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Abstract: This paper proposes a background estimation method from a single omnidirectional image sequence for
removing undesired regions such as moving objects, specular regions, and uncaptured regions caused by the cam-
era’s blind spot without manual specification. The proposed method aligns multiple frames using a reconstructed 3D
model of the environment and generates background images by minimizing an energy function for selecting a frame
for each pixel. In the energy function, we introduce patch similarity and camera positions to remove undesired regions
more correctly and generate high-resolution images. In experiments, we demonstrate the effectiveness of the proposed
method by comparing the result given by the proposed method with those from conventional approaches.
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1. Introduction

Omnidirectional image sequences captured with a moving
camera have a wide variety of applications, such as telepres-
ence and vehicle navigation systems. For example, Google Street
View is one of the most well-known telepresence systems that
are already available to the public. A vision-based vehicle nav-
igation system [11] is another interesting example of such appli-
cations, which uses preliminary captured omnidirectional image
sequences to estimate and track the pose of the vehicle using im-
age matching between the sequences and an image from the in-
vehicle camera.

Usually, omnidirectional image sequences contain undesired
regions that cause serious problems for the applications. Google
Street View often suffers from the privacy issue since its images
come with the appearances of pedestrians. The vehicle navigation
system can fail in pose estimation and tracking when the prelim-
inarily captured omnidirectional image sequences contain a lot
of moving objects (e.g., cars and pedestrians), specular surfaces,
and the camera’s blind spot. Methods for removing such unde-
sired regions by replacing them with an estimated background as
shown in Fig. 1 are strongly required.

To remove such undesired regions and replace them with
the actual background, a straightforward approach is (1) find-
ing undesired regions and (2) estimating their background by
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Fig. 1 Example of removal of undesired regions by the proposed method
(39th frame).

frame alignment, which makes pixelwise correspondences be-
tween background pixels in different frames and pixels in unde-
sired regions in a target frame.

Flores et al. [4] proposed a method to remove pedestrians from
omnidirectional images, in which regions of pedestrians are spec-
ified with pedestrian detection algorithm [8]. Our previous pa-
per [7] proposed a method to fill in an uncaptured region caused
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by a blind spot of an omnidirectional camera, in which the region
is preliminarily specified with camera calibration. These methods
use the assumption that the undesired region is planar for frame
alignment. However, the planner assumption limits applicable
scenes.

To relax the geometric constraint, some methods have been
proposed that take different approaches to align frames in se-
quences of ordinary perspective images. Matsushita et al. [9] es-
timate motion in the undesired regions using the optical flows
around them. Bhat et al. [1] estimate a dense depth map of the
target scene, and Granados et al. [5] use multiple homographies.
These methods fill in the manually specified regions using dif-
ferent frames aligned to the target one. However, the methods
that require manually specifying undesired regions may not be
applied to image sequences with a large number of frames.

Cohen [3] proposed a method to remove moving objects with-
out specifying the target objects, assuming that the alignment
among frames is given. This method treats object removal as a
labeling problem; a frame index is regarded as a label and an ap-
propriate label that is likely to be the background is assigned to
each pixel using energy minimization. The result is generated by
using pixel values from different frames. Specifically, the energy
function used in this method is defined based on the variance over
the intensities of a single pixel in multiple aligned frames. The
similar energy functions are also used in Refs. [1], [5], and they
are based on the pixel differences. However, using only the pixel-
wise differences of intensities is sometimes insufficient to remove
moving objects and generate good quality of background texture.
For omnidirectional images, Uchiyama et al. [12] remove mov-
ing objects from an omnidirectional street image without man-
ual specification of them. This method requires multiple image
sequences taken along almost the same path because it replaces
moving objects in a target frame with background from an im-
age captured at a position very close to that of the target frame.
Therefore, this method requires much time to be applied to large
environments.

In this paper, we propose a method for removing undesired re-
gions in a single omnidirectional image sequence. Assuming that
the background of the undesired regions in some frames is vis-
ible in the other frames, we replace the undesired regions with
their background without explicitly specifying them in the image
labeling framework. In order to relax the assumption of scene ge-
ometry, we adopt 3D reconstruction-based frame alignment using
the structure-from-motion and multiple-view stereo techniques.
In the proposed method, we use patch similarity in our energy
function of the image labeling problem, rather than pixelwise dif-
ferences, which empirically demonstrates better background as-
signment. In addition, our energy function leverages a camera
position of each frame to obtain the background with higher res-
olution.

2. Background Estimation

2.1 Frame Alignment Based on 3D Reconstruction
In the proposed method, we first estimate a camera pose of each

frame and 3D geometry of the scene by applying Structure-from-
Motion [13] and Multi-View Stereo (MVS) [6] to a single image

sequence as shown in Fig. 2. The reasons why we employ 3D re-
construction for frame alignment are that (1) an omnidirectional
image can more easily and accurately reconstruct the geometry
of the whole scene than an ordinary image because an omnidirec-
tional camera can capture almost the entire field of view, and that
(2) the 3D geometry of background, not moving objects, can be
obtained by using photo consistency among frames in MVS [6].
We then generate a depth map for each frame from the recon-
structed 3D geometry. Usually the reconstructed 3D geometry
does not cover an entire frame because objects or the sky that
are sufficiently far from the camera cannot be reconstructed. For
such regions in the frame, we deem the depth values to be infin-
ity. Next, multiple frames whose camera positions are within a
certain distance threshold d from that of a target frame are ex-
tracted. The extracted frames are warped to the viewpoint of the
target frame using the depth map as shown in Fig. 3. The black
region on the ground surface in Fig. 3 (b) corresponds to that in
the bottom of Fig. 3 (a), which is the omnidirectional camera’s
blind spot. Among the warped images, the same position’s pixels
are the corresponding pixels.

Fig. 2 Reconstructed 3D geometry of target scene.

Fig. 3 Example of image warping. The 42nd frame is warped to the view-
point of the 39th frame (Fig. 1 (a)).
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2.2 Image Composition Based on Frame Selection
Using warped omnidirectional images of the extracted frames,

an appropriate frame, which is likely to be background, for each
pixel is selected by minimizing an energy function with graph
cut [2]. Given frame t as the target frame, energy function E is
defined as:

E =
∑

p∈A
E1( fp) + λ

∑

(p,q)∈B

E2( fp, fq), (1)

where fp and fq are labels for pixel p and q, respectively, repre-
senting frame indexes from which the pixel colors are copied. A

is a set of all pixels in the omnidirectional image, and B is a set of
pairs of adjacent pixels. This pixel adjacency considers that our
images are omnidirectional panoramas. λ is a weight to control
the contribution of the second term.

E1 is defined as a linear combination of two terms:

E1( fp) = L( fp) + αD( fp), (2)

where α is a weight to balance the two terms.
The first term L( fp) is based on distance between camera posi-

tions of the target frame and frame fp, and defined as:

L( fp) = 1 − k

||x fp − xt ||22 + k
, (3)

where x fp and xt are camera positions of frame fp and the tar-
get frame, respectively. The parameter k controls the influence
of the distance between camera positions. Among the warped
omnidirectional images, the resolution of texture is inversely pro-
portional to the square of distance from each object in the back-
ground to the camera. Therefore, a high resolution background
image can be obtained if we select frames that are captured from
the cameras as close to that of the target frame as possible. To the
best of our knowledge, this is the first work that incorporates the
spatial relationship among cameras into the energy function.

D( fp) is a dissimilarity measure of patches centered at pixel p

between frame fp and other warped frames, defined as:

D( fp) =

∑
g∈G fp

S S D( fp, g)

N
, (4)

where

S S D( fp, g) =
∑

p′
||I fp (p′) − Ig(p′)||22. (5)

I fp (p) and Ig(p) are the colors of pixel p in frames fp and g in
the RGB color space. The summation is calculated over pixel p′

in the patch of M × M pixels centered at p. N is a normalization
constant so that the value of D( fp) can be in [0, 1]. G fp is a set of
the frames that given by

G fp = {g|S S D( fp, g) < median
i∈Ft

S S D( fp, i)}, (6)

where Ft is a set of the extracted frames for target frame t. Func-
tion median gives the median value. Unlike pixelwise differences
used in Refs. [1], [3], [5], the patch similarity enables us to select
frames capturing the background more correctly.

Energy E2 is a smoothness term and defined as:

Fig. 4 Example of generated background image with and without Poisson
blending (45th frame).

Table 1 Parameters in experiments.

d λ M α k
10 [m] 0.025 11 [pixel] 60 10

E2( fp, fq)=μ( fp, fq)(||I fp (p)−I fq (p)||+||I fp (q)−I fq (q)||), (7)

where μ( fp, fq) gives 0 when fp = fq, otherwise 1. This term pre-
vents from frequently changing frames between adjacent pixels.

After frame selection, we obtain an omnidirectional back-
ground image by copying pixel values of the selected frames with
color adjustment by Poisson blending [10] as shown in Fig. 4.

3. Experiments

We experimentally demonstrate the effectiveness of the pro-
posed method using an image sequence with 61 frames, com-
paring the obtained background images by the proposed method
with those by conventional approaches, which use pixelwise dif-
ferences of intensities or do not consider the camera position-
based term. For the experiments, we used a PC with Windows7,
Core i7-990X 3.47 GHz CPU, and 12 GB of memory. The image
sequence was captured with Point Grey’s Ladybug3 while mov-
ing almost straight. The distance of cameras between each pair of
adjacent frames was about 1 meter, and each frame was resized to
1080 × 540 pixels. Parameters used in the experiments are sum-
marized in Table 1. We generated the background images using
the following methods:
Method A Proposed method
Method B Method using pixelwise differences rather than

patch similarity (Eq. (5))
Method C Method without the camera position-based term

(Eq. (3))
Method D Median of intensities among extracted frames

Figure 5 shows the estimated background images when the
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Fig. 5 Experiments for the 41st frame. The left images are composite images and the right images are
selected frames in (c), (d), (e), and (f).
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target frame is the 41st frame. Using the distance threshold, 19
frames (from 32nd to 50th frame) were extracted. Figure 5 (a)
shows the original 41st frame. Figure 5 (c) to (f) show the gener-
ated images and selected frames. In the following, we discuss the
experimental results.

As shown in Fig. 5 (c), the proposed method successfully re-
moved undesired regions, i.e., moving objects, specular surfaces,
and the blind spot, and the generated background regions gave
the detailed texture. On the other hand, the method using pix-
elwise differences shown in Fig. 5 (d) failed in removing some
moving objects and cast shadows. From the comparison between
Fig. 5 (c) and (d), we confirmed that the patch similarity was
more effective to remove moving objects than pixelwise differ-
ences. The method that does not consider camera position-based
term gave blurring texture as shown in Fig. 5 (e). Compared to
this method, the proposed method generated clearer edges of the
tiles on the ground surface. Also as seen in the right image of
Fig. 5 (e), a larger number of distant frames were selected than
the proposed method. This results in decreasing the resolution
of the generated background image. These results indicated that
considering the distances among camera positions was crucial for
generating background images with high resolution. In the result
given by median of pixel values among the extracted frames as
shown in Fig. 5 (f), although undesired regions were removed, the
resolution of the generated image is the lowest. In the proposed
method, it took 157 seconds for the frame selection by graph cut,
and 194 seconds for Poisson blending.

4. Conclusion

In this paper, we have proposed a background estimation
method for a single omnidirectional image sequence without
manually specifying undesired regions. In the proposed method,
we used a reconstructed 3D geometry for frame alignment, and
we newly introduced patch similarity and camera positions. The
experimental results successfully demonstrated that the patch
similarity- and camera position-based terms in our energy func-
tion were beneficial to correct background frame selection and
maintain the resolution of background images. In future work,
we need to address the misalignment of multiple frames because
the reconstructed 3D model is not always accurate.

Acknowledgments This work was partially supported by
JSPS KAKENHI Nos. 23240024 and 25540086.

References

[1] Bhat, P., Zitnick, C.L., Snavely, N., Agarwala, A., Agrawala, N.,
Cohen, M., Curless, B. and Kang, S.B.: Using Photographs to En-
hance Videos of a Static Scene, Proc. Eurographics Symp. Rendering,
pp.327–338 (2007).

[2] Boykov, Y. and Kolmogorv, V.: An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.26, No.9,
pp.1124–1137 (2004).

[3] Cohen, S.: Background Estimation as a Labeling Problem, Proc. Int.
Conf. Computer Vision, pp.1034–1041 (2005).

[4] Flores, A. and Belongie, S.: Removing Pedestrians from Google Street
View Images, Proc. Int. Workshop on Mobile Vision, pp.53–58 (2010).

[5] Granados, M., Kim, K.I., Tompkin, J., Kautz, J. and Theobalt, C.:
Background Inpainting for Videos with Dynamic Objects and a Free-
moving Camera, Proc. Europian Conf. Computer Vision, pp.682–695
(2012).

[6] Jancosek, M. and Pajdla, T.: Multi-view Reconstruction Preserving
Weakly-supported Surfaces, Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp.3121–3128 (2011).

[7] Kawai, N., Machikita, K., Sato, T. and Yokoya, N.: Video Completion
for Generating Omnidirectional Video without Invisible Areas, IPSJ
Trans. Computer Vision and Applications, Vol.2, pp.200–213 (2010).

[8] Leibe, B., Leonardis, A. and Schiele, B.: Robust Object Detection
with Interleaved Categorization and Segmentation, Int. Journal of
Computer Vision, Vol.77, No.1–3, pp.259–289 (2007).

[9] Matsushita, Y., Ge, W., Tang, X. and Shum, H.-Y.: Full-Frame Video
Stabilization with Motion Inpainting, IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol.28, No.7, pp.1150–1163 (2006).
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