search, we use 19,000 Hz for the frequency of the left wrist and
20,000 Hz that of the right wrist. In this paper, we evaluate only
one user wearing speakers at the same time for gesture recogni-
tion. When some users wear the speakers for gesture recognition,

Fig. 1 Device configuration.
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we slightly changed the usage frequency. To recognize the dif-
ference between location and person, we use 19,500 Hz for the
frequency of the location recognition and 19,750 Hz for that of
the person. Each location/person has a unique ID.

The voice recorder records life-log data including conversation
with other people, the ultrasonic sound from both hands, that of
the location, and that of the ID of surrounding people at the same
time. In our system, the receiver (voice recorder) and the trans-
mitters (small speakers) are within the body of one person. Since
the speakers just transmit ultrasonic, and the voice recorder just
records the sound, they do not need to communicate with other
devices for data fusing.

We use ultrasonic sound for the speakers to recognize gestures
because it is noisy when we use audible range sound. In addi-
tion, environmental sound and the sound from the speaker can be
easily separated to recognize the environment and gestures at the
same time. The user can select the target of recognition by select-
ing worn devices, as shown in Table 1. The sampling frequency
of sound is set to 44.1 kHz. The flow of recognition is shown in
Fig. 3.

3.1 Pre-processing of Sound Data
The features of the signal of the sound are that the low fre-

quency is a large amplitude spectrum and the high frequency is
a small amplitude one. To correct the bias in this frequency, the
high frequency is emphasized on the basis of the following for-
mula [19]. N is the number of samples (N = 4,096). αn is n-th
sound data (n = 1, · · · ,N) before emphasizing the high frequency.
α′n is the n-th sound data after emphasizing the high frequency.

α′n = αn − 0.97αn−1 (1)

The beginning and the end of the waveform cut out for processing
is discontinuous and inconvenient when using Fourier transform.
Therefore, we multiply a window function to smooth the bound-
ary. In this paper, we use a Hamming window [20]. βn is the n-th

Fig. 2 A speaker for location recognition.

Table 1 Selecting devices.

Worn device Environment Gesture Location Person

Recorder ©
Recorder +Wrists © ©

Recorder + Location © ©
Recorder + Person © ©

Recorder +Wrists + Location © © ©
Recorder +Wrists + Person © © ©

Recorder +Wrists + Location + Person © © © ©

data (n = 1, · · · ,N) of the Hamming window. γn is the n-th data
after multiplying by sound data and window function, as shown
in the following formula.

βn = 0.54 − 0.46 cos
2πn

N − 1
(2)

γn = α
′
n × βn (3)

To separate environmental and ultrasonic sound, the frequency
spectrum is calculated by using a fast Fourier transform (FFT).
The vertical axis shows the power of sound, and the horizontal
axis shows the frequency. We can obtain the power of each fre-
quency.

3.2 Activity Recognition
Generally, a feature value is calculated from sensor data to

recognize contexts effectively. In this paper, we use the Mel-
frequency cepstral coefficient (MFCC) as the feature value for
environmental sound. MFCC is a feature value that emphasizes
the important frequencies of the human auditory system. MFCC
has 20 dimensions, and 12 low-level element dimensions are gen-
erally taken as the feature value.

As feature values for motion recognition, we use the mean and
the variance of the volume of ultrasonic sound V(T ). The mean
μ(T ) and the variance σ2(T ) of 10 samples in the past are cal-
culated on the basis of the following formula [21]. T means the
current time.

μ(T ) =
1

10

T∑
t=T−9

V(t) (4)

σ2(T ) =
1

10

T∑
t=T−9

{V(t) − μ(T )}2 (5)

The feature value is four dimensions, which are the mean and the

Fig. 3 Flow of recognition process.
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variance for the volume with 19,000 Hz and 20,000 Hz. Note that
the volume of ultrasonic sound includes a certain margin in a fre-
quency. This is because the Doppler effect changes the frequency
of generated sound. Concretely, in this research, we use 15 Hz as
the margin for calculating feature values.

To consider the Doppler effect as feature values in order to rec-
ognize user motions, we use the frequency that has a maximum
volume within 50 Hz before and after the frequencies 19,000 Hz
and 20,000 Hz. We can obtain the sequence of the frequency
peaks, and then we use the mean and variance of 10 samples pre-
ceding the frequency peak as four dimensional feature values.

The above-mentioned feature values are 20 dimensions in to-
tal X(T ) = (x1(T ), · · · , x20(T )). Since these feature values are at
different scales, they are normalized on the basis of the following
formula [21]. Z(T ) means normalized data. M is the mean. S is
the standard division. T is time.

Z(T ) =
X(T ) − M

S
(6)

For the recognition, we employ the euclidean distance between
training data Zi = (zi1, · · · , zi j, · · · , zi20) and the unknown data
Z = (z1, · · · , z j, · · · , z20) calculated by using the following for-
mula, which is commonly used in activity recognition.

di =

√√√ 20∑
j=1

(zi j − z j)2 (7)

The label of data that has minimum distance becomes recogni-
tion result (K-nearest neighbor algorithm, K = 1). Though more
complicated methods such as SVM (Support Vector Machine)
or decision trees can be used for more accurate recognition, we
use this simple method to know the difference between the cases
with/without our method.

3.3 Location and Person Recognition
An ultrasonic ID is sent from speakers set up in an environ-

ment and on people. The frequency used for the speakers is
19,500 Hz to recognize a location and 19,750 Hz to recognize a
person, while other frequencies can be used if we would like to
use many places and people. We employ the amplitude modula-
tion for the modulation scheme of ultrasonic ID for locations and
persons. Each speakers has a unique ID which is composed of
1 and 0. Speakers transmit ultrasound while each bit of ID is 1,
and do not emit ultrasound while the bit of ID is 0. When the
system analyzes a captured data, if the volume of the sound of
corresponding frequency is larger than the threshold, the system
recognizes that the received data is 1. An ID consists of a header
part (ex. 1010) and main ID part. The system reads the main ID
portion only after recognizing the header. In this experiment, we
use 4 bits for main ID, and each location and person has unique
main ID such as 0001 for Location A and 0010 for Person A.
We can freely expand the number of possible main IDs by adding
more bits to main ID part. The system can recognize the location
or person by comparing obtained IDs with IDs assigned to each
location and person. In this research, we set an interval of 1 pulse
every 0.5 seconds.

Fig. 4 Appearence of devices.

Fig. 5 Appearence of small devices.

4. Implementation

We implemented a prototype based on the proposed method.
The device, worn on the wrists, consisted of a speaker, an Ar-
duino Nano ver. 3.0, a SparkFun Electronics lithium polymer
battery (3.7 V, 2,000 mAh), and a SparkFun Electronics LiPo
Charger/Booster, as shown in top of Fig. 4. These parts were
sewn to a wristband in order to be attached/detached easily. The
Arduino Nano generates a square wave via a speaker. The de-
vice used for location and person recognition consisted of a
speaker, an Arduino Uno R3, Wave Shield ver. 1.1, and a Pana-
sonic lithium ion battery QE-QL201X-W (5 V, 5,400 mAh), as
shown at the bottom of Fig. 4. The wave file of ultrasonic ID
was made with a PC by using Audacity, which is a free soft-
ware for editing and recording audio, and then it was stored on
an SD card. It was played by using Arduino and Wave shield.
We also implemeted a small prototype as shown in Fig. 5. The
small type device consisted of a small speaker, an Arduino Pro
Mini and a lithium polymer battery. We attach this unit to Style
Case nano, which is a wristband for iPod nano, to wear on wrist.
Because Style Case nano winds around the wrist easily, we can
attach/detach a device easier. A speaker unit for person recogni-
tion is attached to the back side of a voice recorder. In this paper,
we used a former prototype. The voice recorder used was Sony
ICD-TX50. The recording mode was LPCM (44.1 kHz, 16-bit).
We used Microsoft Visual C# to develop the software that ana-
lyzed the acquired data. The PC used was a Panasonic Let’s Note
CF-S9LYYKDS (CPU: Core i5, Memory: 4 GB).

5. Evaluation

5.1 Without Sound Emitted by Other People
We first assume an ideal environment where there is no sound

emitted by other users since our method uses a recognition
method with auditory analysis. Note that most evaluations for
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sound recognition in conventional researches have used such
ideal environments. We evaluated nine contexts: sitting, walk-
ing, running, eating, brushing teeth, cleaning, washing hands,
typing, and talking, which are assumed to be daily indoor activi-
ties. These contexts are selected from Activities of Daily Living
and Instrumental Activities of Daily Living [22], which are dif-
ficult to with just one type of sensor. Cleaning is assumed to
be done with a vacuum cleaner, brushing teeth is assumed to be
done not with an electric toothbrush but with an ordinary one,
and eating is assumed to be eating spaghetthi with a fork. We
evaluated the context recognition accuracy in changing the selec-
tion of the feature values. The 10 subjects were 21 to 23-year-old
males and females. The sampling rate was 10 Hz for both envi-
ronmental and gesture recognition. The subjects did the action
for each context for approximately 45 seconds, and we used 50
samples of each context performed by the subjects themselves
for the training data. Three hundred other samples that were not
used for the training data for each context were used for evalua-
tion data. The appearance of the experiment is shown in Fig. 6.
The vacuum cleaner used in the experiment was a Dyson DC26.
A Dell SK-8115 was used as the keyboard. The K-nearest neigh-
bor algorithm was used for recognition (K = 5), and the window
size was 4,096 for environmental recognition and 10 for gesture
recognition.

Table 2 shows the result of the average recognition rate for
all 10 subjects. The accuracy of recognition was 74.4% on av-
erage with MFCC, 78.7% with Volume, 48.7% with the Doppler
effect. When using only MFCC, the recognition rate of the con-
texts without regular sounds such as running, eating, and talking
was not so high. In comparison, the recognition result of feature
sounds such as sitting (silence) and cleaning (loud) was good.
Brushing teeth was recognized at a high recognition rate when
using Volume as a feature value. This is because when the user
brushed his/her teeth, only their dominant hand was very near to
the recorder. When using only Doppler as a feature value, it was
difficult to recognize these contexts. By combining two kinds of
feature values, there was a 13.4% increase in the average accuracy
compared with using just one kind of feature value. Each feature

Fig. 6 Snapshots on experiment without sound emitted by others.

Table 2 Recognition rate without sound emitted by others [%].

Combination of
feature values Sitting Walking Running Eating Typing Brushing Washing Cleaning Talking Average

MFCC 90.6 80.4 60.6 63.4 70.1 66.6 77.6 100 60.5 74.4

Volume 85.1 77.3 68.4 64.0 81.4 95.5 79.9 73.8 82.8 78.7

Doppler 97.5 60.1 62.7 41.2 24.8 41.2 39.1 48.0 23.7 48.7

MFCC + Volume 93.2 90.5 68.2 77.3 86.1 78.3 86.6 100 70.7 83.4

Volume + Doppler 88.7 67.8 69.8 70.2 91.6 84.1 80.0 69.6 89.2 79.0

MFCC + Doppler 97.7 76.6 73.6 70.2 82.6 67.3 82.3 100 66.1 79.6

All 98.9 82.8 76.0 82.0 91.8 78.5 88.0 100 81.5 86.6

value mutually complemented the low accuracy of the other fea-
ture. Combining three kinds of feature values, the recognition
rate was 86.6% on average. As seen from the above, combin-
ing different kinds of feature values is effective. When there is
no other environmental sound, we should use all three kinds of
feature values.

Compared with the system developed by Bao et al. [1], they use
five accelerometers and recognition accuracy is 89.71% in walk-
ing, 94.78% in sitting, 87.68% in running, 85.27% in brushing
teeth, 97.49% in working on computer, 88.67% in eating or drink-
ing, 96.41% in vacuuming. The average recognition rate of these
seven contexts are 91.43%. This result is slightly higher than pro-
posed method, however they need to wear five accelerometers on
each part of the body. Moreover, this method cannot recognize
the sound related contexts such as talking. The training method
is similar to the conventional approaches. However, the most im-
portant difference between conventional methods and our method
is hardware configulation and restriction on communication.

5.2 With Sound Emitted by Others
We evaluated our method when there was environmental sound

from other people to investigate how this sound influences the
recognition rate. We selected five environmental sounds (typ-
ing, washing, brushing, cleaning, and talking), which are con-
sidered to different types of environmental sounds. The subjects
performed each action in the presence of environmental sound
from others, as shown in Table 3, for approximately 45 seconds.
Because it is not easy to consider situations with these environ-
mental sounds when the user is running, we did not evaluate with
running. The 10 subjects were 21 to 23-year-old males and fe-
males, and the sampling rate was 10 Hz. The training data was
the same data used in the previous experiment. The appearance
of the experiment is shown in Fig. 7.

First, we used the same recognition method used in the previ-
ous experiment. As the result shown in Table 4, the recognition
rate decreased on the whole. The average recognition rate of all
contexts in the presence of environmental sound from others was
57.3%. This is because such sound negatively affected the recog-
nition results. In particular, when there were cleaning sounds,
the recognition rate greatly fall. This is because the sound of the
vacuum cleaner was very loud compared with the other sounds.
Therefore, other sounds were erased by the vacuum cleaner, and
the recognition rate by using MFCC with included feature values
greatly worsened.

To recognize correctly in the presence environmental sound
from others, we propose an improved recognition method. Note
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Table 3 Combination of user behaviors and sounds emitted by others.

User’s action Environmental sound of others

Sitting Typing, Washing hands, Brushing teeth, Cleaning, Talking

Walking Typing, Washing hands, Brushing teeth, Cleaning, Talking

Running -

Eating Typing, Talking

Typing Typing, Washing hands, Brushing teeth, Cleaning, Talking

Brushing teeth Typing, Washing hands, Brushing teeth, Cleaning, Talking

Washing hands Typing, Brushing teeth, Cleaning, Talking

Cleaning Typing, Washing hands, Brushing teeth, Talking

Talking Typing, Washing hands, Brushing teeth, Cleaning, Talking

Table 4 Average accuracy with sound emitted by others [%].

Other’s
environmental sound

Combinations
of feature values Sitting Walking Eating Typing Brushing Washing Cleaning Talking Average

MFCC 17.8 65.3 17.1 72.3 29.8 59.8 100 54.5 52.1
Volume 37.7 53.6 32.6 55.9 75.2 58.8 50.7 60.5 53.1
Doppler 89.6 52.2 45.6 23.8 29.7 31.8 43.4 13.2 41.2

Typing MFCC + Volume 16.9 80.7 32.3 67.0 48.9 76.7 100 62.9 60.7
Volume + Doppler 59.4 59.5 40.9 66.5 67.2 59.2 53.3 77.7 60.5
MFCC + Doppler 47.0 68.6 27.4 91.5 38.1 64.0 100 57.4 61.7

All features 50.9 74.3 37.8 83.7 50.7 82.1 99.9 71.9 68.9

MFCC 17.6 57.3 - 43.6 17.6 - 99.3 50.5 47.7
Volume 43.1 55.1 - 45.1 77.4 - 36.7 61.8 53.2
Doppler 78.3 57.7 - 24.0 20.8 - 44.0 16.6 40.3

Washing MFCC + Volume 23.5 75.0 - 44.6 39.6 - 99.5 62.8 57.5
Volume + Doppler 57.2 63.4 - 55.8 63.7 - 48.5 82.8 61.9
MFCC + Doppler 54.4 68.5 - 66.6 19.6 - 99.3 54.9 60.5

All features 71.4 73.9 - 68.5 41.8 - 99.2 73.4 71.3

MFCC 43.3 71.5 - 58.1 34.9 68.8 100 54.7 61.6
Volume 58.9 60.2 - 44.0 67.7 74.5 38.1 68.1 58.8
Doppler 95.7 59.1 - 28.7 33.7 40.0 45.0 10.2 44.6

Brushing MFCC + Volume 58.5 85.0 - 53.1 51.9 84.8 100 65.4 71.2
Volume + Doppler 70.4 66.8 - 62.6 59.8 75.2 51.2 79.5 66.5
MFCC + Doppler 74.2 73.1 - 83.4 41.2 74.6 99.9 55.2 71.6

All features 82.5 77.9 - 78.9 51.6 90.7 99.8 73.5 79.3

MFCC 0.0 0.0 - 0.0 0.0 0.9 - 2.6 0.6
Volume 41.8 67.0 - 47.8 76.4 63.2 - 59.4 59.3
Doppler 65.1 48.1 - 24.4 40.4 34.6 - 5.3 36.3

Cleaning MFCC + Volume 0.0 0.1 - 1.6 0.1 1.7 - 8.4 2.0
Volume + Doppler 39.6 56.2 - 59.5 73.4 63.0 - 29.2 53.5
MFCC + Doppler 0.0 6.2 - 1.4 0.0 4.4 - 2.2 2.4

All features 0.6 16.6 - 11.2 1.9 5.6 - 7.2 7.2

MFCC 16.9 32.6 17.8 17.2 11.8 46.4 99.9 64.6 38.4
Volume 59.0 67.8 37.9 57.5 76.7 80.9 41.4 60.5 60.2
Doppler 88.2 55.9 42.0 26.1 26.5 39.1 50.7 11.0 42.4

Talking MFCC + Volume 23.2 46.2 30.2 20.3 29.0 72.5 99.9 76.5 49.7
Volume + Doppler 59.7 62.9 45.2 66.0 66.3 76.9 55.0 84.5 64.6
MFCC + Doppler 28.1 56.5 30.8 37.4 17.1 54.9 99.9 68.1 49.1

All features 34.6 64.0 37.6 45.1 34.5 79.4 99.7 84.3 59.9

Fig. 7 A snapshot of experiment with sound emitted by others.

that the purpose of improved method is not raise the average
recognition rate but prevent radical fall of recognition rate in par-
ticular situations.

The basic idea of improving the method is to select the fea-
ture values depending on the situation. When there is no sound
emitted by others, we should use all three features because of
the previous evaluation result that gives the best recognition rate.
When there is sound emitted by others, we should use two fea-
ture values without MFCC, which indicates only user’s motion.
This is because MFCC contains others’ sound that negatively af-
fects the recognition while user’s motion (volume and doppler) is
not affected by others’ sound. The flow of improved recognition
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Fig. 8 Recognition process considering sound emitted by others.

Table 5 Accuracy in our revised method.

Sound emitted Accuracy [%]
from others Conventional method Revised method

Typing 68.9 64.7

Washing 71.3 66.1

Brushing 79.3 71.7

Cleaning 7.2 51.0

Talking 59.9 67.8

Average 57.3 64.3

method is shown in Fig. 8. The method calculates one recogni-
tion result (context A) that uses three feature values, and calcu-
lates two recognition candidates (context B and C) which use two
feature values (volume of ultrasound and Doppler) using k-NN
algorithm (k = 5). A first order of recognition result is set to con-
text B, and a second order of recognition result is set to context
C. When context A is the same as context B or context C, we
consider that context A is not affected by others’ sound. There-
fore, we use context A as the final result. Otherwise, we consider
that context A is affected by the sound emitted by others. Thus
the method uses context B as the final result.

Applying this mechanism, although the recognition accuracies
of several methods slightly decreased, the recognition rates im-
proved when there was cleaning sound and talking. In particular,
when others’ sound is Cleaning, there is significant improvement
of recognition rate that is approximately 40% of recognition ac-
curacy. Moreover, the recognition rate of all contexts was 64.3%,
an improvement of 7.0%, as shown in Table 5. The purpose of
improved method is not raise the average recognition rate but pre-
vent greatly fall of recognition rate in particular situation. There-
fore, from the above discussion, we consider that the improved
method was effective.

5.3 Evaluation of Location and Person Recognition
We evaluated the accuracy of location and person recognition.

The speaker that generates ultrasonic ID was set up on desks each
of five rooms. The subject was one person, who sats on a chair in
front of the desk for 30 seconds and then moved to another room
in specific order. Repeating this for two sets, we confirmed the

Table 6 Action scenario.

# of
context Context Location

Environmental sound
from others

1 Typing Room A Talking
2 Eating Room B Typing
3 Sitting
4 Talking with A Room A
5 Cleaning
6 Talking with B Room B
7 Typing Typing
8 Brushing Room C
9 Washing

accuracy of the location recognition. Though all 10 places were
able to be recognized accurately, one place had been recognized
as a different location in the middle of recognition. The reason
is considered to be that the ultrasonic ID did not get recognized
accurately due to influences that got in the way of the ID acquisi-
tion.

When we used five speakers in five locations in the same room
at the same time, each ID interfered with each other and it was not
able to recognize IDs accurately. Therefore, in the case where we
use multiple speakers in the distance at which sounds interfered
with each other, it is necessary to shift the sending interval of an
ID so as not to overlap with that of others. In location and person
recognition, the error of recognition does not become a serious
problem since there are many chances for recognition in a con-
versation or a stay of the room.

We also evaluated person recognition. Three subjects wore a
speaker that sent ultrasonic ID on their chest, and one of them
wore voice recorder too on his/her chest. The three subjects spoke
face to face for approximately two minutes. All three subjects
were able to be recognized in approximately one minute. In this
system, the more the number of subjects increases, the more time
is needed to recognize all subjects. This is because the pulse of
the ID sending is set to 0.5 seconds, which is long. By shortening
the pulse, the time taken until recognition is able to be shortened.

Compared with the system developed by Ward et al. [14], 95%
of raw readings lie within 14 cm of the true position. They can
recognize where the user is in the room. However, in this system,
the receivers have to be set up at known positions. In our system,
though the system cannnot recognize where the user was in the
room precisely, it can recognize in which room the user was, and
it is easy to set up speakers for location recognition.

5.4 Action Scenario
To confirm the practicality of the proposed method in daily

life, we evaluated daily actions along scenarios, as shown in Ta-
ble 6. The movement between contexts was entirely walking.
The subjects were three males. The voice recording was done for
approximately 10 minutes. The user wore a voice recorder on his
chest and ultrasonic speakers on his wrists. Two subjects, per-
son A and B, wore the speaker that generates an ultrasonic ID for
person recognition on their chest. The speakers that generate an
ultrasonic ID for location recognition were set up in three places,
as shown in Fig. 9. Figure 10 shows the ground truth of actual
action.

Figure 11 shows the recognition result. Recognized results
are normalized by majority decision for 10 seconds. As this fig-
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Fig. 9 Location of speakers and actions.

Fig. 10 Ground truth of actual action.

Fig. 11 Scenario result.

ure shows, context was mostly recognized correctly. However,
typing in Room B was not recognized correctly. The reason is
considered to be that the keyboard in Room B was different from
the one used when taking training data. Typing in Room A was
correctly recognized because the keyboard in Room A was the
same one used when taking training data. Four places out of the
five places were able to be recognized correctly. When the user
talked with person A, location information was not recognized.
This is because Room A was larger than Room B and Room C,
as shown in Fig. 9. When the user was in the Room A, the vol-
ume is not enough. All activities of the user in Room B were done
near the speaker, however the user talked with person A at a point
a little far from the speaker in Room A. Therefore, the volume
of ultrasonic sound was not enough, and could not be used for
recognition. To recognize more correctly, we should enlarge the
output from the speaker or set up speakers in the room within the
range where the sound does not overlap.

Persons A and B were both able to be recognized correctly.
When the user was using the vacuum cleaner, misidentification
of the location and person occasionally occurred. This is be-
cause the sound of a vacuum cleaner contains various frequen-
cies. 19,500 Hz, used for the location recognition, and 19,750 Hz,
used for the person recognition, are also contained in vacuum
cleaner sound. We can solve this problem by setting the appro-

priate threshold or setting a higher frequency that is not included
in cleaner sounds for the speakers.

6. Discussion

Conventional sound recording systems have a privacy problem,
which records the sound we do not want to be heard by other
people such as the sound when the user was in a rest room. Our
system tags the recorded sound and can remove/encrypt the part
of the recorded sound based on the tags. We discuss how this
method could be used for online recognition as well. When use
devices having microphone and data processing capacity, such as
smartphone, instead of simple voice recorder, we consider that
the system can recognize online.

In this study, as shown in Section 3.2, we set 50 Hz as a margin
for Doppler effect. In other words, we need 100 Hz per one wrist.
Thus, we need 200 Hz for one person. Since we use 44,100 Hz
as a sampling rate, the maximum frequency that can be detected
when we use Fourier transform is 22,050 Hz. In this paper, since
we use the frequency of 19,000 Hz or more as a ultrasound, the
range of frequency which can be detected is 3,050 Hz between
19,000 Hz to 22,050 Hz. Considering the above, our system can
recognize 15 persons at the same time by a simple calculation.
However, since the volume of wrist speakers is not so loud, we
consider that it does not become a significant restriction. This is
because the sound from a people standing nearby the user is small
enough not to be detected.

When there are two or more users using the same frequency,
we consider to change the frequency for wrist speakers automat-
ically. Concrete algorithm will be proposed in future, but there
is a simple algorithm that wrist speakers stop transmitting ultra-
sound at regular time intervals, and the system confirms whether
there is a sound of the same frequency in neighborhood. When
there is a sound of the same frequency, wrist speakers change the
frequencies to be used.

Since most humans cannot hear sound at around
20,000 Hz [23], the sound used in our system is almost im-
perceptible to humans. On the other hand, many of the
non-human animal, such as dog or cat, have wider audible range
compared with human. The frequency used in this paper may be
uncomfortable for pets from the fact that there are many products
to keep vermin away by using ultrasonic. If we use the system
with animals, we should carefully consider the setting of volume
and frequency of ultrasonic.

Ultrasonic sound is reflected by the wall, thus if the users use
this system in narrow space, reflection can negatively affect to
the recognition result. In this evaluation, experiment was done in
enough large room, therefore there seems no effects of reflection.

In this study, we assume the user wear the speakers on wrists
and voice recorder on chest, since we consider the hands the part
of the body most often moved, and chest is the most stable posi-
tion in the body.

7. Conclusion

In this paper, we propose an ultrasound-based context recog-
nition method. Our method utilizes small speakers that output
ultrasonic for adding contexts to the recorded sound of a voice
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recorder. When there is no sound emitted by others, the sys-
tem could recognize the context correctly at an average of 86.6%.
When there was sound emitted by others, the average was 57.3%,
while that was 64.3% with the revised method. Moreover, we
evaluate location, person, and daily activity recognition, and con-
firmed the effectiveness of the proposed method.
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