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Abstract: This paper introduces a novel method for image classification using local feature descriptors. The method
utilizes linear subspaces of local descriptors for characterizing their distribution and extracting image features. The ex-
tracted features are transformed into more discriminative features by the linear discriminant analysis and employed for
recognizing their categories. Experimental results demonstrate that this method is competitive with the Fisher kernel
method in terms of classification accuracy.
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1. Introduction

This paper addresses the problem of image classification us-
ing local feature descriptors. The typical methods encode local
descriptors (e.g., SIFT descriptors [1]) of an image into a global
image feature and then classify the image feature by a classifier
such as support vector machine (SVM). In the well-known bag-
of-features (BoF) or bag-of-keypoints approach, for instance, the
distribution of local descriptors of an image is summarized into
a histogram that counts the occurrence of visual words [2], [3].
This histogram is employed as an image feature for recognizing
categories of the image. After the successful application of such
BoF approach to image classification, many studies have been de-
voted to developing image feature encoding methods that achieve
higher classification accuracy. The Fisher kernel method [4], [5]
and the super-vector coding [6] are representative of such meth-
ods.

In this study, we also investigate a image classification method
based on the above-mentioned feature encoding approach. We
propose a novel method to extract expressive image features,
which utilizes a certain similarities between local descriptors and
some prototypes of their distribution. For modeling the distribu-
tion of local descriptors, we employ probabilistic principal com-
ponent analysis (probabilistic PCA or PPCA) [7], [8]. Since the
PPCA prototype models can be approximated by linear subspace
models, we can encode the population of the local descriptors by
using the linear subspaces. The extracted features are then trans-
formed by linear discriminant analysis (LDA) in order to obtain
discriminative global image features. Classification performance
of this method is evaluated through experiments on two standard
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datasets: PASCAL-VOC2007 [9] and Caltech-256 [10]. In the
recent empirical study [11], it is reported that the Fisher kernel
method attains the highest classification accuracy. Therefore, we
compare the accuracy of our method with that of the Fisher kernel
method.

2. Method

2.1 Overview of the Proposed Method
Figure 1 outlines our image classification method. In the same

way as the BoF approach, we extract local feature descriptors
from an image and assign them to one of K visual words. We em-
ploy the standard k-means clustering for generating the codebook
of visual words. Then local descriptors of an image are divided
into K bags, which are denoted as X1, X2, . . . , XK . For each Xk

(k = 1, 2, . . . ,K), we compute the feature vector yk which charac-
terizes the population. Parameters for this feature extraction pro-
cess are estimated by unsupervised learning. Next, the obtained
features are transformed into more discriminative features zk via
LDA. The resulting K features, z1, z2, . . . , zK , are then fused into
a single feature vector z̄. Finally, this vector is employed as an
input for a classifier such as SVM.

Fig. 1 Overview of the proposed image classification method.
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2.2 Feature Extraction from the Local Descriptor Popula-
tion

Let ξk,n denote the n-th local descriptor of an image assigned to
the k-th visual word and Xk denote the bag consisting of descrip-
tors centered at the cluster centroid ck, that is, xk,n = ξk,n − ck,
where k = 1, 2, . . . ,K, n = 1, 2, . . . ,Nk and Nk is the num-
ber of descriptors in Xk. The descriptors are assumed to be D-
dimensional. Our objective is to extract a feature vector yk with
a fixed dimension from the bag Xk regardless of the number Nk.
To this end, let us suppose that each xk,n is generated from some
probability distribution. We also assume that we have L “proto-
types” of such distribution, P� (� = 1, 2, . . . , L). Then we define
a “similarity” S (Xk, P�) between the population of Xk and each
of P�. If the L prototypes are representative enough, the L values
S (Xk, P1), . . . , S (Xk, PL) could be used for positioning the distri-
bution of Xk against them. Hence, we make use of these values to
characterize the bag Xk.

Provided that each prototype P� is a Gaussian with mean μ�
and covariance Σ�, it is possible to define S (Xk, P�) by using the
probability density function N(x|μ�,Σ�) as follows:

S (Xk, P�) =
1

Nk

Nk∑
n=1

logN(xk,n|μ�,Σ�). (1)

The variables xk,n are assumed to be independent each other. Al-
though there are no constraints on the choice of covariance for
Eq. (1), it may be unfavorable to adopt the full-covariance model,
as it requires considerable computational costs. In this study,
therefore, we employ PPCA [7], [8] for modeling each P�. In
this case, under some assumptions including μ� = 0 for all � that
assumes the mean of each P� equals to the k-th cluster centroid,
S (Xk, P�) can be simplified to the following form (see A.1):

S̃ (Xk, P�) =
1

Nk

Nk∑
n=1

‖U�� xk,n‖2 = tr(U�� RkU�). (2)

Here U� is the D × H column orthonormal matrix which defines
the H < D dimensional subspace for P�, and Rk is the auto-
correlation matrix: Rk =

∑Nk

n=1 xk,nx�k,n/Nk. We refer to these sub-
spaces as prototype subspaces. We have adopted such a linear
subspace model for the sake of computational efficiency, though
more complex models (e.g., an affine subspace model having dif-
ferent means) may show some improvement in terms of classi-
fication accuracy. As seen in the next section, this linear sub-
space model is sufficient for obtaining discriminative image fea-
tures competitive to Fisher vectors.

The value S̃ (Xk, P�) measures the similarity between the pop-
ulation of Xk and P� by the average distance of the descriptors to
the prototype subspace defined by U�. In this paper, we examine
to use the L-dimensional vector consisting of

ŷ� =

√
S̃ (Xk, P�) =

√
tr(U�

�
RkU�) (3)

as a feature for image classification. Furthermore, we also inves-
tigate another feature composed of the following H-dimensional
vectors:

ŷ� =
(√

u�
�,1Rku�,1, . . . ,

√
u�
�,H Rku�,H

)�
, (4)

where u�,h is the h-th column of U�. It is to be noted that
‖ŷ�‖2 = S̃ (Xk, P�). We obtain the LH-dimensional feature by
concatenating ŷ1, ŷ2, . . . , ŷL. In both cases, the resulting L or LH

dimensional vector y is normalized so that ‖y‖2 = 1.

2.3 Learning of the Prototype Subspaces
We adopt an unsupervised learning approach for constructing

representative prototype subspaces from learning images. One
candidate method is the EM algorithm for mixture of PPCA [12];
however, its computational costs might be too expensive to apply
to large-scale data. Thus, we propose to use a variant of subspace
clustering algorithms [13], [14], [15]. The procedure of the pro-
posed algorithm is as follows. Here, the matrix Ri denotes the
auto-correlation matrix of the local feature descriptors (assigned
to a cluster) of the i-th learning image (the subscript k is omitted).
( 1 ) Initialize the L prototypes U1,U2, . . . ,UL so that each of

which becomes a D × H column orthonormal matrix.
( 2 ) Find the cluster index �∗i ∈ {1, 2, . . . , L} for each Ri as fol-

lows:

�∗i = argmax
�

tr
(
U�� RiU�

)
(5)

( 3 ) Update the prototypes so that each matrix U� is composed of
the eigenvectors corresponding to the H largest eigenvalues
of the following matrix (� = 1, 2, . . . , L):

R̄� =
∑

i:�∗i =�

Ri (6)

( 4 ) Repeat ( 2 ) and ( 3 ) until the termination condition is met.
Note that this algorithm is distinct from the conventional sub-
space clustering algorithms, as it clusters not vectors but matri-
ces.

2.4 Feature Fusion via Linear Discriminant Analysis
By applying the feature extraction method described in Sec-

tion 2.2, an image is represented by K vectors, y1, y2, . . . , yK . We
can simply concatenate these vectors and input the resulting sin-
gle high dimensional vector to a classifier such as linear SVM.
Our preliminary experiments revealed, however, that such con-
catenated features did not achieve competitive classification per-
formance. The main reason seems to be that the elements of yk

are highly correlated each other because the set {u�,h} is overcom-
plete, that is, the number of the basis vectors LH is larger than
their dimensionality D in our parameter settings.

In this study, we attempt to solve this problem by applying
LDA to the feature vectors in one-vs-rest manner as suggested
in Ref. [16]. It is expected that this approach improves the dis-
criminative power of the features. When we have C categories,
the direction for discriminating the c-th category (c = 1, 2, . . . ,C)
from the others is given as

wc = Σ
−1(mc − mc̄). (7)

The matrix Σ denotes the covariance matrix of y (the subscript
k is omitted), and the vectors mc and mc̄ denote the means of y
belonging to the c-th category and not belonging to the c-th cat-
egory, respectively. In this approach, it is necessary for estimat-
ing Σ; however, its computation might be numerically unstable
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due to high data dimensionality. For this reason, we employ the
shrinkage covariance estimation method proposed by Ledoit and
Wolf [17].

Using the obtained discriminant vectors, we can transform yk

into a C-dimensional vector ẑk for each k = 1, . . . ,K:

ẑk =W�
k yk (8)

where Wk is the matrix composed of the discriminant vectors
for yk. Then each element of ẑk is standardized to have mean
0 and unit variance; furthermore, the standardized vector is L2-
normalized. The resulting C-dimensional vector zk defines the
alternative feature of Xk. In our experimental conditions, the
number of local features Nk is distributed between a wide range
including 0. The feature zk may not be informative if they are
extracted from Xk consisting of small number of local features.
Thus we define a threshold Nth for Nk, and set zk to be 0 if
Nk < Nth.

Now we have K features z1, z2, . . . , zK for each image. They
are fused into one vector that is employed as input data to a clas-
sifier. By virtue of LDA, we can adopt a simple averaging scheme
for this purpose:

z̄ =
1
K

K∑
k=1

zk. (9)

As a result, each image is represented by a single C-dimensional
feature vector z̄. It is noteworthy that the dimensionality of this
feature is considerably smaller than those of the conventional
methods (e.g., the Fisher Kernel method typically employs 2KD-
dimensional feature vector).

3. Experiment

We evaluate the performance of the proposed image classifica-
tion method. The results are compared with those obtained by the
Fisher kernel method [5].

3.1 Experimental Procedure
We conducted the experiments on the following two datasets.

PASCAL-VOC2007 [9]: This dataset consists of 9,963 images of
20 different object categories. According to the prespecified parti-
tion, 5,011 images (trainval) were used for learning and 4,952 im-
ages (test) were used for testing. The classification performance
was measured by the mean of average precision (mAP) across the
20 categories.
Caltech-256 [10]: This dataset contains 30,607 images of 256
object categories and one background (clutter) category. Accord-
ing to the standard experimental protocol for this dataset, the im-
ages of each category (excluding the background category) were
randomly divided into two sets: 30 images for learning and the
remainings for testing. The classification performance was eval-
uated using the average of the correct classification rate for each
category. We repeated each run 5 times with different learning
and test splits.

For describing local image features, we used only the 128-
dimensional SIFT descriptor [1]; hence, D = 128. The descrip-
tors were computed at dense spatial grid points with 4-pixel spac-
ing in three scales, 16, 24, and 32 pixels. We used the VLFeat

library [18]. It must be noted that we did not adopt the spatial
pooling technique [19] in all our experiments, though it is appli-
cable to our method.

The descriptors extracted from learning images were employed
for training our classification system. First, K visual words were
acquired by using the standard k-means clustering. Next, the D-
dimensional descriptors were transformed into D′-dimensional
vectors by the whitening transformation with dimensionality re-
duction for each cluster. The transformation matrices were com-
puted by applying PCA to each clustered descriptors. We sub-
stituted these D′-dimensional features for raw descriptors in the
subsequent processes. We have chosen K and D′ to be 32 and
64, respectively. The prototype subspaces were learned by ap-
plying the proposed algorithm to each of K clustered data. The
learning was terminated after 10 iterations. In order to investigate
the influence of the choice of the number of prototypes L and
the dimensionality of the prototypes H, we repeated the experi-
ments with different settings for these parameters. The threshold
Nth was set to D′/2 = 32. The feature vectors z̄ were classified
by linear SVM [20], [21], [22]. The soft margin parameters were
chosen via 5-fold cross validation.

We compare the classification performance of the proposed
method with the Fisher kernel method. In the case of the Fisher
kernel method, following to the setup described in Ref. [5], PCA
was first applied to reduce the dimensionality of the descriptors
to D′. Then, these D′-dimensional data were used for fitting
the diagonal-covariance GMM with K mixture components. In
addition, the power normalization with α = 0.5 and the L2-
normalization were also applied to the resulting Fisher vectors.
The parameters D′ and K were set to 64 and 256, respectively.

3.2 Results
Table 1 shows the classification accuracy of the proposed

method and the Fisher Kernel method. The rows of the table la-
beled as “L-dim.” display the values of the mAP (VOC2007) and
the correct recognition rate (Caltech-256) obtained by the pro-
posed method using the feature vectors computed from Eq. (3),
while the rows labeled as “LH-dim.” display those obtained by
using the feature vectors computed from Eq. (4). In the former

Table 1 Classification accuracy on PASCAL-VOC2007 and Caltech-256
datasets. FK: Fisher Kernel method.

method K L H VOC2007 Caltech-256

proposed 32 128 1 53.0 38.5 ±0.19
(L-dim.) 2 53.4 39.5 ±0.46

4 53.2 39.9 ±0.25
8 52.9 39.6 ±0.44

256 1 55.5 40.8 ±0.38
2 56.0 41.3 ±0.51
4 55.9 41.5 ±0.47
8 55.5 41.4 ±0.49

proposed 32 128 1 53.0 38.5 ±0.19
(LH-dim.) 2 55.3 41.3 ±0.41

4 57.6 42.4 ±0.50
8 58.8 42.8 ±0.42

256 1 55.5 40.8 ±0.38
2 57.6 42.3 ±0.33
4 59.2 42.9 ±0.24
8 59.8 42.8 ±0.42

FK 256 – – 57.1 39.7 ±0.17
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case little or no accuracy improvement is seen as the subspace
dimensionality H is increased, whereas significant improvement
is observed in the latter case. We can also see that the accu-
racy values are about the same with the identical feature dimen-
sionality LH. The proposed method attains the highest accuracy
when K = 32, L = 256, and H = 4 or 8. In these condi-
tions, the sum of the dimensions of yk, KLH, is equal to 32,768
or 65,536, which is comparable to the dimension of the Fisher
vector, 2KD′ = 32,768. These results imply that the proposed
method can perform more efficient feature encoding in compari-
son to the Fisher kernel method.

4. Discussion

The above experimental results suggest that the classification
accuracy of the proposed image classification method is compa-
rable to that of the well-established state-of-the-art methods. In
order to confirm the validity of our method, however, it is nec-
essary to conduct more extensive experiments employing various
datasets and to compare with some more recent studies, for in-
stance, Refs. [23], [24]. It is also an open question whether this
method is efficient in terms of the computational cost, although
the computational complexity of the proposed method appears
not to be high since almost all operations are arithmetic.

On the other hand, the proposed feature extraction method is
applicable to other recognition problems in which data is com-
posed of a set of multiple features. In future, we will investigate
how to apply this method to such recognition problems as face
recognition from image sequence [25], [26].
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Appendix

A.1 Derivation of the Similarity ˜S(Xk, P�)

In the PPCA model, the covariance matrix Σ is given as Σ =
WW� + σ2I, where W is a D × H matrix (H < D) and σ2 > 0
(subscripts are omitted). If we estimate the parameters of PPCA
model by maximum likelihood approach, the optimal solution for
μ is simply the sample mean, while those of W and σ2 are known
to have the following forms [7], [8]:

W = U(Λ − σ2I)
1
2 R (A.1)

σ2 =
1

D − H

D∑
d=H+1

λd, (A.2)

where λ1 ≥ λ2 ≥ · · · ≥ λD are the eigenvalues of the sample co-
variance matrix, Λ = diag(λ1, λ2, . . . , λH), U is the D × H matrix
composed of the H eigenvectors corresponding to the H largest
eigenvalues, and R is an arbitrary H × H orthogonal matrix. The
model parameters do not depend on the choice of R; therefore,
we assume that R = I.

When Eqs. (A.1) and (A.2) hold, L = logN(x|μ,Σ) can be
written as follows:

L = −1
2
(
D log 2π + log |Σ|)

− 1
2σ2

(
‖x − μ‖2 − ‖Λ− 1

2 W�(x − μ)‖2
)
. (A.3)

Here let us assume that
• μ = 0,
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• |Σ| and σ2 take identical values, respectively, for every pro-
totype,

• WΛ−
1
2 = Udiag(

√
1 − σ2/λh) ≈ U.

Then,

L = a(‖U�� x‖2 − ‖x‖2 + b) (A.4)

approximately holds for any � = 1, 2, . . . , L, where a and b are
common positive constants. The term ‖x‖2 can also be omitted
since it takes an equal value for every prototype. Hence, by omit-
ting the constant terms, we can derive the approximated similarity
S̃ (Xk, P�) as Eq. (2).

(Communicated by Mark S. Nixon)
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