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Abstract: The number of electronic control units (ECUs) has increased to manage complicated vehicle systems.
Many kinds of operating systems that run on ECUs exist: ITRON OS, OSEK OS, and so forth. Currently, developers
implement the system control software according to the ITRON and OSEK specifications independently. For example,
even though OSes provide similar functionalities, OSEK specifications have several differences from ITRON specifica-
tions such as scheduling policies (Non-preemptive scheduling), alarms, hook routines, and several system calls. Thus,
when using legacy software following OSEK specifications on the ITRON OS, developers have to port the software to
ITRON OS. This paper presents a component-based framework to fill the gap between OSEK and ITRON specifica-
tions by using TECS (TOPPERS Embedded Component System). The work required to port legacy OSEK applications
built with TECS components to ITRON applications built for TECS is reduced by using our method. TECS is a high-
level abstraction component system for enhancing the reusability of software. Examples for the characteristics of the
framework are: (1) Non-preemptive scheduling tasks are implemented by changing the priority of the task to the high-
est priority; (2) The system works as the OSEK alarm based on a counter value, which is incremented at an arbitrary
time interval; (3) OSEK hook routines are also available with a particular timing. Experimental results demonstrate
that the overhead of the corresponding system calls compared to the original OSEK system calls is reduced to within
13.58 μsec.
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1. Introduction

Recently, a number of automobiles systems have changed from
mechanical to electronic control systems. For example, engine
control and injection pumps were used to pump fuel into the
cylinders, while electronically-controlled fuel injection is now
used to make this process efficiently. In addition, hybrid cars
and battery-powered cars are becoming prevalent, which has in-
creased the rate of computerization of automobiles. As a result,
automobile systems have become more complicated and larger
in scale, as evidenced by the code used in such automobiles; for
example, for Volt, manufactured by General Motors, the lines of
code increased from 2.4 million to 6 million between 2005 and
2009 [1]; as of late, it has further increased to approximately 10
million [2].

To manage the complicated automobile systems, various op-
erating systems [3] such as ITRON *1 OS [4], [5], OSEK *2 [6],
and AUTOSAR OS *3 OS [7] are used. Among them, the ITRON
specifications, which include automotive control profiles, are now
the de-facto standard for embedded systems in Japan [8]. On the
other hand, OSEK OS and AUTOSAR OS *4 are the architecture
of choice for distributed control units in the automotive indus-
try that enable more efficient development using a standardized
software interface.
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Currently, complicated automobiles are composed of a number
of ECUs, each of which may use a different OS. In other words,
multiple types of OSes are used (e.g., ITRON OS and OSEK OS)
in a single automobile. Then, developers have to implement the
system control software following the ITRON specifications and
OSEK specifications independently because these OSes provide
similar functionalities, but also have several differences, such as
scheduling policy, counters, alarms, resources, events, hook rou-
tines, and system calls [9]. In the worst case, the software requires
substantial changes, forcing developers to redesign it almost from
the scratch. Generally, it is difficult and time-consuming to port
software on a different OS because the software needs substantial
changes, e.g., operable system calls, design of tasks in the appli-
cation and implementation methods – this requires great design
cost.

To enhance the reusability of software, component-based de-
velopment is getting attention in the area of embedded soft-
ware development. Various component systems for embedded
systems have been proposed such as Koala [10], THINK [11],
SaveCCM [12], and TECS *5 [13], [14]. Use of such component
systems is one of the ways to develop embedded system effi-

*1 Industrial TRON
*2 Offense Systeme und deren Schnittstellen für die Elektronik im Kraft-

fahrzeug/Vehicle DistributedeXecutive
*3 AUTomotive Open System ARchitecture
*4 AUTOSAR OS is based on the OSEK specifications with backward com-

patibility.
*5 TOPPERS Embedded Component System
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ciently by dividing the software into sub-systems. This can in-
crease software reusability and clarify architectures.

This paper presents a component-based framework which pro-
vides the functionalities of the OSEK specifications using TECS
on ITRON OS. We aim to reduce work by reusing legacy
OSEK software on the ITRON OS as the first step. This frame-
work supports unsupported OSEK functionalities which do not
have corresponding functionalities in ITRON OS. The unsup-
ported OSEK functionalities are provided by preparing compo-
nents and/or functions with ITRON functionalities and system
calls on ITRON OS. In addition, TECS also exploits the afore-
mentioned advantages of component systems such reusability.
Therefore, the proposed framework can reduce the porting cost
of applications that run on the different OSes.

The remainder of this paper is organized as follows. Section 2
briefly reviews related work, and TECS is explained in Section 3.
Section 4 defines problems of our work. Requirements, design,
and overview of the proposed framework are presented in Sec-
tions 5–7, respectively. Examples are presented in Sections 8.
Then, the proposed framework is evaluated in Section 9, and fi-
nally Section 10 summarizes this paper.

2. Related Work

Component-based development has started to be widely used
in embedded software development as follows; THINK [11],
SaveCCM [12], [15], and SmartC [16].

THINK [11] is a software framework for implementing oper-
ating system kernels from components. The THINK software
framework is constructed with a small set of concepts; compo-
nents, interfaces, bindings, names, and domains.

SaveCCM [12], [15] is a component model used for embedded
control applications in vehicular systems. In an effort to facilitate
analysis, SaveCCM has limited flexibility in particular analysis
of dependability and real-time.

SmartC [16] is a language for automotive electronics applica-
tions, such as engine control systems. SmartC has module level,
task level, subtask level, and component level hierarchical models
and implements the SmartOSEK [17] operating system, which is
based on the OSEK specifications model.

However, these component technologies target only one OS
and do not support the reuse of components from another OS.

Recently, the number of electronic control units in automo-
tive control systems has been increasing because advanced elec-
tronic control functions requirements are becoming more com-
plex. Several approaches have been proposed for the integration
of ECUs into a single high-performance ECU and the unification
of applications thereon in order to reduce the number of ECUs.
DUOS [18] is a new real-time operating system framework for
this purpose. The framework has a hierarchical scheduler and
API layers for ITRON and OSEK specifications. This OS has
APIs based on ITRON and OSEK specifications, although the
hardware requires high performance and the kernel size is larger
than the OS.

eCos [19] and Xenomai [20] are providing APIs of other OSes.
In the framework, wrappers are used to provide APIs of other
OSes. However, the common existing OSes for automobiles can-

not be used for the OSes.

3. TOPPERS Embedded Component System

In this section, the specifications of TECS are described.

3.1 TECS Component Model
A cell is a component in TECS, and has entry port and call port

interfaces. The entry port is an interface to provide functionalities
to other cells. The call port is an interface to use the functionali-
ties of other cells. In this environment, a cell communicates with
these interfaces. The entry port and the call port have service
sets. A signature is the definition of the interfaces in a cell. The
celltype define cells, like an object-oriented language Class. A
cell is an entity of a cell type. Figure 1 shows an example of
the connection of cells. TECS component model is explained in
detail in Ref. [21].

There are two cells; the left cell is an A cell and the right cell

is a B cell. Here, tA and tB represent the celltype names. The
triangle in the B cell depicts an entry port (eEntryPort). The
connection of the entry port in the A cell describes a call port

(cCallPort). A call port can be only connected to an entry port.
Therefore, in case of joining several entry ports, a call port array
can be used. An entry port also can be connected to several call

ports. These ports are connected by the signature description to
define a set of function heads.

3.2 Development Flow
Figure 2 shows the proposed development flow in TECS.

TECS CDL *6 is constructed with three descriptions; signature

description, celltype description and build description.
The signature description is used to define a set of function

Fig. 1 Example of cells.

Fig. 2 Development flow in TECS.

*6 Component Description Language
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heads. The celltype description is used to define the entry ports,
call ports, attributes, and variables of a celltype. The build de-
scription is used to declare the cells and create the connections
between cells in order to assemble an application. A TECS gen-

erator generates several interface C- (.h or .c) and template code
for the component source from the signature, celltype, and build

descriptions. In case of using the OSEK OS, OIL *7 descriptions
are also generated from the TECS CDL.

Developers in this framework are divided into three groups;
a component designer, component developer and an application
developer. The component designer defines the signatures and
celltypes. The component developer implements components as
well as write the implementation code (Component Source) of the
cells by using template code which is generated from TECS CDL
description with the TECS generator. Generally, a component is
provided by the source code. After the celltype code is devel-
oped, the application developer implements the build description
by connecting the cells. An appropriate application is composed
of generated code (header and interface code) and the celltype

code.

4. Problem Definition

There are many kinds of operating systems that run on ECUs;
ITRON OS, OSEK OS, AUTOSAR OS, and so forth. Therefore,
developers have to implement applications following these spec-
ifications individually. In such situations, developers need to port
legacy applications on the other OS. For instance, even though
OSes provide similar functionalities, some unsupported OSEK
functionalities are exist on the ITRON OS such as scheduling
policies, alarms, hook routines, and several system calls. A list of
unsupported OSEK functionalities on the ITRON OS is:
Scheduling Policy

OSEK specifications has Non-preemptive Scheduling and
Mixed-preemptive Scheduling. However, these scheduling
policies are not supported on ITRON specifications.

Counter
The OSEK counter is a time count value which is incre-
mented at arbitrary time intervals by the user. However,
ITRON specifications do not have a similar time count value.

Alarm
The OSEK alarm works with an arbitrary time based on the
time count value. Furthermore, the alarm will perform ac-
tions at arbitrary time intervals as specified by the user. An
action is chosen from three functions; calling an alarm call-
back routine, activating a task, or setting an event. However,
the OSEK alarm is different from ITRON specifications.

Resource
The OSEK resource changes its own task priority and/or the
ISR *8 priority to a ceiling priority. The ceiling priority is
the highest priority in a group of tasks and ISR, which be-
longing to the resource, when the task or ISR receive the
resource. However, the OSEK resource is not supported on
ITRON specifications.

*7 OSEK Implementation Language
*8 Interrupt Service Routine

Event
The OSEK event of the SetEvent and GetEvent is called with
the task ID, but set flg and ref flg on the ITRON specifica-
tions are called using the flag ID.

Application Mode
The OSEK application mode provides a function to change
the set of tasks and alarms, which are automatically started
after the OS is started. However, the OSEK application
mode is not supported on ITRON specifications.

Hook
Four of the OSEK hook routines *9 correspond to the compo-
nent level; StartupHook, ShutdownHook, PreTaskHook, and
PostTaskHook. However, the OSEK hook routines are not
supported on ITRON specifications.

System Calls
Some of the OSEK system calls are not supported on the
ITRON specifications. The corresponding OSEK System
Calls on ITRON specifications is shown in Table 1 *10. For
example, SetEvent and GetEvent are different because the
system calls need to specify the task ID on OSEK specifica-
tions. The circle symbol indicates that the system call of the
ITRON OS has correspondence to the system call of OSEK
OS. The cross symbol indicates that the system call has re-
strictions.

Hence, it is generally difficult to change applications running
on a different OS because the applications needs to substantially
change as follows; difference in the operable system calls, design
of tasks in the applications and implementation methods. In the
worst case, the applications need substantial changes and devel-
opers need to redesign the applications. As a consequence, the
amount of work and the cost will be increased.

5. Requirement

Requirements to provide functionalities of the OSEK specifi-
cations on the ITRON OS are listed as below.
( 1 ) Providing the corresponding OSEK functionalities on the

ITRON OS
It is hard to port legacy OSEK applications on the ITRON
OS because of the unsupported OSEK functionalities which
do not have correspondence in ITRON specifications. There-
fore a developer has to consider correspondence of the un-
supported OSEK functionalities on the ITRON OS. As
a consequence, the unsupported OSEK functionalities are
needed to provide the corresponding OSEK functionalities
on the ITRON OS.

( 2 ) The existing ITRON OS is used without modification
Developers must verify the ITRON OS again if the existing
ITRON OS is changed to provide the unsupported OSEK
functionalities. In addition, developers have to change the
existing ITRON OS each time and the work will be in-
creased. Therefore, the OSEK functionalities are provided
on the existing ITRON OS without modification.

*9 Hook routines execute user-defined actions at the specific time such as
before execution of a task or after execution of a task.

*10 ClearEven and WaitEvent are categorized in the supported system call
because these system calls do not need to specify Task ID.
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Table 1 Corresponding OSEK system calls in the ITRON specifications.
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ActivateTask ○ ○
TerminateTask ○
ChainTask ×
Schedule ×
GetTaskID ○ ○ × × ×
GetTaskState ○ × × × ×
DisableAllInterrupts × × ×
EnableAllInterrupts × × ×
SuspendAllInterrupts × × × × × × ×
ResumeAllInterrupts × × × × × × ×
SuspendOSInterrupts × × ×
ResumeOSInterrupts × × ×
GetResource × ×
ReleaseResource × ×
SetEvent × ×
ClearEvent ○
GetEvent × × × × ×
WaitEvent ○
GetAlarmBase × × × × ×
GetAlarm × × × × ×
SetRelAlarm × ×
SetAbsAlarm × ×
CancelAlarm × ×
GetActiveApplicationMode × × × × × × ×
○ indicates that the system call has one-to-one correspondence to the system call.
× indicates that the achieved system call has restrictions.

( 3 ) The applications do not need substantial changes.
Developers need to redesign the applications if the existing
applications need to substantially change in order to pro-
vide the unsupported OSEK functionalities. Therefore, we
need to provide the unsupported OSEK functionalities on the
ITRON OS as mush as possible to reduce the work required.

6. Policy for Design about Component

The purpose of our research is to reduce the amount of work
by providing OSEK functionalities on the targeted ITRON OS.
Hence, OSEK functionalities are provided as components with-
out changes to the ITRON OS. For instance, “ChainTask” of the
OSEK system call is replaced with the prepared function in the
signature description. In the function, “act tsk” of the ITRON
system call is called and then “ext tsk” of the ITRON system call
is called to provide the same functionalities as “ChainTask.”

The OSEK functional specifications are provided by adding
new components to the existing ITRON OS with TECS compo-
nents in Fig. 3. The application is running on TECS components
for OSEK functionalities. TECS components use the ITRON OS
via the TECS components for the ITRON OS and SIL. SIL is the
System Interface Layer for enhancing driver portability such as
SIL UNL INT *11 and SIL LOC INT *12.

We classified the implemented new components into two
groups: supported functionalities and unsupported functionali-
ties. The supported functionalities are the OSEK functionalities

*11 SIL UNL INT resets a flag to enable all interrupts.
*12 SIL LOC INT sets a flag to disables all interrupts except for non-

maskable interrupts.

Fig. 3 Structure of TECS components for OSEK functionalities.

which have the corresponding functionalities on the ITRON OS.
The unsupported functionalities are not the OSEK functionali-
ties which do not have corresponding functionalities. The un-
supported OSEK functionalities are provided by preparing com-
ponents or functions with functionalities and system calls on the
ITRON OS. For instance, non-preemptive scheduling tasks are
implemented by changing the priority of the task to the highest
priority.

The components for providing the OSEK functionalities which
the ITRON OS does not have are implemented by the component
designer as the signature description and the celltype description.
The application developer implements an appropriate application
by connecting the new cell in the build description based on the
component diagram. Finally, the component developer imple-
ment components the source by using ITRON functionalities.

In the development of the OSEK OS with TECS, the OIL de-
scription is generated from TECS CDL. Therefore, developer
does not need to take into consideration the OIL description. In
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case of ITRON specifications, static APIs of ITRON is generated
instead of the OIL description.

7. Overview of Proposed Framework

We apply TOPPERS/ATK1 [22] (Automotive Kernel1) func-
tionalities to TOPPERS/ASP [23] (hereinafter referred to as the
ASP kernel) with TECS [24]. TOPPERS/ATK1 is a TOPPERS
OS kernel profile and compliant with OSEK specifications, and
TOPPERS/ASP is a TOPPERS OS kernel profile that is compli-
ant with the ITRON OS. TECS is a high-level abstraction com-
ponent system, as mentioned above.

7.1 Supported Functionalities
The supported functionalities are the OSEK functionalities

which have the corresponding functionalities on the ITRON OS.
The correspondences between OSEK and ITRON functionalities
are provided below.
7.1.1 Conformance Classes

The conformance classes on OSEK specifications are BCC1,
BCC2, ECC1, or ECC2. The conformance class of ATK1 is
ECC2 and ASP corresponds to ECC2 according to OSEK speci-
fications. Therefore, the corresponding conformance classes be-
tween ASP and ATK1’s conformance class are the same.
7.1.2 Task States

Correspondence task states are shown in Table 2. Each task
state on the ITRON specifications corresponds to the task state
on the OSEK specifications. The ITRON task state of BLOCKED
is classified into three sub-states; WAITING, SUSPENDED, and
WAITING-SUSPENDED. In the case of the OSEK functionali-
ties on the ITRON OS, the difference is not a problem. Therefore,
the OSEK state of waiting corresponds to the ITRON task state
BLOCKED.
7.1.3 System Calls

The corresponding system calls are shown in Table 3. The sys-
tem calls have a one-to-one correspondence between OSEK sys-
tem calls and ITRON system calls. Thus, these ITRON system
calls are used in place of the OSEK system calls.

7.2 Unsupported Functionalities
The OSEK functionalities which are not supported by the

ITRON OS provided by preparing components and/or functions

Table 2 Corresponding task states.

OSEK Specifications ITRON Specifications

running RUNNING
ready READY
waiting BLOCKED
suspended DORMANT

Table 3 Corresponding system calls.

OSEK Specifications ITRON Specifications

ActivateTask act tsk / iact tsk
TerminateTask ext tsk
GetTaskID get tid / iget tid
GetTaskState ref tsk
ClearEvent clr flg
WaitEvent wai flg
ShutdownOS ext ker

with functionalities and system calls on the ITRON OS. A list
of the unsupported OSEK functionalities on the ITRON OS is
summarized below.
7.2.1 Non-preemptive Scheduling

The OSEK task has three scheduling policies; full preemp-
tive scheduling, non-preemptive scheduling, and mixed preemp-
tive scheduling. The ITRON scheduling policy corresponds to
full preemptive scheduling. In addition, if preemptive and non-
preemptive tasks are mixed on the same system, the context is
referred to as mixed preemptive scheduling. Therefore, we ac-
commodated non-preemptive scheduling by changing the priority
of the task. Before a new task is executed, a system call is invoked
to change the priority of the task that has the highest priority.
7.2.2 Counter

A component that is activated by the cyclic handler is used to
count time at arbitrary time intervals. Therefore, the period in the
cyclic handler is an arbitrary time span set by the user. Accord-
ingly, the time count in the component is incremented at arbitrary
time intervals set by the user to provide the function of the OSEK
counter on the ITRON OS.
7.2.3 Alarm

The alarm component on the ITRON OS is implemented as
follows. An alarm component consists of a counter component to
work on the time value in the counter component. An alarm com-
ponent is called after the time value is incremented in a counter.
Moreover, the counter component passes the counter value as an
argument.

In the alarm component, the first alarm expiration time and the
period are defined by the user. According to the user-defined time
interval, the next alarm expiration time is compared to the time
value of the counter. If the times are the same, the alarm will exe-
cute two processes. In the first process, the alarm expiration time
is changed to the next alarm expiration time. The next alarm expi-
ration time is the previous alarm expiration time plus the period.
In the second process, the user-defined action is executed.

As mentioned above, the action is the alarm callback routine,
an activating task, or setting of an event. Each action is imple-
mented as a component, and one of the components of the action
is connected to the alarm component. Therefore, by changing the
component connected to the action, the user can select the process
of the action.
7.2.4 Resource

We designed a component that will change the original priority
of the task to a ceiling priority which is automatically chosen by
the TECS generator. If getResource is called, the priority of the
task is changed to the ceiling priority. The highest priority among
the tasks which use the resource must be automatically chosen as
the ceiling priority by the TECS generator.

The original task’s priority is saved in the resource component,
in case the resource is nested before the task’s priority is changed.
When releaseResource is called, the priority of the task will be
the saved priority. In addition, if the resource is a linked resource,
the ceiling priority will be compared to the ceiling priority of the
linked resource. Therefore, the priority of the task is changed to
the higher priority.

In case of internal resources, the task uses the same mechan-
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ics as the non-preemptive task, as mentioned in Section 7.2.1,
and receives and releases the resource accordingly. In addition,
the OSEK resources have RES SCHEDULER. If a task receives
RES SCHEDULER, the task protects itself against preemptions
by the other tasks. The state of receiving RES SCHEDULER
corresponds to transitioning the system state to the dispatching
disable state.

The OSEK resource functionality between tasks is provided
with the proposed framework, although the proposed framework
for the OSEK resource has a restriction between tasks and ISRs,
or ISRs and ISRs. The proposed framework for the OSEK re-
sources such avoid the restrictions, which is a resource between
tasks and ISRs, or between ISRs and ISRs, as discussed in Sec-
tion 7.2.9.
7.2.5 Event

We designed a component that will call the Event control sys-
tem calls through the task component. In this case, an event con-
trol task celltype includes two cells; a task cell and an event con-
trol body cell. The task cell works as usual.

On the other hand, the event control body cell calls SetEvent or
GetEvent through an event control task to specify the event with
a task ID.
7.2.6 Application Mode

Instead of the OSEK application mode, a task for the applica-
tion mode on the ITRON OS is prepared for execution after the
initialization process has finished. The components of the task
for the application mode are constructed in two parts. In the first
component, the component corresponding to an application mode
is called. Then, a set of tasks and alarms is activated in the second
component. By preparing several patterns of the second compo-
nents, there are choices regarding the application modes on the
ITRON OS.
7.2.7 Hook

A component that provides the StartupHook function is added
to the last part of the initialization process. In a similar manner,
a component that provides the ShutdownHook function is added
to the first part of the termination process. A component that
is executed after the OS initialization has finished provides the
StartupHook function. A method as mentioned for the Applica-
tionMode in Section 7.2.6 is used as the StartupHook function.

In the case of PreTaskHook, components that provide user-
defined routines before a component of a task are added. The
through keyword [25] is then used to insert the component. In
the component, the user-defined routines is executed and then the
component of the task is executed.

PostTaskHook is implemented by preparing a component. The
component is called after a task is executed. In the component
for PostTaskHook, the user-defined routines of PostTaskHook is
executed and then terminates the task.
7.2.8 System Calls

Some of the OSEK system calls are not supported on the
ITRON OS. For example, SetEvent and GetEvent are different
because the system calls need to specify the task ID for the OSEK
specifications. Therefore, the unsupported OSEK system calls
which are shown in Table 1 are supported by preparing functions
with system calls on the ITRON OS. The functions are defined in

the signature description.
ChainTask

The specified task is activated by calling act tsk and then
ext tsk to terminate the caller of the task.
Schedule

A task is rescheduled by making a system call, which changes
the priority of the task. The priority of the task is changed to the
user defined original priority, when Schedule is called. After the
other tasks are executed and control returns to the task that made
the system call Schedule, the system call changes the priority of
the task to the highest priority. Then, the remainder of the task
that made the system call Schedule is executed.
DisableAllInterrupts

In this system call, the caller calls SIL LOC INT and disables
all interrupts if the task does not disable all interrupts by Sus-

pendAllInterrupts and OS interrupts by SuspendOSInterrupts. In
addition, this system call does not allow nesting.
EnableAllInterrupts

The caller calls SIL UNL INT to enable all interrupts if Dis-

ableAllInterrupts is called and all interrupts are disabled.
SuspendAllInterrupts

In this system call, the caller calls SIL LOC INT and disables
all interrupts if the task does not disable all interrupts by Dis-

ableAllInterrupts and OS interrupts with SuspendOSInterrupts.
Moreover, this system call allows nesting. Therefore, a variable
with which to count the number of nests is prepared.
ResumeAllInterrupts

In the first step, the caller checks the number of nests if Sus-

pendAllInterrupts is called and all interrupts are disabled. In ad-
dition, the caller calls SIL UNL INT to enable all interrupts if
there is no nesting.
SuspendOSInterrupts

In this system call, the caller calls the system call that trans-
mits the CPU locked state *13. In addition, this system call dis-
ables OS interrupts if the task has not disabled all interrupts by
DisableAllInterrupts and SuspendAllInterrupts. Moreover, this
system call allows nesting. Therefore, a variable with which to
count the number of nests is required.
ResumeOSInterrupts

In the first step, the caller checks the number of nests, if Sus-

pendOSInterrupts is called and OS interrupts are disabled. More-
over, the caller calls the system call to transmit the CPU unlocked
state *14 to enabled OS interrupts if there is no nesting.
SignalCounter

This system call adds a defined value to the counter value.
GetAlarmBase

This system call returns the user-defined minimum cycle of the
alarm, the user-defined cycle of the counter, and maximum value
of the counter.
GetAlarm

This system call returns the remainder of the difference be-
tween the current counter value and the next alarm expiration
time.

*13 All interrupts except for non-kernel interrupts are disabled in the CPU
locked state.

*14 All interrupts are enabled in the CPU unlocked state.
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SetRelAlarm
This system call sets the next alarm expiration time and alarm

cycle if the alarm control flag is false. The value of the next alarm
expiration time is specified by the relative time. The alarm con-
trol flag is then changed to true.
SetAbsAlarm

This system call sets the next alarm expiration time and alarm
cycle if the alarm control flag is false. The value of the next alarm
expiration time is specified by the absolute time. The alarm con-
trol flag is then changed to true.
CancelAlarm

The alarm control flag is changed to false.
ErrorHook

An error code is passed to the function as an argument. This
system call is used for centralized error handling.
GetActiveApplicationMode

This system call returns the application mode, which is set by
the application mode mentioned in Section 7.2.6.
GetResource

The priority of the task is changed to a ceiling priority, which is
automatically decided by the TECS generator. The original task’s
priority is saved in the resource component in case of the nesting
of resources, before the task’s priority is changed.

If the resource is a linked resource, the priority is compared to
the priorities of the other linked resources. Therefore, the priority
of the task is changed to a higher priority.
ReleaseResource

The priority of the task is changed to the saved priority.
GetRES SCHEDULER

When GetRES SCHEDULER is called, the caller of the task
is transitioning the system state to the dispatching disable state
instead of the received RES SCHEDULER.
ReleaseRES SCHEDULER

When ReleaseRES SCHEDULER is called, the caller of the
task transitions the system state to the dispatched enable state in-
stead of releasing RES SCHEDULER.
SetEvent

The set flg is called via an event control task to specify the
event with task ID.
GetEvent

The ref flg is called via an event control task to specify the
event with task ID. The bit pattern of the event flag is saved as
flgptn in the argument of the event flag state packet pointer.
7.2.9 System Calls from ISR

System calls which are called from a task and an ISR are differ-
ent on ITRON specifications. In the ITRON OS, corresponding
system calls such as GetTaskState and GetEvent are not available
from ISR with the proposed framework because ref tsk and ref flg

are not available from ISR. A task having the highest priority is
activated to call the system calls instead from the ISR. In the
activated task, the system calls are executed instead.

The activated task must be executed immediately because the
system calls should be called with higher priorities than the acti-
vated task. If other higher priority tasks are already activated, the
activated task which made the system calls cannot be executed
immediately. In this situation, irot rdg is called until the activated

task enters the running state, before the task exits from the ISR.
In addition, the task may be interrupted by a lower-priority ISR
than the activated ISR. Accordingly, the interrupt priority mask
is changed to the priority of the ISR that the task is called from,
after the task execution begins.

8. Example of Proposed Framework

In this section, examples of the proposed framework is de-
scribed. OSEK functionalities of non-preemptive scheduling and
application mode are described as the important unsupported
OSEK functionalities on the ITRON OS.

8.1 Example of Non-preemptive Scheduling
In this section, an example of non-preemptive scheduling com-

ponents that provide the unsupported OSEK functionality of non-
preemptive scheduling is described.
8.1.1 Mechanism of Non-preemptive Scheduling

Non-preemptive scheduling is accommodated by changing the
priority of the task that has the highest priority on the ITRON OS.

An example non-preemptive task flow is shown in Fig. 4. In
this case, there are two tasks. Task 1 has a higher priority,
and Task 2 has a lower priority. Moreover, both tasks are non-
preemptive tasks.

First, Task 2 is activated. A system call to change the prior-
ity of the tasks is invoked when Task 2 is executed. The priority
of the task is then changed to the highest priority. Second, Task
1 is activated ((1) in Fig. 4), although the priority of Task 1 is
lower than the new priority of Task 2. Therefore, Task 2 is not
preempted. When Task 2 is terminated ((2) in Fig. 4), the pri-
ority of the task is changed to the original priority. The OSEK
non-preemptive scheduling corresponds to this mechanism.
8.1.2 Component of Non-preemptive Scheduling

We implemented a non-preemptive scheduling policy with
through components. The construction of a component of a non-
preemptive task is shown in Fig. 5. As usual, the task component

Fig. 4 Non-preemptive task flow.

Fig. 5 Structure of non-preemptive task.
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is activated by the other components. Then, the main component
provides the action of the task, when the new task is executed.

This mechanism uses the through keyword [25] to insert a com-
ponent to change the priority of the task. In the component, a
system call to change the priority of the task that has the high-
est priority is invoked. After that, the main action of the task is
executed.

8.2 Example of Application Mode
In this section, an example of the application mode components

that provide the unsupported OSEK functionality of the applica-
tion mode is described.
8.2.1 Mechanism of Application Mode

In the OSEK, an application mode is a set of tasks and alarms
which are activated automatically at the time of the executing ap-
plication. The set of tasks and alarms for the application mode
are selected by the developer in the configuration file. The OSEK
functionality of an application mode is accommodated by a num-
ber of components on the ITRON OS.

Two types of components are prepared: (1) a component to
choose the application mode and (2) a component that activates
a specified set of tasks and alarms. The first component is a task
that is executed after the initializing process is finished. In this
component, an application mode that the user wants to use is cho-
sen. Then, all of the tasks and alarms that belong to the applica-
tion mode are activated in the second component. In addition, the
name of the used application mode is registered.
8.2.2 Components of Application Mode

An example of the components to provide the OSEK function-
ality of the application mode is shown in Fig. 6. When the com-
ponents are used, tasks and alarms must not be activated automat-
ically after the OS has started.

The task is executed immediately after the OS is started. The
components of the application mode that an user defines are con-
nected to the first component (component of the StartOSBody in
Fig. 6). A call port array is used to connect the components. The
number of components that are connected with the same signa-

ture varies with the call port array that is used.
In the first component, the component of the application mode

that the user wants to use is called. In the second component, all
of the tasks and alarms that are connected to this component are

Fig. 6 Structure of application mode.

activated through system calls. In this case, two call port arrays
are used to switch the number of components that are connected.
One of the call port arrays is for task components that are acti-
vated by the system call act tsk, and the other call port array is
for alarms that are started by changing the alarm control flag to
true. In addition, the call array port is defined with the keyword
optional in order to allow the situation in which no component
is connected. Finally, the name of the used application mode is
registered to the component with the name OSEK kernel.

9. Evaluation

In this section, we describe the overhead of the applicable func-
tionalities that provide the OSEK system call functionalities and
the restrictions of implemented components.

9.1 Experimental Environment
The experimental environment is shown in Table 4. The ex-

periment was tested using MINDSTORMS NXT, provided by
LEGO. In addition, ASP is used as the ITRON OS, and ATK1
is used as the OSEK OS.

9.2 Overheads of System Calls
The OSEK system calls do not correspond one-to-one with the

ITORN system calls. We implemented these functionalities and
measured the overhead of the targeted OSEK system calls in the
evaluation program. The execution time of OSEK system calls
using the proposed framework on the ITRON OS and the OSEK
OS by using TECS were measured on NXT. The resulting over-
heads of the applicable functionalities are shown in Table 5. As
mentioned above, TECS is used as a component system.

Each functionality was tested one hundred times, and the av-
erage of the results was taken. The maximum overhead was
13.58 μsec, which indicates that the effect on an application run-
ning in 10 ms or 100 ms is less than 1%. Therefore, the defect
rate is tolerable.

The overhead of ChainTask is due to act tsk and ext tsk being
executed for the system call to provide the corresponding func-
tion. ITRON system calls to get the information refer more in-
formation than the OSEK system calls. Hence, the OSEK sys-
tem calls that refer to the information have more overhead such
as GetTaskState and GetEvent. The overhead of GetResource

is caused by saving the current priority before the priority has
changed to the ceiling priority. The system calls of the alarm
have more overhead because the alarm functionalities are imple-
mented by using several ITRON functions. In addition, about
5 μsec more overhead is caused, if the task is dispatched to the
non-preemptive task.

9.3 Deadline Miss Ratios of Non-preemptive Scheduling
The performance on the ITRON OS is evaluated using non-

Table 4 Performance of MINDSTORMS NXT.

Hardware Performance
Microprocessor 32-bit ARM7
Flash memory 256 Kbyte

RAM 64 Kbyte
Frequency 48 MHz
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Table 5 Overheads of applicable functionalities.

System call ASP (μsec) ATK1 (μsec) Overhead (μsec)

ActivateTask 5.48 7.05 1.57
TerminateTask 7.74 6.82 0.92
ChainTask 14.75 9.54 5.21
Schedule 8.73 8.60 0.13
GetTaskID 2.81 2.29 0.52
GetTaskState 5.47 2.29 3.18
EnableAllInterrupts 1.12 0.55 0.57
DisableAllInterrupts 1.45 0.53 0.92
ResumeAllInterrupts 1.34 1.21 0.13
SuspendAllInterrupts 1.68 1.58 0.10
ResumeOSInterrupts 2.02 1.93 0.09
SuspendOSInterrupts 2.51 2.35 0.16
SignalCounter 2.85 4.59 −1.74
GetAlarmBase 7.05 2.47 4.58
GetAlarm 6.72 3.64 3.08
SetRelAlarm 6.91 5.25 1.66
SetAbsAlarm 7.20 3.72 3.48
CancelAlarm 1.22 3.37 −2.15
GetActiveApplicationMode 0.66 0.61 0.05
GetResource 16.96 3.38 13.58
ReleaseResource 8.24 7.43 0.81
SetEvent 10.39 7.09 3.30
ClearEvent 3.76 2.71 1.05
GetEvent 10.12 3.10 7.02
WaitEvent 11.83 7.13 4.70

preemptive task components. In this case, the proposed frame-
work is used for the non-preemptive task in Section 8.1.1. The
deadline miss ratio in a task set, which is defined as Mrate in
Eq. (1), on the ITRON OS is measured as:

Mrate =
1
n

n∑

i=1

miss( fi). (1)

The number of tasks in a task set is n, and miss( fi) is defined as
in Eq. (2):

miss( fi) =

⎧⎪⎪⎨⎪⎪⎩
0 (The task executed in time.)
1 (The task missed its deadline.).

(2)

In the evaluation, RMS *15 is used for each scheduling policy. The
CPU utilization of the task set is sampled every 5% between 5%
and 100%. The period is each 100 ms, from 100 ms to 1,000 ms.
Each sampling point runs three task sets, each of which consists
of 20 tasks, and the averages of the deadline miss ratios are shown
in Fig. 7.

As a result, the measured deadline miss ratio using the ITRON
OS is identical to the measured deadline miss ratio using the
OSEK OS between 0% to 85%. Tasks are also started to miss
their deadline if the CPU utilization exceeds 85%. Therefore, this
proposed framework using the ITRON OS could be used similar
to the system using the OSEK OS in practical uses while the CPU
utilization is less than 85%.

9.4 Comparison of Amount of Code
As a use case, porting an OSEK application to the ITRON OS

is compared. For instance, 226 system calls are needed to be
ported in the small samples *16. However, OSEK system calls,
which do not have corresponding system calls in ITRON OS, are
needed to be implemented by using ITRON functionalities. The

*15 Rate-Monotonic Scheduling
*16 The samples are downloaded from https://www.nces.is.nagoya-u.ac.jp/

NEP/materials/.

Fig. 7 Deadline miss ratio of non-preemptive scheduling.

176 lines of the C code and 289 + 8α *17 lines of the CDL de-
scription are needed to use OSEK functionalities on the ITRON
OS with TECS. As an example of the effectiveness of TECS,
the developer does not need to rewrite kernel configuration files,
such as static APIs for defining the kernel configuration and initial
states of tasks and semaphores. For example, the OSEK kernel
configuration (OIL description) for the inverted pendulum *18 in
the OSEK OS needs 75 lines of code. The OSEK kernel config-
uration is needed to be ported to the ITRON kernel configuration
(static API) on the ITRON OS. The developer needs to rewrite
28 lines of the ITRON kernel configuration to use an OSEK ap-
plication on the ITRON OS. Therefore, the amount of work for
the developer to port an OSEK application to the ITRON OS with
TECS is reduced by using the proposed framework.

9.5 User Restrictions
At this stage, the components still have user restrictions. The

proposed OSEK system calls on the ITRON OS are shown in Ta-
ble 6. The colored symbols indicate system calls are achieved.
The circle symbol indicates that the system call correspondences
to the system call. The triangle symbol indicates that the corre-
sponding system call has limits. The cross symbol indicates that
the system call has restrictions. The limits and restrictions are
stated below.
9.5.1 System Calls while All Interrupts are Disabled

In OSEK specifications, ResumeAllInterrupts and Suspend-

AllInterrupts save and restore the recognition status of all in-
terrupts that the hardware supports. These functionalities are
implemented with SIL LOC INT and SIL UNL INT, although
SIL LOC INT and SIL UNL INT restrict the number of system
calls that can be used while all interrupts are disabled. APIs
on the system interface layer, a system call to check the non-
operating state of the kernel, and a system call to terminate the
kernel can be used. Therefore, there are limitations on the system
call that can be used while all interrupts are disabled.
9.5.2 System Calls from ISR1

The OSEK ISR1 does not use operating system service calls,
except for system services to enable and disable interrupts. Non-
kernel interrupts correspond to the OSEK ISR1 on the ITRON

*17 α is the number of supported application mode.
*18 http://www.hokutodenshi.co.jp/7/PUPPY.htm
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Table 6 Corresponding OSEK system calls on the ITRON OS.
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ActivateTask ○ ○
TerminateTask ○
ChainTask ●
Schedule ●
GetTaskID ○ ○ ● ● ●
GetTaskState ○ ● ● ● ●
DisableAllInterrupts ● × ●
EnableAllInterrupts ● × ●
SuspendAllInterrupts ▲ × ▲ ▲ ▲ ▲ ▲
ResumeAllInterrupts ▲ × ▲ ▲ ▲ ▲ ▲
SuspendOSInterrupts ● × ●
ResumeOSInterrupts ● × ●
GetResource ● ●
ReleaseResource ● ●
SetEvent ● ●
ClearEvent ○
GetEvent ● ● ● ● ●
WaitEvent ○
GetAlarmBase ● ● ● ● ●
GetAlarm ● ● ● ● ●
SetRelAlarm ● ●
SetAbsAlarm ● ●
CancelAlarm ● ●
GetActiveApplicationMode ● ● ● ● ● ● ●
○ indicates that the system call has one-to-one correspondence to the system call.
● indicates that the system call is achieved.
▲ indicates that the achieved corresponding system call has limits.
× indicates that the achieved system call has restrictions.

OS. Although no system calls can be invoked from interrupt han-
dlers started by non-kernel interrupts. Therefore, system calls
from ISR1 cannot be used.

10. Conclusion

Several operating system specifications for automobiles such
as ITRON and OSEK specifications are used in a number of
ECUs. Developers need to implement applications following
these specifications. For instance, it is hard to port legacy OSEK
applications on the ITRON OS because of unsupported OSEK
functionalities such as scheduling policy, counter, alarm, re-
sources, events, hook routines, and system calls. As a result,
legacy OSEK applications need substantial changes and devel-
opers to redesign the applications. As a consequence, the amount
of work increases.

This paper proposed the framework to apply the unsupported
OSEK functionalities on the ITRON OS with TECS components.
The components help developers to port legacy OSEK applica-
tions on the ITRON OS. In addition, OSEK functionalities are
provided as a component without changes to the ITRON OS. As
a result, the work of the developers are reduced by using the pro-
posed framework. As experimental results, the overhead of the
corresponding system calls are compared to the original OSEK
system calls and suppressed within 13.58 μsec. Applying the pro-
posed framework to AUTOSAR OS is future work because AU-
TOSAR OS extends OSEK specifications.
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