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Abstract: This paper presents an enhanced method of testing validity of arithmetic optimization of C compilers us-
ing randomly generated programs. Its bug detection capability is improved over an existing method by 1) generating
longer arithmetic expressions and 2) accommodating multiple expressions in test programs. Undefined behavior in
long expressions is successfully eliminated by modifying problematic subexpressions during computation of expected
values for the expressions. A new method for including floating point operations into compiler random testing is also
proposed. Furthermore, an efficient method for minimizing error inducing test programs is presented, which utilizes
binary search. Experimental results show that a random test system based on our method has higher bug detection
capability than existing methods; it has detected more bugs than previous method in earlier versions of GCCs and has
revealed new bugs in the latest versions of GCCs and LLVMs.
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1. Introduction

Compilers are infrastructure tools for software development,
which must be highly reliable. It is an exacting task to develop
compilers of production qualities for newly developed processors.
Even for well developed compilers, greatest care must be paid to
keep their credibility, for various new optimization techniques are
continuingly implemented into them.

Correctness of compilers are tested by compiler test suites,
large sets of test programs which are compiled by the compil-
ers and resulting codes are executed to see if they behave as ex-
pected. Well-known test suits are Plum Hall [1], SuperTest [2],
GCC (GNU Compiler Collection) test suite [3], and testgen2 test
suite [4].

Through repeated test suite runs and subsequent bug fixes,
compilers are forged to be almost perfect. However, it is theo-
retically impossible to completely validate a compiler with a fi-
nite set of test programs. Actually many bugs are reported for
well-used compilers such as GCC *1 and LLVM *2.

Random testing is a complement to the testing by those test
suites, which attempts to detect compiler malfunctions by huge
volumes of randomly generated programs. Several random test-
ing systems have demonstrated their bug-finding performance.
Quest [5] found bugs in calling conventions (passing of argu-
ments and return values) of C compilers. Randprog [6] detected
miscompile regarding C volatile variables. Csmith [7] achieved
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comprehensive testing of C compilers, covering broad range of
syntax in C programs, including arrays, struts/unions, conditional
and loop statements, function calls, etc. Csmith is actually one of
the most successful compiler test system, which reported 79 bugs
in GCCs and 202 bugs in LLVMs over three years and made great
contribution to improve the reliability of those open source com-
pilers. Mettoc [8] can also handle broad range of syntax, based
on a metamorphic testing technique, though no extensive experi-
mental results as Csmith are published. Recent powerful random
test generator is CCG *3, though it only detects compiler crashes
but not miscompilation. Swarm testing [9] is a technique to en-
hance the diversity of test cases (and hence the bug detection ca-
pability) of random test generators. It is not an invention of test
generation algorithm itself but applicable to many random test
generators. Reference [10] also presents a framework for con-
trolling compiler random testing system efficiently. While these
frameworks to utilize random test engines enhance the capability
and the efficiency of compiler testing, improvement on random
test generation engines themselves is still important to enhance
the bug detection capabilities.

Major challenges in compiler random testing are (1) how to
judge the correctness of the compiled code (how to prepare cor-
rect answers) for randomly generated program and (2) how to
avoid generating test cases with undefined behavior. In such pro-
grams generated by Quest where values are just propagated from
functions to functions, correct behavior is easy to predict. How-

*1 http://gcc.gnu.org/bugzilla/ (accessed 2013-11-23).
*2 http://www.llvm.org/bugs/ (accessed 2013-11-23).
*3 https://github.com/Merkil/ccg/tree/d45c2231906ab9bbec7b45e8011a5b

6781fec1d2 (accessed 2014-03-14).
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ever, as programs contain the more syntax elements, preparation
of expected results becomes the more difficult. If compiler crash
bugs only are targeted as in CCG, those difficulties are saved, but
miscompile bugs can not be detected.

Randprog and Csmith are based on a differential testing
method [11], in which errors are detected by compiling test pro-
grams by different compilers (or different versions or different
options of the same compiler) and by comparing the results. This
method eliminates the necessity of computing expected behav-
ior of randomly generated programs. On the other hand, some
restrictions must be posed on test programs so that they do not
exhibit undefined behavior, which leads to some weakness in bug
detection abilities.

It is also a challenge to handle floating point operations. Since
the C language standard allows the intermediate results of the
floating point operations to be computed with higher precision
than specified in programs, it is difficult to distinguish miscompi-
lation and precision errors.

Mettoc’s approach, in which variants are generated from cor-
rect test programs, might be promising. However, not so many
transformations to generate large classes of programs to detect
many errors as Csmith are not presented in Ref. [8]. Mettoc also
does not handle floating point operations.

Another approach is to precompute the precise expected be-
havior for random programs while generating them. This makes
it much easier to exclude programs with undefined behavior, for
pieces of program codes that cause undefined behavior are de-
tected during program construction. Nagai [12] proposed a ran-
dom test method based on this approach which targets arithmetic
optimization. It avoids generating programs with undefined be-
havior by regenerating new expressions when it detects expres-
sions that trigger undefined behavior. An implemented test sys-
tem found some bugs in GCC 4.4.1 (i686-pc-linux), etc., but it
is not necessarily effective, for no bugs were detected in GCCs
of versions higher than 4.5.0. Possible reasons for this is that the
generated programs were all small or that the generated program
only focused on arithmetic expressions.

This paper proposes methods of enhancing the bug detection
capability of the random test method in Ref. [12] focusing on
arithmetic optimization *4. We concentrate on arithmetic opti-
mization because 27.8% of the bugs Csmith found in GCC were
related to arithmetic optimization [7] *5 and we consider it one of
the most important parts of the compiler to test. Reinforcement
of tests are done by generating programs with many and long
expressions. Generation of long expressions without undefined
behavior is achieved by modifying invalid subexpressions during
their expected values are computed. Furthermore, a method for
incorporating floating point operations, which has not been done
in Refs. [7], [8], [13] is also proposed. Besides the program gen-
eration methods, this paper also show an improved procedure for
minimizing large error programs efficiently.

An implemented random test system successfully detected
bugs in GCCs of versions higher than 4.5.3. For those versions

*4 Preliminary version of this paper appeared in Ref. [13].
*5 22 bugs out of 79 were classified as in modules fold-const,
tree-ssa-pre , tree-vrp, tree-ssa-dce, and tree-ssa-reassoc.

of GCCs, our method found more bugs than Csmith in 12 hours.
We have so far reported 8 bugs to GCC (4.7.2 through 4.9.0 ex-
perimental) and 5 bugs to LLVM (3.4 under development) which
were uncovered by our test system.

2. Random Testing of Compilers Targeting
Arithmetic Optimization

2.1 Random Testing of Compilers
The overall flow of compiler random testing is very simple. As

shown in Fig. 1, random program generation, compile and exe-
cution, and error checking are repeated as long as time allows. If
errors are detected, the programs caused the errors are saved. The
analysis of the error program involves minimization (or reduction)
of the programs, in which the simplest programs that still trigger
the same errors are sought, automatically or manually, to make
bug localization easier.

One of the most difficult issues in compiler random testing is
how to avoid generating test programs with undefined behavior.
The undefined behavior includes dividing by zero, dereferencing
a null pointer, overflowing a signed integer etc., for which the
standard imposes no requirements. A test program with any un-
defined behavior is of no use since any execution results are valid
for such a program.

Figure 2 shows an example program with undefined behavior.
Comparison (c>t0) in the right operand of the division in line 10
evaluates to zero, since c==30 and t0==670. The shift operation
in the same line also causes undefined behavior because the right
operand (t1==40) exceeds the width of the left operand. These
kinds of undefined behavior occur easily in randomly generated
programs.

Since undefined behavior depends on run-time values of vari-
ables, it is theoretically impossible to detect the invalid behavior
precisely without computing expected behavior of test programs.
So, Csmith avoids generating programs with undefined behavior
in a conservative way. For example, it guards divide operations as
“(b!=0)?a/b:a” instead of “a/b.” However, since every arith-
metic operation is always guarded, some optimizers will never
be invoked and hence will not be tested. This may limit the bug
detection abilities of the test programs.

while (time allows) {
randomly generate a test program t;
compile & execute t;
if (error) { save t; }
}
analyze saved test programs;

Fig. 1 Flow of compiler random testing.

1: int main (void)
2: {
3: int a = 60;
4: int b = 10;
5: int c = 30;
6: int d = 7;
7:
8: int t0 = b * (a + d); /* t0 = 670 */
9: int t1 = b * d - c; /* t1 = 40 */
10: int t2 = (a << t1) / (c > t0);
11:
12: return 0;
13: }

Fig. 2 Program with undefined behavior.
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1: #include <stdio.h>
2:
3: signed long long x1 = 14766LL;
4: static const unsigned short x2 = 3U;
5:
6: int main (void)
7: {
8: signed int x3 = 217;
9: volatile unsigned char x4 = 2U;
10:
11: int rc = 0;
12: signed long long test = 0LL;
13:
14: test = (((x4*(x1<<x2))>=x3)/x1);
15:
16: if (test == 0LL) {
17: printf("OK, %lld\n",test);
18: }
19: else {
20: rc = 1;
21: printf("NG, %lld\n",test);
22: }
23: return rc;
24: }

Fig. 3 Test program generated by the method in Ref. [12].

2.2 Random Testing of Arithmetic Optimization
Nagai et al. [12] proposed a compiler random testing method

targeting code optimization for arithmetic expressions, which
precomputes the expected behavior of test programs to provide
“correct answers.” The precomputation is also useful for avoid-
ing undefined behavior; test programs can be altered on detecting
undefined behavior. Furthermore, it makes automatic minimiza-
tion of error programs easier.

Figure 3 shows an example of test programs generated by this
method. Lines 3, 4, 8, and 9 declare and initialize variables, then
line 14 evaluates an arithmetic expression, and line 16 compares
the result with the expected value. For each variable, its type, its
scope (local or global), its modifier (const, volatile, const
volatile, or nothing), its class specifier (static or nothing)
are selected randomly. The variables are of signed or unsigned
integer types (char, short, int, long, long long). Ev-
ery variable is initialized with a random value at the point of dec-
laration. The arithmetic expression consists of the variables and
operators; it does not contain constants.

Undefined behavior is worked around in the following way:
1) Generate a random expression.
2) Initialize variables by random values.
3) Compute expected value of the expression.
4) If there is no undefined behavior, then return with the ex-

pression and the initial values.
5) If repetition count is less than 100, then goto 2); otherwise

discard the expression and start over from 1).
Since longer expressions induce undefined behavior more

probably, they have less chances to survive. 10,000 times of ran-
dom program generation results in average and maximum expres-
sion size of 4.0 and 50, respectively. Moreover, each test program
contains only one expression, which may limit its bug detection
ability.

3. Scaling up Size and Number of Expressions

We enhance the bug detection ability of random testing method
in Ref. [12] by scaling up the size and the number of the expres-
sions generated in test programs.

Fig. 4 Eliminating undefined behavior by operation insertion.

3.1 Generation of Longer Expressions
Instead of regenerating variables’ initial values or expressions

to avoid undefined behavior, we modify generated expressions to
eliminate the undefined behavior. Given a expression and a set of
initial values to the variables, we evaluate the expected value of
the expression from the bottom to the top. On detecting undefined
behavior of on a subexpression, we modify the subexpression so
that the undefined behavior is eliminated.
3.1.1 Eliminating Undefined Behavior by Operation Inser-

tion
We eliminate undefined behavior on an operation by inserting

extra operations so that the operand causing the undefined behav-
ior will be an appropriate value.

For example, suppose signed overflow is detected on a subex-
pression x1+(x2+x3) where x1==2147483647, x2==123, and
x3==98, where we assume all the variables are of signed int
whose maximum value (INT MAX) is 2147483647. In this case,
an addition with an appropriate negative value is inserted into ei-
ther of the operands, as shown in Fig. 4 (a) so that the overflow is
eliminated. The initial value of the extra variable k1 is randomly
chosen within an appropriate range.

Zero division is eliminated in a similar way. As shown in
Fig. 4 (b), divisor is turned into non-zero by inserting an addition.
3.1.2 Eliminating Undefined Behavior by Operation Flip-

ping
All kinds of undefined behavior in integer arithmetic expres-

sions can be eliminated by inserting add operations with appro-
priate operand values. However, this makes the control over the
sizes of expressions and programs difficult. We want to curve the
sizes of the test programs to reduce time for overall testing, but
frequent insertions of operations and new variables enlarges the
programs. Moreover, the C language standard limits the nest lev-
els of parentheses in arithmetic expressions. In order to control
the nest levels as precisely as possible, insertions of extra opera-
tions should be kept as few as possible.

In order to reduce the extra operations, we propose an alter-
native way of avoiding undefined behavior by operation flipping,
which refers to replacing operations by the complement of the
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Fig. 5 Eliminating undefined behavior by operation flipping.

Table 1 Resolution of undefined behavior in integer arithmetic.

operation condition modification

a + b signed overflow a − b
a − b signed overflow a + b
a ∗ b signed overflow a/b
a/(b cmp c) b cmp c = 0 a/(b cmp c)
a%(b cmp c) b cmp c = 0 a%(b cmp c)

a/b b = 0 a/(b + K)
a%b b = 0 a%(b + K)

a<<b

{
b < 0
width(a) < b

a<<(b + K)

a<<b a < 0 (a + K)<<b

a>>b

{
b < 0
width(a) < b

a>>(b + K)

operations.
For example, a signed overflow on addition is eliminated by

flipping the addition into subtraction, as shown in Fig. 5 (a). In
the case of overflow on subtraction and multiplication, they will
be changed into addition and division, respectively.

Zero division caused by comparison on the right operand,
which frequently occurs, can be eliminated in a similar way. As
shown in Fig. 5 (b), the divisor can be turned from zero to one by
flipping the compare operator (from “<” to “>=” in this case).

Note that not all the types of undefined behavior can be can-
celled by this method. We still need operation insertion to avoid
zero division caused by the other operations than comparison and
invalid shift amount.

Table 1 summarizes how undefined behavior in integer arith-
metic is eliminated. All signed overflows (by addition, subtrac-
tion, and multiplication) are eliminated by operation flipping.
Zero division caused by comparison on the second operand is
eliminated by operation flipping. In Table 1, cmp is a comparison
operator and cmp is the complement of cmp (the complement of
“>” is “<=”, for example).

All the other forms of zero division as well as invalid shift
amount must be eliminated by operation insertion.
3.1.3 Controlling the Size and Depth of Expressions

Expressions with desired size and depth are generated by a pro-
cedure “make expression(n, d)” shown in Fig. 6, which generates
an expression whose size and depth do not exceed n and d, re-

node t make expression(n, d)
{

if (n == 0 || d == 0) {
return randomly chosen variable node;
}
else {

n1 = random integer ∈ [0, n − 1];
n2 = n − 1 − n2;
e1 = make expression(n1, d − 1);
e2 = make expression(n2, d − 1);
o = randomly chosen operator;
return operator node(o, e1, e2);
}}

Fig. 6 Procedure for generating expressions.

1: #include <stdio.h>
2: #define OK() printf("@OK@")
3: #define NG() printf("@NG@")
4:
5: static unsigned long x5 = 10UL;
6: const volatile signed long x6 = 8L;
7: static signed int x8 = 2;
8: unsigned long t1= 820UL;
9:
10: int main (void)
11: {
12: unsigned long x1 = 100UL;
13: signed int x3 = 32;
14: signed long t0 = 70L;
15: unsigned long t2 = 9UL;
16:
17: t0 = (((x8 * (x6 << x8)) >= x1) / x6);
18: t1 = ((t0 + x3) * (x5 << x8));
19: t2 = (((x1 + t0) - t1) * x6);
20:
21: if (t0 == 0L) { OK(); } else{ NO(); }
22: if (t1 == 1280) { OK(); } else{ NO(); }
23: if (t2 == -9440L) { OK(); } else{ NO(); }
24:
25: return 0;
26: }

Fig. 7 Test program with multiple expressions.

spectively, and returns its root node. If n == 0 or d == 0,
it returns a randomly chosen variable node. Otherwise, it ran-
domly selects positive integers n1 and n2 where n1 + n2 = n − 1
and generates two subexpressions e1 and e2 by recursively calling
make expression(n1, d − 1) and make expression(n2, d − 1), re-
spectively. Then, it randomly chooses an operator o, and returns
an operator node with operator o and operands e1 and e2. We
assume the size of expressions to be 1 to 10,000.

3.2 Generating Programs with Multiple Expressions
We also try to enhance bug detection ability by putting mul-

tiple expressions into a single test program. Figure 7 shows an
example of the proposed form of test programs. Multiple expres-
sions are generated as in lines 17–19. The computed values are
compared with the expected values in lines 21–23. Let us re-
fer to the variables, such as t0, t1, and t2, which appear in the
left-hand sides of the statements assigning the arithmetic expres-
sions as t-variables, and to the other variables as x-variables. All
the t-variables as well as x-variables are initialized with random
values at the point of their declaration. The expression may con-
tain t-variables as well as x-variables (but not constants). Each
t-variable is assigned only once *6. We assume a program to con-
tain 1 to 10,000 expressions.

*6 The major reason for this is that updating the same variables multiple
times would increase the the complexity in minimization procedure in
Section 5.
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4. Incorporating Floating Point Operations

Although Csmith [7] and the random testing in Ref. [13] are
powerful tools in finding compiler bugs, they deal only with in-
teger operations. In this paper, we propose a new technique to
incorporating floating point operations into random testing.

4.1 Rounding Errors
The major hurdle in handling floating point operations in ran-

dom testing is rounding errors. Depending on the forms of arith-
metic expressions, rounding errors are amplified so that correct
evaluation will be classified as invalid behavior. An extreme ex-
ample is a cast operation from floating point numbers to integers.
For example, in the program listed in Fig. 8, the value of x2 can
be slightly different from x1. This error will be amplified through
the cast operation and subsequent integer operations, which re-
sults in a big difference between the value of i2 and the expected
value (0) *7.

We could prepare the correct expected value of floating point
operations taking the rounding errors into account, by precisely
computing the results to the last digit of the mantissa following
the floating point number standard. However, the C language
standard allows the intermediate results of the floating point oper-
ations to be computed with higher precision than specified in pro-
grams. For example, given a statement y=(a/b)*(c/d);, where
all the variables are of float type, the results of a/b and c/d
may be kept in the double precision and the multiplication may
be computed in the double precision. So, we can not exactly
predict the expected behavior of the program with floating point
operations.

4.2 Eliminating Rounding Errors
We solve this problem by posing restrictions on the form of

generated expressions so that all the floating point operations in
the expressions are rounding error free. The concrete policies are
as follows:
( 1 ) All the values of floating point types are limited to be inte-

gers in [−2m−1, 2m−1], where m is the number of bits for the
mantissa of the type. We do not allow fractions in order to
avoid rounding error caused by truncation on cast operation
from floating point types to integer types.

( 2 ) If the results of an addition, a subtraction, or a multiplica-
tion does not fit in the range of (1), then we apply “flipping,”
proposed in the previous section, to eliminate the overflow,
as shown in Fig. 9 (a).

1: #include <stdio.h>
2: int main(void)
3: {
4: float c = 26;
5: float x1 = 1.0e9F;
6: float x2 = (x1 / c) * c;
7: int i2 = ((int) x2 % 10) * 23;
8: if (i2 != 0) printf("NG ($i2==%d)\n", i2);
9: return 0;
10: }

Fig. 8 An extreme example where an rounding error is amplified.

*7 With GCC 4.8.1 for x86 64-apple-darwin12, the values of x2 and i2
were 1000000064.0F and 92, respectively.

( 3 ) If the result of a division have a fraction, we eliminate the
fraction by operation insertion. If x/y has a fraction, then it
is transformed into (x − k)/y where k = x%y, as shown in
Fig. 9 (b).

( 4 ) If overflow is detected on integer-to-float or float-to-integer
cast, it is eliminated by operation insertion, as shown in
Fig. 9 (c).

4.3 Mixing Integer and Floating Point Operations
Based on the technique in the previous section, a procedure

for generating test programs containing both integer and floating
point operations is constructed as follows. Figure 10 is an illus-
trative code example.
( 1 ) Generate a set of variables

The procedure is the same as in the previous sections but the
type of each variable is chosen from float, double, and
long double as well as integer types. For example, vari-
ables x1 through x4 in lines 1, 2, 5, and 6 of Fig. 10 are ran-
domly generated variables, where two of them are of floating
point types.

( 2 ) Generate arithmetic expressions
The procedure is also the same as in the previous sections.
As are commented in lines 13 and 16 of Fig. 10, the initial
expressions for t1 and t2 are (x3%(x2+x4)) and (x4/x2)
and are modified in the next steps.

( 3 ) Compute types
The type of every operation is computed in a bottom-up

float x1 = 4000000.0F;
float x2 = 3000000.0F;
float t = x1 + x2;

⇒
float x1 = 4000000.0F;
float x2 = 3000000.0F;
float t = x1 - x2;

(a) Eliminating overflow.

float x1 = 25.0F;
float x2 = 9.0F;

float t = x1 / x2;

⇒
float x1 = 25.0F;
float x2 = 9.0F;
float k1 = 7.0F;
float t = (x1 - k1) / x2;

(b) Eliminating fraction.

double x1 = 3239483852.0F;

int x2 = 2147483647;

int t1 = (int) x1;
int t2 = (float) x2;

⇒

double x1 = 3239483852.0F;
double k1 =-3103024134.0F;
int x2 = 2147483647;
int k2 =-2142392913;
int t1 = (int)(x1 + k1);
int t2 = (float)(x2 + k2);

(c) Eliminating overflow on cast.
Fig. 9 Transformation for eliminating rounding errors.

· · ·
1: volatile signed long x1 = -23;
2: const float x2 = 9.0F;
3:
4: int main(void) {
5: static unsigned short x3 = 134;
6: double x4 = 25.0;
7: double k0 = 7.0;
8: double t0 = 9399234.0;
9: signed int t1 = 234;
10:
11: t0 = (((x1+x3)*x2)-x4);
12:
13: /* intiallly t1 = (x1%(x2+x4)); */
14: t1 = (x1%(signed long)(x2+x4));
15:
16: /* intiallly t2 = (x4/x2); */
17: t2 = ((x4-k0)/x2);

· · ·

Fig. 10 Code example with mixed integer and floating point operations.
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manner. For example, in line 11 of Fig. 10, the types of
the addition (x1+x3), the multiplication (x1+x3)*x2, and
the subtraction ((x1+x3)*x2)-x4 turn out to be signed
long, float, and double, respectively, according to the
arithmetic type conversion rule of the C language.
During the type computation, if either operand of integer op-
erations, such as %, <<, >>, &, and | , is of a floating point
type, then an integer cast operation is inserted. For example,
since the right operand of the % operation in line 13 (x2+x4)
is of double type, a cast is inserted as in line 14.

( 4 ) Eliminating overflows and divisions producing fractions
The expected values of each expression is computed and at
the same time floating overflows and floating divisions pro-
ducing fractions, as well as integer undefined behavior, are
eliminated, based on the techniques described in the previ-
ous subsection. In Fig. 10, the division in line 16 is modified
into a combination of a subtraction and a division in line 17.

5. Minimization of Error Programs

Minimization of error programs is indispensable in analyzing
the causes of the errors. Suppose we are given a error program of
thousands of lines. Far from locating the bugs in the compiler, it
is hard even to tell if the compiler is wrong or the test program
is wrong; the expected values may be erroneous or there may be
undefined behavior somewhere in the test program. In practice,
a program to generator valid random test programs cannot be de-
veloped without an automatic error program minimizer.

This paper proposes an error program minimization method
which can efficiently handle programs with many long expres-
sions. It is an extension of the method in Ref. [12] in four ways:
1) a transformation to handle multiple expressions is added, 2) bi-
nary search is introduced to reduce time necessary for minimizing
large scale error programs, 3) a transformation to simplify values
and types in error programs is added, and 4) an overall flow to
control the minimization phases is redesigned.

Our minimization method is based on delta debugging [15]. If
a certain transformation reducing the size of an error program pre-
serves the occurrence of the error, the transformation is adopted,
otherwise another transformation is tried. By repeating this until
any of the possible transformations eliminates the error, a min-
imal program is obtained. Note that our method does not guar-
antee that the results are minimum. The results depends on the
order of transformations applied, so it cannot be further reduced
by any of the transformations but a smaller error program may be
obtained by a different sequence of transformations.

Our method is based on the the following four transformations
on error programs, where (2) and (3) are from Ref. [12] and (1)
and (4) are newly introduced in this paper.
(1) Expression elimination

Some of the expressions are replaced by their expected val-
ues, as illustrated in Fig. 11. If errors are detected on multi-
ple expressions, basically only one of them is tracked. Sup-
pose wrong results were observed on two expressions, for
example. In this case, either of the expression is eliminated
as long as the program yields an error or errors. However, if
the errors disappear whenever either of the two expressions

t1 = ((x8 * x0) + x2) << x4; /* t1==256 */
t2 = x3 < (x5 * (x4 % x1));· · ·

⇓
t1 = 256;
t2 = x3 < (x5 * (x4 % x1)):· · ·

Fig. 11 Replacing expression by expected value.

int x1 = 5; int x2 = 7;
int t = ( x1 + x2 ) / x1;
if ( t == 2 ) { OK(); }
else { NG(); }

⇓
int x1 = 5; int x2 = 7;
int t = ( x1 + x2 );
if ( t == 12 ) { OK(); }
else { NG(); }

Fig. 12 Top-down minimization.

int x1 = 2; int x2 = 3;
int t = ( x1 + x2 ) * x1;
if ( t == 10 ) { OK(); }
else { NG(); }

⇓
int x1 = 2; int x2 = 3;
int t = ( 2 + x2 ) * x1;
if ( t == 10 ) { OK(); }
else { NG(); }

(a) Substitution.

unsigned int x3 = 1;
unsigned int t = ( -3 + 2 ) * x3;
if ( t == 4294967295U ) { OK(); }
else { NG(); }

⇓
unsigned int x3 = 1;
unsigned int t = -1 * x3;
if ( t == 4294967295U ) { OK(); }
else { NG(); }

(b) Evaluating expression.

Fig. 13 Bottom-up Minimization.

is eliminated, the both expressions are kept and subsequent
minimization steps are applied for each expression.

(2) Top-down minimization:
An expression is replaced by either of the two operands of
the root operator, as shown in Fig. 12.

(3) Bottom-up minimization:
A variable reference is replaced by its value, or an operation
is replaced by its resulting value, as shown in Fig. 13 (a) and
(b), respectively.

(4) Value and type minimization:
The absolute values of constants are made smaller, as in
Fig. 14 (a). Types are also made simpler; modifiers and
class specifiers are removed, globals are made locals, and
shorter types (short and char) and longer types (long and
long long) are reduced to standard types (int), as shown
in Fig. 14 (b).

The bottom-up minimization method in Ref. [12] basically re-
duces the operators in an expression one by one, so it took 10,000
times of compilation if an expression with 10,000 operators was
reduced to a constant. In order to avoid this, we introduce binary
search. First, one of the operands of the root operator of a given
expression is reduced to a constant. If it succeeds (the resulting
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long long x1 = 422337203685477580;
int x2 = 100;
int t = x1 + x2 << (x1 > 0);
if ( t == 422337203685477680) { OK(); }
else { NG(); }

⇓
long long x1 = 192056;
int x2 = 100;
int t = x1 + x2 << (x1 > 0);
if ( t == 192156) { OK(); }
else { NG(); }

(a) Value minimization.

long long x1 = 1;

⇓
long x1 = 1;

volatile int x2 = 4;

⇓
int x2 = 4;

(b) Type minimization.

Fig. 14 Minimization of types and values.

Fig. 15 Overall flow of minimization.

program still produces an error), the other operand is tried. If it
fails, the children of the operand are recursively attempted to be
reduced.

Similarly, the expression elimination is done in a binary way,
otherwise reduction of 10,000 expressions would needs 10,000
compile runs. At first, the first half of the expressions are reduced
to constants. If it succeeds, the second half are tried. Otherwise,
the quarters, the eighth, ... are tried in a recursive way.

Note that the effects of the four reduction strategies are not in-
dependent. For example, even if the bottom-up minimization be-
comes no more applicable, it often turns effective after some other
minimization steps. Based on this observation, we construct the
overall minimization flow as shown in Fig. 15. First, expression
elimination (1) is tried until it does not eliminate any more ex-
pression. Then, top-down minimization (2) is attempted until it is
not applicable, and then bottom-up minimization (3) is applied. If
(3) has some effects, then (2) is tried again followed by (3). If (3)
failed but (2) succeeded, then (1), (2), and (3) is repeated. When
none of (2) and (3) have an effect, then value and type minimiza-
tion (4) is applied. If there is any update in (4), then the whole
process is repeated from the beginning. Otherwise, the procedure
ends. Binary search is done in (1) and (3) only for the first time.
This is because only a little reduction is observed after the first
iteration, for which the binary search is less efficient than linear
search.

6. Experimental Results

Random test systems based on the proposed method and the
previous method in Ref. [12] have been implemented in Perl (ver-
sion 5.10), which run on Windows Cygwin, Mac OSX, Ubuntu
Linux, etc.

In order to evaluate the effect of longer expressions and mul-
tiple expressions, 6 versions of GCCs were tested under the four
settings; (1) previous (single short expression) method [12], (2)
single long expression mode, (3) multiple short expression mode,
and (4) multiple and long expression mode. This version of the
random test system implemented arithmetic operations { +, -, *,
/, %, <<, >>, ==, !=, <, <=, >, >= } *8. The test was run in “in-
teger only” mode where generated test programs contained only
integer arithmetic (did not contain floating point arithmetic) and
undefined behavior was eliminated by operation insertion. The
options tested were -O0 and -O3.

The results are summarized in Table 2. The figures in “ops ×
expr” column apply for modes (2), (3), and (4). When ops ×
expr = 10,000, for example, the target number of operations per
expression in a test program for modes (2) was 10,000. The target
number of operations per expression was 4 for modes (1) and (3).
When ops × expr = 10,000, a test program for mode (3) contained
2,500 expressions of target length 4. In mode (4), the numbers of
the expressions and the operations per expression were randomly
determined per program. So the test programs generated by (4)
include both of those by (2) and (3).

The subcolumns “#err,” and “#pat” show the number of the
programs that resulted in errors, and the number of different pat-
terns of the error programs after minimization, respectively. Two
programs were decided to be of the same pattern if the syntax
trees of the expressions in the programs were the same; the op-
erators and the types should match exactly but the values of the
constants (the initial values of variables) might be different.

We can say that both long expressions and multiple expressions
contributed to improve error detection capabilities. The effects of
(2) and (3) depended on compilers, but (3) did little better than
(2). However, in general, (4) exhibited stable performance, for
the test programs generated by (4) include both of those gener-
ated by (2) and (3).

Table 3 shows the results of test runs for 8 versions of GCCs,
5 of which are newer than 4.5.0. The tests were conducted in in-
teger only mode and the the optimization option examined was
-O3. This version of the random test system generated logical
operations { |, &, ||, && } as well as the arithmetic operations,
and avoids undefined behavior by operation insertion and opera-
tion flipping. Tests were run for 24 hours for the first 7 versions
and 80 hours for the last version. In the previous method (1),
each test program consisted of a single expressions with four op-
erations, while in the proposed method (4) the numbers of the
expressions and of the operators per expression in each program
were determined randomly so that their product was 1,000. The
subcolumns “#test,” “#err,” and “#pat” show the number of tests
generated, the number of the programs that resulted in errors, and

*8 Unary and ternary operators were not supported. This was due to minor
implementation reasons and there is no theoretical difficulty.
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Table 2 Experimental results (effects of long and multiple expressions).

compiler time [h] ops × exps (1) previous [12] (2) long expr (3) multi expr (4) multi long expr
for (2)(3)(4) #err (#pat) #err (#pat) #err (#pat) #err (#pat)

LLVM-GCC 4.2.1 (i686 apple) 12 *A 10,000 0 ( 0) 15 ( 11) 15 ( 3) 33 ( 13)
GCC 4.2.1 (i686 apple) 12 *A 10,000 0 ( 0) 1 ( 1) 14 ( 5) 3 ( 3)
GCC 4.4.1 (m32r linux) 6 *B 1,000 68 ( 4) 11 ( 1) 571 ( 6) 428 ( 4)
GCC 4.4.1 (arm linux) 12 *B 5,000 0 ( 0) 0 ( 0) 35 ( 9) 20 ( 8)
GCC 4.4.4 (i686 linux) 12 *B 5,000 0 ( 0) 2 ( 2) 4 ( 4) 21 ( 18)
GCC 4.5.3 (i686 cygwin) 12 *B 3,000 0 ( 0) 19 ( 19) 4 ( 3) 30 ( 29)

mode: integer only; options: {-O0, -O3};
CPU: *A Core 2 Duo 2.12 GHz, *B Core i5-2540M 2.60 GHz

Table 3 Experimental results (comparison with previous method).

(1) previous method [12] (4’) proposed method
compiler time [h] (4 ops × 1 exp) (ops × exps = 1,000)

#test #err ( #pat) #test #err (#pat)

GCC 4.4.1 (m32r linux) 24 634,830 423 ( 27) 38,177 2,660 ( 81)
GCC 4.4.1 (arm linux) 24 613,919 5 ( 4) 41,468 188 ( 32)
GCC 4.4.4 (x86 64 linux) 24 621,881 0 ( 0) 43,871 96 ( 16)
GCC 4.5.4 (x86 64 linux) 24 616,461 0 ( 0) 44,924 94 ( 18)
GCC 4.6.3 (x86 64 linux) 24 610,167 0 ( 0) 45,308 99 ( 19)
GCC 4.6.4 (x86 64 linux) 24 620,059 0 ( 0) 46,447 100 ( 21)
GCC 4.7.0 (x86 64 linux) 24 611,526 0 ( 0) 44,401 171 ( 58)
GCC 4.8.0 (x86 64 linux) 80 1,983,077 0 ( 0) 151,080 6 ( 2)

mode: integer only; options: -O3; CPU: Core i7-870 2.9 GHz

Table 4 Experimental results (comparison with Csmith).

compiler Csmith [7] proposed method
#test #err #test #err

GCC 4.4.4 (i686 linux) 18,257 1 6,709 74
GCC 4.5.3 (i686 cygwin) 13,253 0 6,611 198
GCC 4.5.4 (i686 linux) 24,756 0 6,686 183

mode: integer only; options: {-O0, -O1, -O3};
time: 24 [h]; CPU: Core i5-2540M 2.60 GHz

the number of different patterns of the error programs after min-
imization, respectively. The proposed method found more errors
than the previous method. Especially, the new method succeeded
in finding bugs in GCCs whose versions are newer than 4.5.0.

Comparison with our random testing system and Csmith [7]
was also performed on three versions of GCCs. Table 4 shows the
result. The settings of the “proposed method” is the same as those
for (4) in Table 3. The tests were conducted for three options -O0,
-O1, and -O3, for Csmith needed at least three different versions
or optimizing options of compilers to conduct differential testing.
The run time was 24 hours for every compiler. “#test” and “#err”
indicate the number of test programs generated and the number
of detected errors, respectively. Our method detected much more
errors than Csmith. The comparison in terms of the numbers may
not be fair, for Csmith had detected many bugs in the earlier ver-
sions of GCCs which had been already fixed. However, we can
at least say that the proposed method can find bugs which Csmith
does not detect.

Table 5 shows the effectiveness of the integer & floating mode.
The test was run for 12 hours for -O3 option. “#Test” and “#err”
again indicate the number of test programs generated and the
number of detected errors, respectively, where “(float)” lists the
number of the errors caused by floating point arithmetic. The in-
teger & floating mode detected less errors within the same test
time. However, it revealed floating point related errors that inte-
ger only mode can never detected.

Table 6 compares the numbers of extra operations inserted to

Table 5 Experimental results (effect of integer & floating mode).

compiler integer only integer & floating
#test #err #test #err (floating)

GCC 4.4.1 (arm linux) 18,118 40 16,450 19 ( 3)
GCC 4.4.4 (i686 linux) 20,945 54 18,608 44 ( 34)
GCC 4.5.4 (i686 linux) 21,342 87 18,031 43 ( 30)

options: -O3; time: 12 [h]; CPU: Core i5-2540M 2.60 GHz

Table 6 Extra operations to avoid undefined behavior.

program size (#ops) previous [13] proposed

10 0.38 0.22
100 5.07 3.02

1,000 49.51 30.77

avoid undefined behaviors by the previous method (operation in-
sertion only) [13] and proposed method (with operation flipping).
“Program size” refers to the target number of the operations per
test program, which is the product of the number of expressions
and the number of the operations per expression in the program.
“Previous” and “proposed” show the average number of opera-
tions inserted to avoid undefined behavior by the two methods.
In the previous method, about 5% of operations had to be added.
This was reduced to about 3% in our new method.

Figure 16 shows examples of error programs that detected
bugs in the latest versions of GCCs and LLVM. (a) is one of
the three error programs for GCC 4.7.2 in Table 3. The pro-
gram was further hand minimized after the automatic reduction.
It turned out that this program caused the same error on the GCCs
of versions from at least 3.1.0 through 4.7.2, regardless of targets
and optimization options. This type of bugs are difficult to find
by such a method as Csmith that rely on the differential testing
method. The error program (b) detected “internal compiler error”
in GCC 4.8.0 for x86 64 and i686 with -O2 option (more pre-
cisely, with options -O1 -ftree-vrp). The LLVM SVN as of
May 10, 2013 (version 3.3 under development) miscompiled the
program in (c). The compiled code printed “NG (t==1)”. (d) is

c© 2014 Information Processing Society of Japan 98



IPSJ Transactions on System LSI Design Methodology Vol.7 91–100 (Aug. 2014)

1: #include <stdio.h>
2:
3: int main (void)
4: {
5: unsigned x = 2U;
6: unsigned t = ((unsigned) -(x/2)) / 2;
7: if ( t != 2147483647 ) {
8: printf("NG (t==%u)\n", t );
9: }
10: return 0;
11: }

(a) GCC 4.7.2 (for almost all the targets) miscompiled this program (com-

piled code printed “NG (t==0)”.

1: int g = 0;
2: int main(void)
3: {
4: if ( (g>>31) < -1 ) { g++; }
5: return 0;
6: }

(b) GCC 4.8.0 for Linux (x86 64 and i686) and Mac OS X (x86 64)) with

”-O1 -ftree-vrp” option crashed (internal compiler error).

1: #include <stdio.h>
2:
3: int main (void)
4: {
5: volatile short x = 1;
6: static long k = 1L;
7: int a = x << ( k - 1 ); // a = 1
8: long t = 1L >> a ; // t = 0
9: if ( t != 0L ) { printf("NG (t==%ld)\n", t); }
10: return 0;
11: }

(c) LLVM (SVN as of May 10, 2013) for Linux (x86 64) with -O1 option

miscompiled this program (compiled code printed “NG (t==1)”.

1: #include <stdio.h>
2:
3: double x14 = 3511269280748732.0;

4: int k132 = 1199736362;
5: int main (void)
6: {
7: volatile unsigned int x68 = 1U;
8: volatile int x106 = 1;
9: unsigned int t = 1U;
10: t = ((((unsigned)1U-((unsigned)1U>((unsigned)1U*

((unsigned)2U/(((-1)+k132)<<(0<<(((int)(x14+
(double)-3511267518266169.0))+(-1762482553))))))))

/x106)>>((-1%(x14!=x68))/1));
11: if (t4 != 0U) { printf("NG (t = %u)\n", t4); }
12: return 0;
13: }

(d) LLVM-3.3 for linux (x86 64) with -O3 option crashed (internal compiler

error).

Fig. 16 Examples of error programs.

an example of error programs which was detected by integer &
floating mode. It contains operations of type double. The error
disappears if double variable/constants are replaced by those of
long long integer type.

We are continuingly running our random test system on the
very latest versions of GCC and LLVM. Since February 2013,
we have so far reported 8 bugs in GCCs (4.7.2 through 4.9.0 ex-
perimental) *9 and 5 bugs in LLVMs (SVN) *10. 2 bugs out of 8
in GCCs were from more than 19 years ago but the rests were
relatively recent bugs. It seems that routines for arithmetic opti-
mization of GCCs are continuingly being updated, so we consider
it important to test arithmetic optimization.

*9 http://gcc.gnu.org/bugzilla/; bugs 56250, 56899, 56984, 57083, 57131,
57656, 57829, 58088

*10 http://llvm.org/bugs/; bugs 15607, 15940, 15941, 15959, 16108

7. Conclusion

An enhanced method of testing validity of arithmetic optimiza-
tion of C compilers using random programs has been presented
in this paper. The compiler testing system is able to detect bugs
which cannot be found by the existing methods, and has revealed
several bugs in the very latest versions of GCCs and LLVMs.

Compiler random testing based on precomputation of pro-
grams’ expected behavior seems to have great potential to un-
cover bugs which are difficult by the differential testing. How-
ever, our random program generator currently covers only small
portion of the C language as compared with Csmith. We are
now trying to extend our method to handle pointers, arrays,
structs/unions, as well as loop and conditional statements.
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