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Abstract: In this paper, we propose a method to achieve positions and poses of multiple cameras and temporal syn-
chronization among them by using blinking calibration patterns. In the proposed method, calibration patterns are
shown on tablet PCs or monitors, and are observed by multiple cameras. By observing several frames from the cam-
eras, we can obtain the camera positions, poses and frame correspondences among cameras. The proposed calibration
patterns are based on pseudo random volumes (PRV), a 3D extension of pseudo random sequences. Using PRV, we
can achieve the proposed method. We believe our method is useful not only for multiple camera systems but also for
AR applications for multiple users.
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1. Introduction

These days, augmented reality (AR)-based applications are
employed in various situations. Many AR applications for iPhone
and Android are registered. Furthermore, various AR systems
have been introduced in shopping malls and museums.

However, although there are an enormous number of AR ap-
plications and systems, most do not suppose simultaneous use by
multiple users. In this paper, we consider AR systems that can
be used by multiple users simultaneously. Specifically, we aim at
AR environments in which multiple users can see synchronized
AR contents (Fig. 1).

Many researchers have proposed AR algorithms thus far.
These algorithms are divided into two approaches: marker-based
approaches [1], [2], [3] and markerless approaches [4] (using nat-
ural features etc.). Here, we focus on the marker-based approach.

In marker-based approaches [1], [2], AR markers are basically
printed and static. Although relationships between marker and
camera are obtained based on marker observations, temporal in-
formation or frame correspondences cannot be obtained. There
are some examples that consider AR markers shown on a moni-
tor [3], but AR markers themselves are static and do not consider
temporal information.

In this paper, we propose a geometrical and temporal calibra-
tion method based on blinking calibration patterns. Our method
can obtain not only positions and poses of cameras but also
frame correspondences among camera observations. By using
our blinking calibration patterns as an AR marker, we can achieve
an AR environment in which multiple users can see synchronized
AR contents.

Our blinking calibration patterns are based on pseudo random
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Fig. 1 Concept of method.

volumes (PRV), a 3D extension of pseudo random sequences [7].
In PRV, when a certain subvolume observation is obtained, the
positions of the subvolume in the PRV can be uniquely deter-
mined. Using this property, we can achieve the proposed method.

Recently, not only wearable devices with cameras and displays
such as smart phones and tablet PCs but also head-mounted de-
vices such as Google Glass [5] and Epson Moverio [6] have be-
come more popular. We assume AR systems that can be used
by multiple users at the same time will increase in various set-
tings such as shopping malls. The proposed method is essential
technology for achieving such AR applications.

In the next section, we introduce pseudo random volumes
(PRV) and their properties and construction. In Section 3, we fo-
cus on the algorithm of the method. Section 4 gives experimental
results and Section 5 concludes the paper.

2. Pseudo Random Volume

Before explaining pseudo random volumes (PRV), we will de-
scribe pseudo random sequences (PRS) and pseudo random ar-
rays (PRA).

Pseudo random sequences (a.k.a. m-sequences, maximum
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Fig. 2 Construction of pseudo random array (3 × 5).

length sequences) are binary sequences of cycle length n = 2m−1,
constructed from m-bit shift registers. When the shift register is
based on a primitive polynomial h(x) of degree m, PRS can be
generated [8]. For example, in the case of m = 4, one of the
primitive polynomials is h(x) = x4+ x+1, and PRS s = s1, . . . , sn

are generated as the following equation, si+4 = si+1+si (i = 1, . . . ,
n − 4). An example of a generated PRS is as follows.

si = {1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, . . .} (1)

PRS have several properties [8]. Here, we introduce the fol-
lowing two properties relevant to this paper.
1) the window property: any consecutive m-bit sequences ex-
tracted from a certain PRS are different.
2) the ratio of 0 and 1: in any m-bit PRS, 0’ and 1’ appear 2m−1−1
and 2m−1 times, respectively.

Pseudo random arrays are two-dimensional arrays of size n1 ×
n2 constructed from PRS of length n (n = 2k1k2 − 1). Here,
n1 = 2k1 − 1 and n2 = n/n1 must be relatively prime. Since PRA
also have the property that any possible k1 × k2 subarrays are dif-
ferent, we can find the positions of the subarrays from k1 × k2

subarray observation [9].
For example, in the case of n = 22·2 − 1 = 15, we can generate

a 3 × 5 PRA (n1 = 22 − 1 = 3 and n2 = 15/3 = 5). Here, PRA
can be constructed by writing the PRS down the main diagonal
and continuing from the opposite side when an edge is reached as
shown in Fig. 2. The PRA made from the above PRS of Eq. (1) is
as follows:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0
1 0 1 1 1
0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

Pseudo random volumes (PRV) are three-dimensional exten-
sions of PRS and PRA. As with PRS and PRA, PRV also have
the property that any possible k1 × k2 × k3 subvolumes are differ-
ent. By using this property, we can achieve the blinking calibra-
tion patterns for geometrical and temporal calibration of multiple
cameras.

Next, we will explain the construction of the PRV [7]. PRV
of size n1 × n2 × n3 are constructed from PRS of length n (n =
2k1k2k3 −1), where n1, n2 and n3 need to be relatively prime. Here,
let us consider a 3 × 5 × 17 PRV. We first make a PRS of length
n = 28 − 1 = 255 = 3 ∗ 5 ∗ 17 from a primitive polynomial of
degree 8 (e.g. h(x) = x8 + x6 + x5 + x1 + 1). Then, we fill in a
3 × 5 × 17 volume using the generated PRS, by writing the PRS
down the main diagonal and continuing from the opposite side
when an edge is reached as shown in Fig. 3.

As described in the following sections, a marker and cameras
need to share the PRV in the proposed method. However in prac-
tice, the whole PRV pattern does not need to be shared; just the

Fig. 3 Construction of pseudo random volume (3 × 5 × 17).

Table 1 Possible and appropriate PRVs.

m n = 2m − 1 Possible PRVs

8 255 3 × 5 × 17
10 1023 3 × 11 × 31
12 4095 5 × 9 × 91, 5 × 7 × 117,

7 × 9 × 63, 7 × 13 × 45, etc.
16 65535 3 × 5 × 4369

parameters n, n1, n2, n3 and the primitive polynomial h(x) are
sufficient because PRV can be uniquely generated when n, n1, n2,
n3 and h(x) are given. Table 1 shows examples of possible PRVs
appropriate for our purpose.

3. Algorithm

3.1 System Overview
As shown in Fig. 1, the proposed blinking calibration patterns

are shown on a monitor or tablet PC and multiple cameras are
observing the markers. From the camera observations, the po-
sitions and poses of the cameras can be obtained. In addition,
frame correspondences among camera observation sequences are
achieved.

Figure 4 shows the process flow of the proposed method. First,
the marker pattern constructed from PRV is displayed on a mon-
itor or tablet PC. Next, the marker is observed by multiple cam-
eras, and marker patterns are extracted from the observed im-
ages. The frame correspondences among image sequences are
obtained from obtained marker patterns by using the PRV’s prop-
erties. Then, positions and poses of the cameras are estimated.

3.2 Marker Detection
First, markers are detected from the observed image sequences.

The procedures for the marker detection are based on Ref. [3].
Here, we briefly describe marker detection.

We first extract edges from observed images. Here, we assume
the marker is covering the dominant area in the images. Next, we
estimate two vanishing points from extracted edges. Let u1 and u2
be the vanishing points, and li be the edges corresponding to the
vanishing points ui. We can obtain the following equation:
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Fig. 4 Process flow.

Fig. 5 Examples of marker detection and grid extraction.

∀i : uk · li = 0. (3)

The vanishing points u1 and u2 can be calculated as the minimum
eigenvector of eigenvalue decomposition of the following matrix
C:

C = (l0, . . . , lN)(l0, . . . , lN)t. (4)

Since the obtained edges include false edges (not derived from
marker patterns), we employ RANSAC for estimating vanishing
points u1 and u2.

Then, positions of grids are estimated using the fact that correct
edges (grids) should be equally spaced as follows:

li = l̂base + (ki + q)ĥ, (5)

where ĥ = u1 × u2. l̂base is an arbitrary line through the vanishing
point, k and q are parameters for determining intervals and posi-
tions of the grids. Figure 5 shows examples of the grid detection
results.

3.3 Pattern Extraction
Next, marker patterns are extracted from estimated grid posi-

tions. Here, M ×N grid is obtained where gi, j are intersection 2D
positions. vi, j are averaged pixel values of area ai, j (Fig. 6). vi, j
are grouped into several groups by using X-means method [10].
Depending on the observation timing, sometimes we can take im-
ages of the marker in a switching timing. In such a case, a number
of groups of vi, j will become more than three. These images are
excluded for the following process. Let pi, j be extracted patterns
and

pi, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 (white)
0 (black)
−1 (other)

(6)

where “other” includes when i and j are out of range. Figure 7
shows pattern extraction results.

3.4 Marker Tracking and Position Estimation in PRV
Here, let us consider the images of frame t and t + 1 and grids

Fig. 6 Grid positions and pattern extraction.

Fig. 7 Examples of pattern detection (left) and failure case (right).

Fig. 8 Results of correspondence validity.

of sizes Mt × Nt and Mt+1 × Nt+1 are detected, respectively. As-
suming the difference of observation time is small, we find initial
grid correspondence between G(t) = {g1,1, . . . , gMt ,N,t} and G(t+1),
the grids obtained in frame t and t + 1 as follows:

Δi,Δ j = arg min
Δi,Δ j

∑

i, j

d(i, j,Δi,Δ j, t), (7)

d =

⎧⎪⎪⎨⎪⎪⎩
(gi, j − gi+Δi, j+Δ j)2 (gi, j, gi+Δi, j+Δ j > 0)
0 (else)

. (8)

Next, we evaluate validity of grid correspondence based on the
window property of PRV and continuity of observation timing.
In PRV, we can uniquely determine the positions of subvolumes
from observations of subvolumes. Let us consider the case in
which more large subvolumes are obtained. In such a case, if
false correspondences exist in the subvolume, the tracked subvol-
ume does not match any subvolume in the PRV. Thus, the validity
of the grid correspondence V is calculated as follows:

Vα, β, γ =
∑

i, j,k

(
Si, j,k − Pα+i, β+ j,γ+k

)
, (9)

where P are the patterns of the PRV, S are the patterns of the
subarray. α, β, γ are positions in the PRV.

Figure 8 shows the calculated validity of 7 × 9 × 65 PRV and
3×4×3 subvolumes. The horizontal axis denotes the positions in
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Fig. 12 Experimental results (red lines denote found correspondences).

Fig. 9 Experimental setup.

Fig. 10 Examples of observing images (camera 1).

Fig. 11 Examples of observing images (camera 2).

the PRV, the vertical one denotes the validity (small means high
validity). The red line shows correct subvolume. Blue and green
lines are subvolumes that include false correspondences (1 pixel).
By searching minimum Vα, β,γ, we can find positions of subarray
in the PRV, and achieve frame correspondences among cameras.

Here, we considered subarrays that are one grid larger than the
necessary size (2 × 3 × 2). Actually, since we can obtain further
larger observations, the validity can be estimated more robustly.

3.5 Position and Pose Estimation of Cameras
From the obtained information (positions of marker grid cor-

ners) correspondence with the marker plane, we can estimate
the positions and poses of cameras by using homography rela-
tions [11].

4. Experiment

To evaluate the effectiveness of the proposed method, we per-
formed the following experiment.

Figure 9 shows the experimental environment. A 10.1 inch
Tablet PC is used to show the marker. Two USB cameras observe

the marker. Geometrical and temporal calibration of two cameras
are performed using observed image sequences.

As a PRV for the marker patterns, we constructed a PRV of
size 7 × 9 × 65 from the PRS (m = 12, n = 2m − 1 = 4,095, and
primitive polynomial h(x) is x12 + x7 + x4 + x3 + 1). Sixty-five
marker patterns of size 7 × 9 for the blinking patterns are gener-
ated from the constructed PRV. These patterns are shown on the
tablet PC in 10 frames/second. The period of the blinking patterns
is 6.5 [sec]. Figures 10 and 11 show examples of the observation
of the displayed markers.

Figure 12 shows the experimental results. As can be seen, we
can find the frame correspondences by using our method.

5. Conclusion

We proposed a method to estimate positions and poses of mul-
tiple cameras and to achieve frame correspondence among cam-
eras by using blinking calibration patterns. The blinking calibra-
tion patterns that are constructed based on pseudo random vol-
umes (PRV) are shown in a display or a tablet PC and all cameras
observe the marker. Using PRV’s properties, we can achieve ge-
ometrical and temporal calibration among multiple cameras. We
confirmed the effectiveness of our system through experiments.

Future works include the implementation of an AR system
based on our method and estimation algorithm for sub-frame
synchronization among cameras by using the transition frames.
We will also investigate extension of the marker patterns to non-
binary (multi-value) markers for robust marker detection and
tracking.
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