
IPSJ Transactions on System LSI Design Methodology Vol.7 74–80 (Aug. 2014)

[DOI: 10.2197/ipsjtsldm.7.74]

Short Paper

Energy-efficient High-level Synthesis for HDR Architecture
with Multi-stage Clock Gating

Hiroyuki Akasaka1,a) Shin-ya Abe1 Masao Yanagisawa2 Nozomu Togawa1,b)

Received: December 5, 2013, Revised: February 27, 2014,
Accepted: April 28, 2014, Released: August 4, 2014

Abstract: With the miniaturization and high performance of current and future LSIs, demand for portable devices has
much more increased. Especially the problems of battery runtime and device overheating have occurred. In addition,
with the downsize of the LSI design process, the ratio of an interconnection delay to a gate delay has continued to
increase. High-level synthesis to estimate the interconnection delays and reduce energy consumption is essential. In
this paper, we propose a high-level synthesis algorithm based on HDR architectures (huddle-based distributed register
architectures) utilizing multi-stage clock gating. By increasing the number of clock gating stages in each huddle, we
increase the number of the control steps at which we can apply the clock gating to registers. We can determine the
configuration of the clock gating with optimized energy consumption. The experimental results demonstrate that our
proposed algorithm reduced energy consumption by up to 27.7% compared with conventional algorithms.

Keywords: high-level synthesis, huddle-based distributed register architecture, multi-stage clock gating, clock gating
timing, gating step count

1. Introduction

With the miniaturization of LSIs and their increasing perfor-
mance, demand for high-functional portable devices has grown
significantly. At the same time, battery lifetime and device over-
heating are leading to major design problems hampering further
LSI integration. On the other hand, the ratio of an interconnection
delay to a gate delay has continued to increase as device feature
size decreases. We have to estimate interconnection delays and
reduce energy consumption even in a high-level synthesis stage.

In order to tackle this problem, Abe et al. have proposed
huddle-based distributed-register (HDR) architectures and its as-
sociated high-level synthesis algorithm [1]. Akasaka et al. have
proposed high-level synthesis for HDR architectures with clock
gating based on concurrency-oriented scheduling/functional unit
binding [3]. In HDR architectures, functional units, registers, and
a controller located close to each other are grouped as a huddle

and then we can easily estimate interconnection delays. The al-
gorithm [3] assumes coarse-grained clock gating to huddles and
focuses on the number of control steps, or gating steps, at which it
can apply the clock gating to registers in every huddle. Two meth-
ods are proposed to increase gating steps: One is that it schedules
operations to be performed at the same timing. By adjusting the
clock gating timings in a high-level synthesis stage, it can en-
hance the effect of clock gating more than applying clock gating
after logic synthesis. The other one is that it synthesizes huddles

1 Department of Computer Science and Engineering, Waseda University,
Shinjuku, Tokyo 169–8555, Japan

2 Department of Electronic and Photonic Systems, Waseda University,
Shinjuku, Tokyo 169–8555, Japan

a) hiroyuki.akasaka@togawa.cs.waseda.ac.jp
b) togawa@togawa.cs.waseda.ac.jp

such that each of the synthesized huddles includes registers which
have similar or the same clock gating timings. However, the al-
gorithm [3] sets at most one type of clock gating per huddle. It is
quite necessary to increase the number of clock gating stages in
each huddle to further reduce energy consumption.

Based on the discussion above, we propose in this paper a high-
level synthesis algorithm based on HDR architectures utilizing
the multi-stage clock gating. We configure three-stage clock gat-
ing and set one clock gating circuit per stage during HDR syn-
thesis. By increasing the number of clock gating stages in each
huddle, we also increase gating steps. Furthermore, we reduce
all energy consumption including register energy as well as clock
tree energy. The experimental results demonstrate that our pro-
posed algorithm reduced all energy consumption by up to 27.7%
compared with conventional algorithms.

2. Target Architecture and Problem Definition

2.1 Huddle-based Distributed-register Architecture
We use an HDR architecture as our target architecture [1].

HDR is an architecture that introduces huddles into distributed-
register architectures [4], [6] and abstracts each module inside an
LSI chip. A huddle has a rectangular shape within a range de-
termined by the clock cycle and share functional units, registers,
a controller, and level converters in its inside. Since huddles are
rectangle but not regular, we can achieve small area by packing
them effectively.

Figure 1 shows a huddle consisting of the following compo-
nents:
• Huddled Local Register (HLR)

Set of local registers and multiplexers dedicated to each hud-
dle.

c© 2014 Information Processing Society of Japan 74

IPSJ Transactions on System LSI Design Methodology Vol.7 74–80 (Aug. 2014)

Fig. 1 Huddle.

Fig. 2 HDR architecture.

• Huddled Functional Unit (HFU)
Set of functional units collected in each huddle. HFU mainly
accesses the HLR in its huddle.

• Finite State Machine (FSM)
Controller dedicated to each huddle. It controls the HFU and
HLR in its huddle.

• Huddled Level Converter (HLC)
Set of level converters collected in each huddle. It is used to
transfer a data to different-voltage huddles

Figure 2 shows an HDR architecture composed of several hud-
dles. If we communicate data inside each huddle, data transfer
time can be ignored, i.e., it can be done in a single clock cycle.
If we communicate data between two huddles, multi-cycle data
communication between these huddles will be done. HLC is used
when the voltages of the two huddles are different. By introduc-
ing HDR architectures into LSI chip design, we can very easily
estimate interconnection delays and thus we can have high-level
synthesis considering them.

2.2 Clock Gating and Problem Definition
There are two types of clock gating: One is fine-grained clock

gating which cuts off the clock signal to registers one by one. The
other one is coarse-grained clock gating which cuts off the clock
signal to register groups [8].

Fine-grained clock gating has an advantage that each register
does not consume extra energy, since we determine the clock gat-
ing timing considering the active timing of every register. But
fine-grained clock gating must be done at the leaf side of a
clock tree. Coarse-grained clock gating has a disadvantage that
each register may consume extra energy, since we determine the
clock gating timing considering the active timing of some regis-

Fig. 3 Three-stage clock tree in a huddle.

ter groups. But coarse-grained clock gating can be done at the
root side of a clock tree. When we focus on a clock tree itself,
it consumes energy caused by its drivers and buffers inserted for
adjusting the skew. If we apply clock gating at its root side, low-
energy clock tree can be synthesized [7].

Now we consider that we apply the multi-stage clock gat-
ing which has both the advantages of fine-grained/course-grained
clock gating. Particularly in this paper, we focus on three-stage
clock gating, since it gives better trade-off between fine-grained
clock gating and course-grained clock gating [5]. Clock tree is
composed of the upper clock tree from the clock terminal of a
chip to huddles and lower clock trees from a huddle edge to reg-
isters [3]. Figure 3 shows an example of lower clock trees in a
huddle for three-stage clock gating. Let CG1, CG2, and CG3 be
the three clock gating circuits. Similarly, let CT1, CT2, and CT3
be the gated clock trees associated with CG1, CG2 and CG3, re-
spectively. The sinks in each clock tree are sink registers and the
next-stage clock gating circuit. At the control steps when CG1
cuts off the clock signal, we can reduce the dynamic power of
CT1, CT2, and CT3. At the control steps when CG2 cuts off the
clock signal, we can reduce the dynamic power of CT2 and CT3.
At the control steps when CG3 cuts off the clock signal, we can
reduce the dynamic power of CT3.

c© 2014 Information Processing Society of Japan 75

IPSJ Transactions on System LSI Design Methodology Vol.7 74–80 (Aug. 2014)

Since our coarse-grained clock gating proposed in Ref. [3] has
only one clock gating circuit in each huddle, it cannot cut off the
clock signal effectively. On the other hand, three-stage clock gat-
ing above can have three clock gating circuits in each huddle. We
expect it can cut off the clock signal to more registers and then
reduce energy consumption.

Then our high-level synthesis problem is defined as follows:
Definition 1. Our high-level synthesis problem is, for given a

control-data flow graph (CDFG), a clock period constraint, a la-

tency constraint, and a set of functional units, to assign each op-

eration node to a control step and a functional unit, to bind each

functional unit to each huddle, to assign a supply voltage to each

huddle, to apply three-stage clock gating to each huddle so that

the given CDFG is executed correctly considering multi-cycle in-

terconnect communications. The objective is to minimize the total

energy consumption.

3. Energy-efficient High-level Synthesis for
HDR Architecture with Multi-stage Clock
Gating

Based on our previous algorithm [3], Fig. 4 shows our high-
level synthesis flow composed of Initial huddling, Concurrency-
oriented Scheduling/FU binding, Register binding, Controller
synthesis, Floorplanning, Multi-stage CG timing calculation,
Multi-stage CG huddling, and Unhuddling. By repeatedly per-
forming these steps, we finally have an energy-saving high-level
synthesis result with floorplanning. Huddle placement is repre-
sented by a sequence-pair and it is fed back to the next iteration
as the initial floorplanning. Interconnection delay is represented
by a delay table which shows a delay necessary for the commu-
nication between modules. By using this delay table obtained by
the previous iteration, we have a scheduling result reflecting the
previous huddle placement in the scheduling step at the current
iteration. Note that, we require approximately 10 iterations in our
algorithm as well as Ref. [3]. We consider that our iteration-based
algorithm is reasonable enough.

We can use the exactly the same algorithms as Ref. [3] other
than “Multi-stage CG timing calculation” and “Multi-stage CG

Fig. 4 Proposed high-level synthesis flow.

huddling” and then we propose here each of them.

3.1 Multi-stage CG Timing Calculation
“Multi-stage CG timing calculation” assigns three-stage CG

timings to each huddle based on the active timings of registers
and the clock tree energy. Since our lower clock trees have three-
stage clock gating, its configuration can be too complex to per-
form exhaustive search. Then, we employ a strategy to determine
its configuration in a stage-by-stage manner.

Figure 5 shows an example of three-stage CG timing calcula-
tion in Huddle 1. Figure 6 shows clock tree configurations asso-
ciated with Fig. 5. “�” in Fig. 5 shows the control step where the
register is used. We can cut off the clock signal at the control step
where “�” is not marked.
3.1.1 First Stage Clock Tree Configuration

First, we determine the first-stage CG timing in Huddle 1
(Fig. 5 (a)). Assume that we determine the first stage CG timing
as depicted in Figs. 5 (a) and 6 (a). “CG1” in Fig. 6 (a) shows the
clock gating circuit in the first stage. The white circle in Fig. 5 (a)
shows the control step when CG1 cuts off the clock signal. For
determining the CG timing, we define the cost function Cost(R)
of R = {r1, · · · , rk} of k registers in Huddle 1. Let Step(R) be the
gating step count, i.e., the number of control steps that we can
cut off the clock signal (In Fig. 5, Step(R) is the number of white,
gray and black circles). Let Estep be the energy consumption of
a register in one step. Let Eu(R) be the energy consumption of
the upper clock tree for Huddle 1 when we apply clock gating to
the register subset R in Huddle 1. Let Ed(R) be the energy con-
sumption of the lower clock trees in Huddle 1 when we apply
clock gating to the register subset R in Huddle 1. Then the cost
function Cost(R) can be defined by:

Cost(R) = (Eu(R) + Ed(R)) − Estep × Step(R) (1)

where Eu(R) and Ed(R) can be obtained by using the equations in
Ref. [9]. The power consumption of the clock tree P in Ref. [9] is
defined by:

P = 1.5 f V2(C0W +Cs) + P0

∑

buffers

ki (2)

where f is the frequency, V is the voltage, C0 is the capacitance
per unit length, W is the wire length, Cs is the total sink load ca-
pacitance, P0 is the static power dissipated by a minimum size
buffer, buffers is the number of clock buffers, and ki is the size
of the i-th buffer. Based on each huddle size and huddle voltage,
we estimate these parameters and set them. Ed(R) is directly de-
pendent on the lower clock tree configuration in h and calculated
mainly based on how many lower clock trees are required inside
h and how many sinks each lower clock tree requires. Eu(R) is
calculated mainly based on the number of upper clock sinks and
their positions, which are dependent on lower clock tree config-
urations *1. Sinks of the upper clock tree are all the lower clock

*1 We can show how lower clock tree configuration affects the upper clock
sinks using Fig. 6. Huddle 1 in Fig. 6 (a) has two sinks for the upper clock
tree, one is directly connected to Register A and the other is connected
to Registers B, C, and D through CG1. In Fig. 6 (b), Huddle 1 has only
one sink for the upper clock tree. Based on the number of upper clock
sinks and other parameters, we can calculate Eu(R) using Eq. (2).

c© 2014 Information Processing Society of Japan 76

IPSJ Transactions on System LSI Design Methodology Vol.7 74–80 (Aug. 2014)

Fig. 5 Three-stage clock gating timing calculation in each huddle.

trees over all the huddles in a chip. In each huddle other than
Huddle 1, we use a lower clock tree configuration determined
in the previous iteration or just before at this iteration to calcu-
late Eu(R). By considering all possible register subset R in Hud-
dle 1 and calculating Cost(R), we pick up the one which gives the
smallest Cost(R) value and determine the first stage CG timing
accordingly.

In Fig. 5, we assume that Estep = 10 and Eu(R) = 10 for any
subset R in Huddle 1. Ed(R) = 10 when we use both a gated
lower clock tree and a non-gated lower clock tree in Huddle 1.
Ed(R) = 5 when we use only a non-gated lower clock tree in
Huddle 1. Since Cost({B,C,D}) gives the minimum when we
consider the single-stage clock tree configuration, we will apply
clock gating to Registers B, C and D in the first stage of Huddle 1.
In this case, Step({B,C,D}) = 9 since the number of white circles
in Fig. 5 (a) is nine. We will cut off the clock signal to Registers
B, C and D at CS1, CS2, and CS5 in the first stage.

3.1.2 Second Stage Clock Tree Configuration
Next, we determine the second-stage CG timing in Huddle 1.

When we add one more clock gating circuit to Fig. 6 (a), we can
have the two options to increase the gating step count:
Option 1: Try to increase the number of clock-gated registers.
Option 2: Try not to change the number of clock-gated regis-

ters but increase the gating steps of current clock-gated reg-
isters.

If we apply clock gating to all the registers in Huddle 1 in the first
stage, we cannot further apply Option 1 to this clock tree. If we
apply clock gating to only one register in Huddle in the first stage,
we cannot further apply Option 2 to this clock tree. We must try
to apply both Option 1 and Option 2 to the single-stage clock tree
obtained by the first stage clock tree configuration above and pick
up the better one.

Figures 5 (b) and (c) show the CG timing in the second stage
when we apply Option 1 and Option 2 to the single-stage clock
tree, respectively. “CG2” in Figs. 6 (b) and (c) show the clock gat-

c© 2014 Information Processing Society of Japan 77

IPSJ Transactions on System LSI Design Methodology Vol.7 74–80 (Aug. 2014)

Fig. 6 Clock tree configurations associated with Fig. 5.

ing circuit in the second stage. The gray circle in Figs. 5 (b) and
(c) shows the control step when CG2 cuts off the clock signal. In
Fig. 5 (b), we apply CG2 to Registers A, B, C, and D and CG1 to
Registers B, C, and D. In Fig. 5 (c), we apply CG1 to Registers
B, C, and D and CG2 to Registers B and C. Since Option 2 gives
a smaller-cost result than Option 1, we pick up Fig. 5 (c) in this
case. We cut off the clock signal to registers at CS1, CS2, and
CS5 in the first stage and at CS4 in the second stage.
3.1.3 Third Stage Clock Tree Configuration

Finally, we determine the third stage CG timing in Huddle 1.
This step is similar to the previous section. Figures 5 (d) and (e)
show the CG timing in the third stage when we apply Option 1
and Option 2 to the two-stage clock tree, respectively. “CG3” in
Figs. 6 (d) and (e) show the clock gating circuit in the third stage.
The black circle in Figs. 5 (d) and (e) shows the control step when
CG3 cuts off the clock signal. Since Option 1 gives a smaller-cost
result than Option 2, we pick up Fig. 5 (d) in this case and then we
can have a three-stage clock gating configuration for Huddle 1.

3.2 Multi-stage CG Huddling
In “Multi-stage CG huddling,” we merge several huddles into

a single huddle. At the beginning of our iteration algorithm, we
prepare huddles, each of which includes only a single functional
unit. By merging them and sharing controllers and registers in
our iteration flow, we can obtain a result with small area and low
energy consumption. In a merging step, huddles with the same
supply voltage and satisfying the huddle size constraint described
in Section 4 are merged into a single huddle. Furthermore, we
calculate the merge priorities for huddles and merge them in the
descending order of them. In Ref. [1], the merge priority was de-
signed based on huddle adjacency and the number of connections
between huddles. Then two huddles which are located close and
exchanging data frequently are merged possitively. In Ref. [3],
we further introduced the idea of Similarity to calculate the merge
priority to accommodate clock gating in huddles.

Similarity Sim(h j, hk) represents how close the clock gating

Fig. 7 Similarity.

timings of the huddles h j and hk are. By merging the two hud-
dles used at the same or similar timing possitively, more registers
at the same or similar timing are assigned to the same huddle.
Then, we can cut off the clock signal to the registers in the merged
huddle at as many steps as possible *2.

In our algorithm here, we use the the most-coarse grained CG
timing, i.e, gating steps given by the most left-side hand clock
gating circuit in Figs. 5 and 6, as Similarity in our proposed algo-
rithm.

Figure 7 shows Similarity between the two huddles h j and hk.
The most-coarse grained CG timings in h j and hk are {CS1} and
{CS1,CS2,CS5}, respectively. Then Sim(h j, hk) = 3 since CG
timings at CS1, CS3, and CS4 match.

Based on the merge priority, we will merge two huddles into a
single huddle according to the original algorithm of Ref. [1] and
apply clock gating to the steps where we can cut off the clock
signal to both huddles.

4. Experimental Results

We have implemented our algorithm in C++ and performed ex-
perimental evaluations. We used AMD Opteron 2360SE 2.5 GHz
× 2 PC with 16 GB memory. We applied our algorithm to hal

*2 By introducing Similarity Sim(h j, hk) to the merge priority when merging
huddles, we can reduce energy consumption by up to 10.4% compared
with the case where we do not introduce it. See Ref. [2] in detail.

c© 2014 Information Processing Society of Japan 78

IPSJ Transactions on System LSI Design Methodology Vol.7 74–80 (Aug. 2014)

(11 nodes), parker (22 nodes), dct (48 nodes), jacobi (48 nodes
including conditional branches), fir filter (75 nodes), ewf3 (102
nodes), and copy (378 nodes including conditional branches).

In the experiments, functional units and registers are assumed
to have 16-bit width under the 90 nm technology. The clock pe-
riod constraint is given to be 2.5 ns. The interconnection delays
are assumed to be proportional to square of the wiring length and
set interconnection delays to be 1ns when the wiring length is
250 µm [6].

The width and height of each huddle must satisfy the following
huddle size constraint [1]:

2 · Dw(W(h j) + H(h j)) + Dreg(h j) ≤ min
fi∈F(h j)

{Slack(fi)} (3)

where W(h j) and H(h j) are the width and height of the huddle h j

respectively, Dw(x) is an interconnection delay when the wiring
length is x, Dreg(h j) is a delay of register in the huddle h j, fi is
i-th functional unit, F(h j) is a set of functional units which are
bound to the huddle h j, Slack(fi) shows the slack time which can
be used by data transfer for fi’s succeeding operations.

Energy consumption in each application program is obtained
based on the energy consumptions of (a) FUs (including their
multiplexers), (b) level converters, (c) registers (including their

Table 1 Experimental results.

App. FUs S max Algorithm All dynamic Dynamic energy Leak energy CT energy All energy Iterations CPU time (ratio)
energy [pJ] in registers [pJ] [pJ] [pJ] [pJ] [sec]

hal Add × 1 5 Ref. [1] 119.049 108.218 28.3314 2.31617 147.380 2 382.32 (1.000)
Sub × 1 Ref. [1] + CGCG 102.458 92.1862 28.3354 1.75765 130.793 2 394.70 (1.032)
Mul × 2 Ref. [1] + FGCG 101.264 88.7507 28.3354 3.99872 129.599 2 394.70 (1.032)
Com × 1 Ref. [3] 86.3667 77.1209 29.6253 1.48581 115.992 2 381.64 (0.998)

Ours 82.5502 73.2731 28.3354 1.50841 110.886 2 405.60 (1.061)

parker Add × 2 10 Ref. [1] 28.3833 23.7773 68.0913 1.75087 96.4746 2 259.48 (1.000)
Sub × 2 Ref. [1] + CGCG 26.2352 21.8553 68.0945 1.52478 94.3297 2 260.21 (1.003)
Com × 1 Ref. [1] + FGCG 26.7604 18.0112 68.0945 5.89398 94.8549 2 260.21 (1.003)

Ref. [3] 21.7289 17.3088 67.9547 1.32697 89.6836 2 197.45 (0.761)
Ours 21.5102 16.9593 67.9547 1.45251 89.4649 2 262.58 (1.012)

dct Add × 4 10 Ref. [1] 199.459 132.922 24.4439 8.76961 223.903 3 868.33 (1.000)
Mul × 4 Ref. [1] + CGCG 187.691 122.028 24.4554 7.89428 212.146 3 913.90 (1.052)

Ref. [1] + FGCG 203.816 106.734 24.4554 39.3136 228.271 3 913.90 (1.052)
Ref. [3] 174.917 113.327 26.2647 8.19640 201.182 4 1,167.48 (1.345)

Ours 167.883 103.424 26.8452 8.75431 194.728 10 3,241.60 (3.733)

dct Add × 3 15 Ref. [1] 217.622 153.727 21.1666 10.0075 238.789 4 997.75 (1.000)
Mul × 3 Ref. [1] + CGCG 207.997 146.126 21.1816 7.98265 229.179 4 999.68 (1.002)

Ref. [1] + FGCG 219.559 121.599 21.1816 44.0723 240.741 4 999.68 (1.002)
Ref. [3] 199.222 136.085 22.0748 9.25228 221.297 2 488.06 (0.489)

Ours 192.035 128.268 22.4233 9.84309 214.458 4 955.51 (0.958)

jacobi Add × 2 15 Ref. [1] 202.975 112.942 77.3490 12.5441 280.324 2 293.82 (1.000)
Sub × 1 Ref. [1] + CGCG 195.489 105.669 77.3591 12.3310 272.848 2 295.23 (1.005)
Mul × 2 Ref. [1] + FGCG 209.365 91.7126 77.3591 40.1635 286.724 2 295.23 (1.005)
Div × 2 Ref. [3] 169.174 89.9171 79.0343 11.1586 248.208 2 273.61 (0.931)

Ours 163.910 84.3441 79.1876 11.4317 243.098 2 331.31 (1.128)

fir Add × 3 35 Ref. [1] 371.618 276.493 55.4682 19.6739 427.086 2 510.75 (1.000)
Mul × 3 Ref. [1] + CGCG 344.971 249.569 55.5030 19.9510 400.474 2 554.51 (1.086)

Ref. [1] + FGCG 364.275 214.678 55.5030 74.1458 419.778 2 554.51 (1.086)
Ref. [3] 315.835 225.548 52.8838 13.7516 368.719 2 437.90 (0.857)

Ours 278.336 187.085 52.9463 14.7490 331.282 2 483.20 (0.946)

ewf3 Add × 4 45 Ref. [1] 590.185 396.598 111.197 34.3950 701.382 10 2,213.18 (1.000)
Mul × 2 Ref. [1] + CGCG 549.058 358.927 111.257 30.9392 660.315 10 2,931.81 (1.325)

Ref. [1] + FGCG 593.152 314.492 111.257 119.469 704.409 10 2,931.81 (1.325)
Ref. [3] 483.411 303.290 71.9863 25.6333 555.397 10 1,968.53 (0.889)

Ours 462.794 282.510 72.0906 25.7436 534.885 10 2,012.33 (0.909)

copy Add × 3 165 Ref. [1] 69,469.4 67,816.4 3,107.74 1,106.34 72,577.1 10 4,980.24 (1.000)
Sub × 1 Ref. [1] + CGCG 63,840.1 62,206.7 3,108.09 1,086.75 66,948.2 10 5,011.44 (1.006)
Mul × 5 Ref. [1] + FGCG 77,119.8 51,606.0 3,108.09 24,967.1 80,227.9 10 5,011.44 (1.006)
Com × 1 Ref. [3] 53,316.1 52,389.6 1,989.39 498.391 55,305.5 10 5,829.51 (1.171)
Shi × 2 Ours 49,979.2 48,409.1 2,508.96 871.604 52,488.2 10 5,172.84 (1.039)

multiplexers), (d) controllers, and (e) clock trees. Our energy
consumption value is then obtained by summing up those of (a)–
(e) as seen in Refs. [1], [3], [10], where we assume that the com-
ponents which are prepared in advance can be used directly in
high-level synthesis. We obtained the energy consumptions of
(a)–(d) by using Design Compiler. We then use the equations in
Ref. [9] to calculate the energy consumption of (e) clock trees in
our experiments.

We have compared our algorithm with the following algo-
rithms:
(1) The original algorithm [1],
(2) The original algorithm [1] followed by the coarse-grained

clock gating (Ref. [1]+CGCG),
(3) The original algorithm [1] followed by the fine-grained clock

gating (Ref. [1]+FGCG), and
(4) Our previous algorithm [3].
In (2) and (4) above, we applied huddle-based coarse-grained
clock gating whereas we applied fine-grained clock gating in (3).

Table 1 shows our experimental results. Overall, all energy
consumption of our proposed algorithm achieves the minimum in
all the cases and is reduced by up to 27.7% compared with the
original algorithm [1]. Moreover, it is reduced by up to 10.2%

c© 2014 Information Processing Society of Japan 79

IPSJ Transactions on System LSI Design Methodology Vol.7 74–80 (Aug. 2014)

compared with our previous version [3].
Note that fine-grained clock gating (FGCG) requires a clock

gating circuit to each register in a huddle, i.e., the number of
clock gating circuits in FGCG may be equal to the number of
registers in a huddle. While the number of registers per huddle
is 2–6 in dct and fir, it is 20–40 in copy. That is why clock tree
energy (CT energy) of Ref. [1]+FGCG in copy is approximately
23 times larger than Ref. [1]+CGCG.

The number of iterations of our proposed algorithm in dct
(Add × 4, Mul× 4) is 10, though the number of iterations of other
algorithms is 3–4. This is because the process itself in our pro-
posed algorithm is slightly complicated and might be difficult to
converge. However, there is no significant impact on the conver-
gence in our exprimental results since there is no change in the
number of iterations in many caces. In the future, we will im-
prove the convergence of our proposed algorithm.

5. Conclusion

In this paper, we have proposed a high-level synthesis algo-
rithm based on HDR architecture utilizing the multi-stage clock
gating. Our proposed algorithm reduces energy consumption by
up to 27.7% compared with Ref. [1]. Moreover, our proposed al-
gorithm reduces energy consumption by up to 10.2% compared
with Ref. [3].

Setting at most one clock gating circuit per one stage is the first
step in our algorithm. In the future, we will develop a high-level
synthesis algorithm that optimizes the numbers and the types of
clock gating in huddles.

Acknowledgments This work was supported partially by
“Grant for Advanced Industrial Technology Development” from
the New Energy and Industrial Technology Development Organi-
zation (NEDO) of Japan.

References

[1] Abe, S., Yanagisawa, M. and Togawa, N.: Energy-efficient high-
level synthesis for HDR architectures, IPSJ Trans. System LSI Design
Methodologies, Vol.5 (August Issue), pp.106–117 (2012).

[2] Akasaka, H., Yanagisawa, M. and Togawa, N.: Energy-efficient high-
level synthesis for HDR architectures with clock gating, IEEE Proc.
2012 International SoC Design Conference, pp.135–138 (2012).

[3] Akasaka, H., Abe, S., Yanagisawa, M. and Togawa, N.: Energy-
efficient high-level synthesis for HDR architectures with clock gat-
ing based on concurrency-oriented scheduling, IPSJ Trans. System LSI
Design Methodologies, Vol.6 (August Issue), pp.101–111 (2013).

[4] Cong, J., Fan, Y., Han, G., Yang, X. and Zhang, Z.: Architec-
ture and synthesis for onchip multicycle communication, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol.23,
No.4, pp.550–564 (2004).

[5] Man, X., Horiyama, T. and Kimura, S.: Automatic multi-stage clock
gating optimization using ILP formulation, IEICE Trans. Fundamen-
tals of Electronics, Communications and Computer Sciences, Vol.95,
No.8, pp.1347–1358, (2012).

[6] Ohchi, A., Togawa, N., Yanagisawa, M. and Ohtsuki, T.:
Performance-driven high-level synthesis with floorplan for GDR ar-
chitectures and its evaluation, Proc. IEEE International Symposium
on Circuits and Systems, pp.921–924 (2010).

[7] Ozaki, N., Amano, H., Nakamura, H., Usami, K., Namiki, M. and
Kondo, M.: SLD-1 (Silent Large Datapath): A ultra low power recon-
figurable accelerator, Proc. IEEE Cool Chips XIV, pp.9–17 (2011).

[8] Shin, J., Dawei, H., Petrick, B., Changku, H. and Leon, A.: A 40 nm
16-core 128-thread SPARC SoC processor, Proc. IEEE 2011 Solid
State Circuits Conference, pp.1–4 (2010).

[9] Vittal, A. and Marek-Sadowska, M.: Low-power buffered clock tree
design, IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, Vol.16, No.9, pp.965–975 (1997).

[10] Yang, H. and Dung, L.: On multiple-voltage high-level synthesis us-
ing algorithmic transformations, Proc. IEEE ASP-DAC, pp.872–876
(Jan. 2005).

Hiroyuki Akasaka was born in 1989. He
received his B.E. and M.E. degrees from
Waseda University in 2012 and 2014 in
Computer Science. His research interest
is high-level synthesis of LSIs. In 2014,
he joined NTT Communications Corp.

Shin-ya Abe was born in 1988. He re-
ceived his B.E. and M.E. degrees from
Waseda University in 2011 and 2012, re-
spectively, all in Computer Science. He
is presently working toward Dr.E. degree
there. His research interests are design
and verification of VLSI, especially high-
level synthesis and energy efficiency de-

sign. He is a student member of the Institute of Electronics, In-
formation and Communication Engineers.

Masao Yanagisawa was born in 1959.
He received his B.E., M.E., and Dr.E. de-
grees from Waseda University in 1981,
1983, and 1986, respectively, all in Elec-
trical Engineering. He was with Univer-
sity of California, Berkeley from 1986
through 1987. In 1987, he joined
Takushoku University. In 1991, he left

Takushoku University and joined Waseda University, where he
is presently a Professor in the Department of Electronic and Pho-
tonic Systems. His research interests are combinatorics and graph
theory, computational geometry, VLSI design and verification,
and network analysis and design. He is a member of IEEE and
ACM and a fellow of the Institute of Electronics, Information and
Communication Engineers.

Nozomu Togawa was born in 1970. He
received his B.E., M.E., and Dr.E. degrees
from Waseda University in 1992, 1994,
and 1997, respectively, all in Electrical
Engineering. He is presently a Professor
in the Department of Computer Science
and Engineering, Waseda University. His
research interests are LSI design, graph

theory, and computational geometry. He is a member of IEEE
and the Institute of Electronics, Information and Communication
Engineers.

(Recommended by Associate Editor: Mineo Kaneko)

c© 2014 Information Processing Society of Japan 80

