
IPSJ Transactions on Computer Vision and Applications Vol.6 83–87 (July 2014)

[DOI: 10.2197/ipsjtcva.6.83]

Express Paper

ILSVRC on a Smartphone

Yoshiyuki Kawano1,a) Keiji Yanai1,b)

Received: March 14, 2014, Accepted: April 24, 2014, Released: July 25, 2014

Abstract: In this work, to the best of our knowledge, we propose a stand-alone large-scale image classification system
running on an Android smartphone. The objective of this work is to prove that mobile large-scale image classification
requires no communication to external servers. To do that, we propose a scalar-based compression method for weight
vectors of linear classifiers. As an additional characteristic, the proposed method does not need to uncompress the com-
pressed vectors for evaluation of the classifiers, which brings the saving of recognition time. We have implemented a
large-scale image classification system on an Android smartphone, which can perform 1000-class classification for a
given image in 0.270 seconds. In the experiment, we show that compressing the weights to 1/8 leaded to only 0.80%
performance loss for 1000-class classification with the ILSVRC2012 dataset. In addition, the experimental results
indicate that weight vectors compressed in low bits, even in the binarized case (bit = 1), are still valid for classification
of high dimensional vectors.

Keywords: large-scale visual recognition, mobile image recognition

1. Introduction

In recent years, smartphones such as iPhone and Android
phones have progressed greatly, especially in terms of computa-
tional power. A quad-core CPU is common as a smartphone’s
CPU, which is equivalent to a PC’s CPU sold in a few year
ago. Taking advantage of high computational power of a smart
phone, a stand-alone real-time object recognition system on a
smartphone has become possible [5], which can classify 100-
class foods.

On the other hand, large-scale object recognition has drawn at-
tention recently. ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) is a representative large-scale object recognition
benchmark. In ILSVRC, the number of categories is 1000, and
each category has more than 1000 training images.

Then, in this work, as a case study of large-scale object recog-
nition on a mobile device, we propose a stand-alone mobile ob-
ject recognition system which can recognize objects of 1000 cat-
egories of ILSVRC. To realize that, we have to overcome the
memory limitation in a smartphone environment which is differ-
ent from a PC where a large amount of memory such as 128 GB
is available. To implement 1000-class visual classification on a
smartphone, we propose an effective compression method on the
weight vectors of linear classifiers to fit the trained parameters to
the memory limitation of a smartphone.

As a recognition method for ILSVRC, Deep Convolutional
Neural Network (DCNN) [6] became more popular since 2012.
However, DCNN for large-scale object recognition requires
large-size network and a huge number of parameters. According

1 Department of Informatics, The University of Electro-Communications,
Tokyo, Chofu, Tokyo 182–8585, Japan

a) kawano-y@mm.inf.uec.ac.jp
b) yanai@inf.uec.ac.jp

to Ref. [6], the DCNN which won ILSVRC2012 have 60 mil-
lion parameters. The other common method than DCNN for
large-scale object recognition is a combination of Fisher Vec-
tor (FV) [9] and linear classifiers. In fact, a FV-based method
requires much more memory than DCNN. When the codebook
size is 256 and the level of the spatial pyramid [8] is 1, totally
the dimension of feature vectors is 163,840. Since the weights of
trained linear classifiers for 1000 classes are needed to be stored,
the total number of the parameters is 163 million. Currently, it
is unrealistic to implement FV and linear classifiers as well as
DCNN on a mobile device as they are, because of the memory
limitation.

In fact, in case of an Android smartphone, the size of an appli-
cation file (APK file) including both execution binary code and
data is limited to 50 MB at most. Practically, we can assign only
about 40 MB for data area, because we have to keep a space for
run-time binary code. Therefore, in this paper, we assume the
size limitation is 40 MB. Note that in our work, recognition on
1000 categories is carried out on a smartphone, while training on
1000 categories is performed on PCs. Therefore, an application
file has to contain all the trained parameters of classifiers and the
other parameters related to feature coding such as Gaussian Mix-
ture Models (GMMs) for Fisher Vector (FV) coding.

To implement 1000-class visual classification on a smartphone,
we propose to compress the trained weight vectors of linear clas-
sifiers to fit them to the memory limitation. Linear classifiers
in one-vs-rest manner are an economical method for multi-class
classification, which require weight vectors the number and the
dimension of which equals the number of classes to be classi-
fied and the dimension of feature vectors, respectively. However,
we needs a large amount of memory to store them, when we use
high-dimensional Fisher Vectors for higher classification perfor-
mance. Of course, we can reduce the dimension of FV. However,

c© 2014 Information Processing Society of Japan 83



IPSJ Transactions on Computer Vision and Applications Vol.6 83–87 (July 2014)

it will bring performance reduction [10]. To keep high classifica-
tion performance, dimension reduction should be avoided. Then,
in this paper, we compress each element of the weight vectors
without compressing their dimension.

In image classification, compression of classifier weights for
classification has never discussed before, while compression of
feature vectors for training time has addressed by Sánchez et
al. [10]. They compressed feature vectors coded by Fisher Vec-
tor [9] with Product Quantization (PQ) [3] in training time to store
a large number of feature vectors on memory at once. They
never compressed FV as well as weight vectors in classifica-
tion time, because they performed classification on a PC where
enough memory is available. On the other hand, in our work, we
carry out classification on a smartphone where memory is lim-
ited. Note that we perform training of linear classifiers using PQ
in the same as Ref. [10]. We use AROW [2] for an online learning
method of linear classifiers, while they used Stochastic Gradient
Descent (SGD).

In the experiments, at first, we compare image features to se-
lect suitable combination of image features referring to Ref. [5].
Next, we analyze classification performance versus compression
rates of weight vectors of linear classifiers with the ILSVRC2012
dataset and a 100 food image dataset.

The contributions in this paper are follows:
(1) We propose a scalar-based compression method for

weight vectors of linear classifiers, which requires no un-
compressing of the compressed vectors for evaluation of
the classifiers.

(2) Compressing the weights to 1/8 leads to only 0.80%
performance loss for 1000-class classification with the
ILSVRC2012 dataset.

(3) We have proved that stand-alone large-scale image clas-
sification is possible on a consumer smartphone without
communication to external servers.

2. Related Work

As commercial services on image recognition for smartphones,
Google Goggles *1 is widely well-known. Since it is based on
specific object recognition methods, recognition of generic ob-
jects is impossible. Kumar et al. [7] proposed a mobile system
which recognizes 184 plant species using curvature based shape
feature peculiar leaf. In the system, leaf recognition was per-
formed on a server. Su et al. [11] also proposed a server-based
image classification system with a 137-class dataset which was
a subset of the ILSVRC2012 dataset. They reduced amount of
data sent to a recognition server with client-side feature extraction
and sending a thumbnail image instead of an original one to the
server. These three systems basically employs server-side image
recognition, while our goal is to show that no recognition sever is
needed for mobile image classification even for 1000 classes.

A few mobile systems without recognition servers have been
proposed so far. Among them, the 100-class food image clas-
sification system proposed by Kawano et al. [5] is the state-of-
the-art to the best of our knowledge, which adopted one-vs-rest

*1 http://www.google.com/mobile/goggles/

liner SVM and Fisher Vector (FV) with HOG patch and Color
patch features. The system can classify one food image only in
0.065 seconds. However, due to the memory limitation, the di-
mension of FV in the system was about 1,500, which is very small
compared to the state-of-the-art systems on PCs [10]. Especially,
in large-scale image classification, small dimension features will
cause a large loss in classification performance. Then, in this
work, we compress each element of the weight vectors without
reducing the dimension of feature vectors.

3. Proposed Method

In this section, first, we describe feature vectors, and next ex-
plain a classification method including how to compress weight
vectors which is our major contribution in this work.

3.1 Feature Vectors
We use RootHOG patches, Color patches and uniform LBP as

local features, and code them into Fisher Vectors (FV) [9] after
applying PCA.
3.1.1 Histogram of Oriented Gradient (HOG) Patch

We use HOG as a local descriptor instead of SIFT and SURF,
since it is simple and very fast to extract. HOG patches can be
densely-sampled effectively by preparing a table storing a gradi-
ent orientation and its degree on each pixel in advance.

We extract HOG features in dense sampling. The HOG we
used consists of 2×2 blocks (totally four blocks). We extract gra-
dient histogram regarding eight orientations from each block. The
total dimension of a HOG Patch feature is 32. After extraction of
HOG patches, we convert each of them into a “RootHOG.” It is
an element-wise square root of the L1 normalized HOG, which
is inspired by “RootSIFT” [1]. In fact, in the preliminary exper-
iments, RootHOG leaded to the better performance than original
HOG.
3.1.2 Color Patch

We use mean and variance of RGB value of pixels as a Color
patch feature. We divide a local patch into 2 × 2 blocks, and ex-
tract mean and variance of RGB value of each pixel within each
block. Totally, we extract 24-dim Color Patch features.
3.1.3 Local Binary Pattern (LBP) Patch

LBP represents texture patterns. LBP can be extract effectively
by preparing a pixel-wise LBP table over whole an image. We
used 59-dim uniform LBP.

3.2 Fisher Vector
Fisher Vector [9] is the state-of-the-art coding method which

utilizes a high order statistic of local feature vectors to decrease
quantization error other than Deep Convolution Neural Network
in ILSVRC. In general, the dimension of FV for large-scale clas-
sification becomes very high (sometimes over million) to achieve
higher performance.

According to Ref. [9], we encode local descriptors into Fisher
Vector. We choose a probability density function (pdf) as a
Gaussian mixture model (GMM) with diagonal covariances. Re-
garding Fisher Vector, we use only term on mean according to
Ref. [4]. The gradient with respect to the mean is defined as fol-
lows:

c© 2014 Information Processing Society of Japan 84



IPSJ Transactions on Computer Vision and Applications Vol.6 83–87 (July 2014)

GX
μ,i =

1
T
√
πi

T∑
t=1

γt(i)

(
xt − μi

σi

)
, (1)

where xt and T are a feature vector of a local descriptor and
the number of local descriptors, respectively. γt(i) represents the
probability of xt belonging to the i-th component:

γt(i) =
πiN(xt |μi,Σi)∑N

j=1 π jN(xt |μ j,Σ j)
(2)

Finally, gradient GX
μ,i are calculated for all the Gaussian. Fisher

Vector is obtained as their concatenation.
To improve recognition accuracy, we apply power normaliza-

tion (α = 0.5) and L2 normalization [9]. In addition, Spatial Pyra-
mid [8] with level 1 (1×1+2×2) is used for FV coding.

3.3 Linear Classifier
In large-scale image classification, in general, batch learning

of classifiers is impossible, because it requires too much memory
to store training samples and too much time to optimize train-
ing parameters. Instead, online learning is commonly used, since
it updates training parameters one by one for each of the training
samples and requires only one sample at a time. In ILSVRC2012,
most of the team used SGD or Passive Aggressive (PA) as an on-
line learning method, while we use AROW [2].
3.3.1 Adaptive Regularization of Weights (AROW)

AROW [2] is an online learning method of linear classifiers,
which is robust to noise label. This property is suitable for a
large-scale data, especially data gathered from the Web. We use
AROW++ *2 with slight modification as an implementation of
AROW.

AROW has a weight vector μ and a confidence matrix Σ as
training parameters. μ is used for classification by dot-product
with a feature vector, and the eigenvalues of Σ is monotonically
decreasing as updating.

In each iteration, we pick one sample xt, and compute margin
mt = μt−1 · xt and confidence vt = xT

t Σt−1xt. If mtyt is negative,
update μ and Σ by the following equations:

μt = μt−1 + αtΣt−1ytxt (3)

Σt = Σt−1 − βtΣt−1xtxT
t Σt−1, (4)

where βt = 1/xtΣt−1xt + r and αt = max(0, 1 − ytxT
t μt−1)βt.

In training time, training samples are re-ordered randomly, and
we iterate training of the parameters ten times to avoid bad effect
by sample order. In case of 1000-class classification, we use all
the samples in the target class as positive samples, while we sam-
ple 100 images from each of the other 999 classes, and use totally
999,000 images as negative samples. For one-vs-rest classifica-
tion for 1000 classes, we train weight vectors of AROW for each
of 1000 classes independently using a PC cluster.

In training time, we have to store one million samples coded by
FV on memory in spite of using online learning, because practi-
cally training is carried out over all the samples iteratively to pre-
vent dependency on the order of training samples. Their amount
is too large even for a PC. Then, we compress training samples

*2 https://code.google.com/p/arowpp/

with Product Quantization (PQ) [3] following to Ref. [10]. Only
the sample is uncompressed, when it is needed to update the pa-
rameters.

Sánchez et al. [10] showed that compression of feature vectors
by 1/32 leaded almost no performance loss in case of vector-
quantizing every 8 dimensions of feature vectors coded by FV
with 28 centroids. Therefore, we adopt Product Quantization
(PQ) [3] in training time.

3.4 Compression of Weight Vectors for Classification on a
Smartphone

As mentioned in Section 1, 1000-class classification with one-
vs-rest linear classifiers and high dimensional Fisher Vector re-
quires a large amount of classifier weights. It it the problem to
be solve for implementing 1000-class visual classification on a
smartphone.

In this paper, we propose a scalar-based compression method
for weight vectors of linear classifiers. This method has a good
characteristic that we do not need to uncompress the compressed
vector when evaluating the corresponding classifier.

Empirically, most of the element values of the weight vectors
of linear classifiers are distributed between −1 and 1. Then, we
restrict the range of an element value wi within (1,−1] by the fol-
lowing rules:

w′i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.999999 (wi ≥ 1) (5a)

wi (−1 < wi < 1) (5b)

−1 (wi ≤ −1) (5c)

Next, we compress it into n-bit representation.

w′′i = �w′i × 2n−1 + 2n−1�, (6)

Note that �x� represents a maximum integer value which is not
more than x. With this conversion, w′′i is represented as an in-
teger value within [0, 2n − 1], which can be expressed in n bits.
Note that there is room for improvement, because this conversion
is relatively straight-forward. However, this has worked very well
in the experiments.

To classify images in one-vs-rest manner, only relative de-
scending order of the output values of the classifiers for the same
Fisher Vector is important. Therefore, we can omit to reconstruct
original values, it is enough for classification to compute a dot
product between a compressed weight vector and a FV-coded fea-
ture vector. Even reconstruction of the sign of the unsigned com-
pressed values is not needed, because the constant values added
to make the values unsigned can be ignored for comparison of the
output values in one-vs-rest classification. This enables us to save
recognition time on a smartphone.

3.5 Implementation on a Smartphone
We implement a system as a multi-threaded system assuming

a 4-core CPU smartphone is a target. Refer to Kawano et al. [5],
we parallelize feature extraction for RootHOG Patch and Color
Patch features. Extraction of local descriptors, applying of PCA
with them, encoding them into Fisher Vector with power normal-
ization and L2 normalization, and evaluation of 1000 classifiers
are carried out over 2 cores in parallel for each feature, totally

c© 2014 Information Processing Society of Japan 85



IPSJ Transactions on Computer Vision and Applications Vol.6 83–87 (July 2014)

over 4 cores in parallel. Moreover, in the same as Ref. [5], we
compute all the constant values which can be calculated in ad-
vance. Regarding the weights of the classifiers, we store two 4-bit
compressed vectors into one-byte memory, and separate them on
demand in classification time.

4. Experiments

4.1 Experimental Setup
In the experiment, as a large-scale image dataset, we use the

ILSVRC2012 dataset *3 which consists of 1000 classes. Since
our objective is classifying 1000 classes on a smartphone in a
practical speed (less than 1 second), we set parameters by regard-
ing recognition speed as more important than performance. As
an additional experiment, we use 100-class food dataset, UEC-
Food100 *4.

We evaluate the results of 1000-class classification with the
top-5 error rate, which represents the rate that no ground-truth
label is found in the top-5 classes in the descending order of the
output values of the classifiers. For UEC-Food 100, we evaluated
the results with the top-k classification rate varying k from 1 to
10. All the evaluations except for execution time were carried out
on a PC.

Regarding image features, we prepare three kinds of features,
Color-patch, RootHOG-patch and LBP, each of which represents
color, gradient, and texture pattern, respectively. We sampled
them densely in every 5 pixels with two scales. Before coded
by Fisher Vector, they are applied with PCA and converted into
32-dim vectors in case of RootHOG-patch and LBP, and 24-dim
vectors in case of Color-patch. Although actually the dimension
of feature vectors for RootHOG-patch and Color-patch are not
reduced by applying PCA, PCA is still important for whitening
of feature vectors before FV coding. For FV coding, we use the
GMM with 64 Gaussians and Spatial Pyramid level 1 (1×1+2×2).
As results, the total dimensions of FV are 10240 for RootHOG-
FV and LBP-FV and 7680 for Color-FV.

In training time, we train the classifier weights with AROW
for 1000-class using a PC cluster, and compress them into n-bit
representation. In classification time, we calculate dot-product of
the compressed vector and the FV-coded feature vector for all of
1000 classes, and select the top-5 classes in terms of descending
order of the evaluation value of the classifiers. In case of using
two features, we simply add two output values on each class with-
out any weighting.

4.2 1000-class Classification
At first, we compare three kinds of features, Color-FV,

RootHOG-FV and LBP-FV. Combining all the three features is
impractical for implementing on a smartphone in terms of run-
ning time as well as memory. We assume extraction of two kinds
of features are carried out in parallel by assigning each of them to
two CPU cores. Note that we did not use weight compression in
this experiment.

Figure 1 shows top-5 error rates for 1000-class classifica-
tion of the ILSVRC2010 dataset. Among the single features,

*3 http://www.image-net.org/challenges/LSVRC/2012/
*4 http://www.foodcam.mobi/dataset/

Fig. 1 Top-1 and Top-5 classification rates for the ILSVRC2012 dataset
with three kinds of features and their combinations.

Fig. 2 Top-1 and Top-5 classification rates for the ILSVRC2012 dataset by
the proposed method with n-bit compressed weight vectors (n = 1, 2,
4, 8, 16). “32 (float)” means the result with no weight compression.

RootHOG-FV achieved the best result, 59.7%. Among the com-
bination of two features, Color+RootHOG was the best, 51.3%,
and LBP+Color was the second best, 53.4%.

Next, we compare the results when varying the bits for weight
compression from 1 to 32. In the case that the number of bit is
32, we use the weight vectors presented in “float”, which means
no compression. Figure 2 shows the top-5 error rates by combi-
nation of Color-FV and RootHOG-FV and their single features.
From 32 bits to 4 bits, no prominent performance drops were ob-
served. The error rate was increased by only 0.8 points in case
of 4-bit compression with combined features compared to origi-
nal floating weights (32 bit). On the other hand, in case of 2 and
1 bits, relatively larger performance drops by more than 7 points
were observed. However, even in case of 1 bit which corresponds
to binarization of weight vectors, the result is still meaningful.
This is the surprising result which we have never expected.

Although the top-5 error rates 52.1% is less than the lowest
results at ILSVRC2012, it corresponds to the fifth rank among
eleven participants at ILSVRC2010.

4.3 Recognition Time
We use Samsung Galaxy NoteII (1.6 GHz 4-core CPU, 4

threads, Android 4.1) for measuring recognition time for 1000
classes. In case of 4-bit compression, it took 0.270 seconds in
one-time recognition of 1000 classes of ILSVRC. The proposed
system achieved a reasonable recognition time as an image recog-
nition engine of an interactive mobile application.

4.4 Required Memory
The classifier weight vectors occupy most of the memory area,

c© 2014 Information Processing Society of Japan 86



IPSJ Transactions on Computer Vision and Applications Vol.6 83–87 (July 2014)

Fig. 3 Top-k classification rates for the UEC-Food100 dataset by the pro-
posed method and Kawano et al. [5] (k = 1, . . . , 10).

Fig. 4 Top-1 and Top-5 classification rates for the UEC-Food100 dataset by
the proposed method with n-bit compressed weight vectors (n = 1, 2,
4, 8, 16, 32 (float)).

which consists of 1000 7680-dim weights for Color-FV and
1000 10240-dim weights for RootHOG-FV. They totally needs
71.7 MB to store without compression. By compressing them in
4-bit representation, their size is reduced to one eighth, about
9.0 MB. Since 50 MB is the limit size of the Android applica-
tion, 9.0 MB is enough small, while 71.7 MB is too large to fit
it.

4.5 Other dataset
As another dataset which is not so large as ILSVRC, we

use UEC-FOOD100 which consists of 100-class food images.
We compare classification rate of multi-class classification with
Ref. [5] which achieved the best results on the dataset. The set-
ting for feature extraction is the same for ILSVRC2012, except
for the size of GMM for FV coding and additional usage of Spa-
tial Pyramid [8].

In Ref. [5], the size of GMM was 32, and as feature vectors they
used 2048-dim HOG-FV and 1536-dim Color-FV due to memory
limitation. On the other hand, in this work, we use 32768-dim
RootHOG-FV and 24576-dim Color-FV, the dimensions of which
were raised 16 times by using the doubled size of GMM with 64
Gaussians and Spatial Pyramid with 1×1+2×2+1×3. This can be
possible by introducing weight vector compression.

Figure 3 shows the top-k classification rates by our method
with 4-bit compression and Ref. [5]. The proposed method
achieved the 60.25% top-1 classification rate, which outper-
formed [5] by 8.4 points.

*5 For iOS, DNN-based 1000 recognition app., JetPac Spotter, has been
released this April. However, no Andriod app. has been released.

Figure 4 shows the result by our method with the different
number of bit representation of the weight vectors. In case of
4-bit, the rate was dropped by only 1.2% compared to the case
with no compression (32-bit float).

This result indicates that a technique to compress weight vec-
tors of linear classifiers is effective not only for large-scale clas-
sification but also for even small-scale classification on an envi-
ronment with memory limitation such as a smartphone.

5. Conclusions and Future Works

In this work, to the best of our knowledge, we proposed the
first stand-alone large-scale image classification system running
on an Android smartphone *5.

We have proved that mobile large-scale image classification re-
quires no communication to external servers. To realize that, we
proposed a scalar-based compression method for weight vectors
of linear classifiers. As an additional characteristics, the proposed
method does not need to uncompress the compressed vectors for
evaluation of the classifiers, which brings the saving of recogni-
tion time. In the experiment, we showed that compressing the
weights to 1/8 leaded to only 0.80% performance loss for 1000-
class classification with the ILSVRC2012 dataset. In addition,
the experimental results indicated that weight vectors compressed
in low bits, even in the binarized case (bit = 1), are still valid for
classification of high dimensional vectors.

For future work, we will try to implement a 10k-class clas-
sification system. To do that, we plan to split and share the
weight vectors to achieve additional reduction of required mem-
ory. Reducing memory is helpful to increase the dimension of
feature vector as well, which will bring performance improve-
ment. Therefore, we will compress weight vectors more and more
for better performance.

References

[1] Arandjelovic, R. and Zisserman, A.: Three things everyone should
know to improve object retrieval, CVPR, pp.2911–2918 (2012).

[2] Crammer, K., Kulesza, A. and Dredze, M.: Adaptive regularization of
weight vectors, Machine Learning, Vol.91, No.2, pp.155–187 (2013).

[3] Jégou, H., Douze, M. and Schmid, C.: Product quantization for near-
est neighbor search, IEEE Trans. PAMI, Vol.33, No.1, pp.117–128
(2011).

[4] Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P. and Schmid,
C.: Aggregating local image descriptors into compact codes, IEEE
Trans. PAMI, Vol.34, No.9, pp.1704–1716 (2012).

[5] Kawano, Y. and Yanai, K.: Rapid Mobile Object Recognition Us-
ing Fisher Vector, Proc. Asian Conference on Pattern Recognition,
pp.476–480 (2013).

[6] Krizhevsky, A., Sutskever, I. and Hinton, G.E.: ImageNet Classifica-
tion with Deep Convolutional Neural Networks, NIPS (2012).

[7] Kumar, N., Belhumeur, P., Biswas, A., Jacobs, D., Kress, W., Lopez,
I. and Soares, J.: Leafsnap: A Computer Vision System for Automatic
Plant Species Identification, ECCV, Vol.7573, pp.502–516 (2012).

[8] Lazebnik, S., Schmid, C. and Ponce, J.: Beyond bags of features: Spa-
tial pyramid matching for recognizing natural scene categories, CVPR,
pp.2169–2178 (2006).

[9] Perronnin, F., Sánchez, J. and Mensink, T.: Improving the Fisher Ker-
nel for Large-Scale Image Classification, ECCV, Vol.6314, pp.143–
156 (2010).

[10] Sánchez, J. and Perronnin, F.: High-dimensional signature compres-
sion for large-scale image classification, CVPR, pp.1665–1672 (2011).

[11] Su, Y.C., Chiu, T.H., Chen, Y.Y., Yeh, C.Y. and Hsu, W.H.: Enabling
low bitrate mobile visual recognition: A performance versus band-
width evaluation, ACM MM, pp.73–82 (2013).

(Communicated by Ichiro Ide)

c© 2014 Information Processing Society of Japan 87


