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Abstract: We seek to localize a query panorama with a wide field of view given a large database of street-level geo-
tagged imagery. This is a challenging task because of significant changes in appearance due to viewpoint, season,
occluding people or newly constructed buildings. An additional key challenge is the computational and memory ef-
ficiency due to the planet-scale size of the available geotagged image databases. The contributions of this paper are
two-fold. First, we develop a compact image representation for scalable retrieval of panoramic images that represents
each panorama as an ordered set of vertical image tiles. Two panoramas are matched by efficiently searching for their
optimal horizontal alignment, while respecting the tile ordering constraint. Second, we collect a new challenging query
test dataset from Shibuya, Tokyo containing more than thousand panoramic and perspective query images with manu-
ally verified ground truth geolocation. We demonstrate significant improvements of the proposed method compared to
the standard bag-of-visual-words and VLAD baselines.

Keywords: visual place recognition, bag of visual words and VLAD image representations, panorama image local-
ization

1. Introduction

We seek to localize a query image given a large database of
street-level geotagged imagery. Solving this problem would have
significant practical applications in robotics, augmented reality
or navigation. However, this task is difficult as the appearance of
the query can be very different from the appearance depicted in
the database due to changes in viewpoint, illumination, different
season, partial occlusion by objects and people, or even struc-
tural changes in the scene such destroyed or newly constructed
buildings. In addition, with the emergence of planet scale geo-
localized image databases such as Google Street View or Bing
maps, one of the key challenges becomes the computational and
memory efficiency. What is the appropriate image representation
that is compact, efficient, yet sufficiently rich to enable accurate
visual localization?

Several successful methods [4], [6], [16], [25], [27], [33] treat
the visual localization problem as large-scale instance-level re-
trieval, where images are represented using local invariant fea-
tures [19], aggregated into an image-level representation such as
the bag-of-visual-words [5], [26] or the VLAD descriptor [13].
The image database can be further augmented by 3D point
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clouds [15], automatically reconstructed by large-scale structure
from motion (SfM) [1], [15], which enables accurate prediction
of query image camera position [18], [23].

In this work, we specifically address localization of query im-
ages with a large field of view. Having a (partial) panorama query
image is not a non-realistic situation because most cameras and
smartphones have an easy to use swing panorama function and
specialized software is also available [29], [30], [31]. Panoramic
cameras are also popular in mobile robotics [6]. Having a large
field of view query offers the additional benefit of significantly re-
ducing the ambiguity of place recognition as it captures a bigger
portion of the scene.

Yet, most recent large-scale place recognition methods focus
on localizing narrow field of view query images. Furthermore,
even though the geotagged database imagery usually contains full
panoramas, they are usually transformed into a set of overlap-
ping (perspective) cutouts and treated as a collection of unrelated
perspective views [4], [7], [16], [27]. In this work we develop a
compact yet accurate image representation specifically suited for
large scale visual localization of panoramic imagery.

Related work. An early attempt to solve panorama localization
was presented in Ref. [21]. The main contribution was the nor-
malization of panoramas removing possibly different panorama
rotations due to changing orientations of acquisition devices.
Several improvements were later added by Ref. [14] to make the
matching based on image correlation robust and efficient. The
lack of robustness to illumination changes and acquisition de-
vices, however, remained an issue due to using raw image in-
tensity values.

Recent work has developed [6] scalable methods for localiz-
ing panoramic images based on the bag-of-visual-words model
followed by geometric verification. We go beyond this work
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Fig. 1 Matching panoramic images with the circular ordering constraint.
Example query panorama and the best (correct) matching database
panorama from the Shibuya dataset. The colored horizontal bars in-
dicate the similarity scores between the best matched vertical tile
descriptors with the circular ordering constraint (red:high, blue:low).
The orange bounding boxes are the best matched image areas. Notice
that this is a very challenging image pair to localize due to occlusions
and repeated patterns.

and incorporate geometric constraints, specifically developed for
matching panoramic imagery, into the indexing stage in a com-
pact and scalable manner.

Our work is also related to the spatial pyramid representa-
tion used in category-level recognition [17] and multiple overlap-
ping VLAD descriptors [3] in retrieval, which construct an image
descriptor by concatenating blocks of a spatial image pyramid.
In contrast, our method exploits stronger geometric constraints,
available for panoramic imagery.

Contributions. First, we develop a compact image representa-
tion for scalable retrieval of panoramic images that represents
each panorama as an ordered set of vertical image tiles, where
each tile is represented by a compact visual descriptor. Two
panoramas are matched by efficiently searching for their optimal
horizontal alignment, while respecting the ordering constraint
(Fig. 1). Second, we show that this representation can be applied
to two different compact visual descriptors: the bag-of-visual-
words [22] and VLAD [13]. Third, we collect a new challenging
test query dataset from Shibuya, Tokyo containing 366 panorama
and 947 perspective images with manually verified ground truth
geolocation. Finally, we demonstrate on this data significant im-
provements in place recognition performance compared to the
standard bag-of-visual-words and VLAD baselines.

2. Tiled Image Representation

In this section we first review the bag-of-visual-words (BoVW)
representation [5], [26] commonly used for place recognition [4],
[7], [16], [27]. Then, we describe how to make the tiled
BoVW and discuss the efficiency of storage and computation.
Next, we also review the vector of locally aggregated descriptors
(VLAD) [13] which is a recent popular compact image descriptor
and describe its tiled representation. For simplicity, we assume
that the query images are 360◦ horizontal FoV panoramas but the
method is extendable for any FoV with no extra effort.

Tiled bag-of-visual-words representation. In the standard
BoVW representation the position of the visual words in the im-
age is lost. In the tiled representation, we split the panorama in
a set of vertical tiles and compute a separate histogram of visual

words in each tile.
In more detail, we denote features extracted from an image as

D = {di}N f

i=1 and X = {xi = (xi, yi)�}N f

i=1 where di is the descriptor,
xi is the keypoint position [32] and Nf is the number of features
in the image. The visual words (centroids) pre-computed on the
training data are denoted C = {ci}Nc

i=1 where Nc is the number of
visual words in the vocabulary. The image tiles are constructed as
follows. We consider vertical image tile of width τ (in degrees),
which results Nτ = 360◦/τ tiles for a 360 degree panorama. This
is implemented by assigning a tile index ti to each extracted lo-
cal feature i in the image depending on which tile the feature falls
into. We can generate the tiled BoVW for any tile width τ by only
changing the tile indices T = {ti}N f

i=1 without the need to re-extract
the features or to re-assign their descriptors to the visual words.

There are two principal ways of storing the tiled BoVW for
images in the database. First, we can store only the visual word
indices W and the keypoint positions X, and re-compute the tile
histograms on the fly. This does not require any additional disk
space since both W and X are stored for the standard BoVW
with spatial reranking [22]. This can be further sped-up by pre-
computing several sets of tile indices T for some preferred tile
widths. Second, we can explicitly pre-compute and store the
sparse histograms for all tiles in the panorama. Interestingly,
even though the number of histograms increases with the num-
ber of tiles Nτ, the total number of non-zero elements, which is
the main factor determining the memory complexity, does not in-
crease significantly in practice. This is because for large visual
vocabularies most visual words occur only once in the image and
hence are assigned typically to only one tile. Similarly, repeated
visual words (such as windows on a facade) are typically spatially
close [27] and often fall into the same tile.

Tiled VLAD representation. The tiled VLAD is constructed
similarly to the tiled BoVW. We prepare the tile indices T =

{ti}N f

i=1 for each extracted local feature. Then, the tiled VLAD
is computed by separately aggregating the quantization residual
vectors using the corresponding tile indices T . Similar to the
BoVW, the feature-to-centroid assignment and the residual vec-
tor computation are required only once for generating the tiled
VLAD at many different tile widths and circular sliding angles.
However, in contrast to the tiled BoVW, the memory footprint is
proportional to the number of tile widths because the VLAD de-
scriptor is a dense vector. To apply PCA compression, the tiled
representation has to be explicitly pre-computed at each different
tile width in the database. The optimal tile width depends on the
type of scenes and the application.

3. Matching Tiled Image Descriptors with a
Circular Ordering Constraint

In this section we describe the matching strategy for tiled rep-
resentations of BoVW and VLAD, respectively, while taking into
account the computational efficiency.

We assume the query q and database panoramas d are related
by an unknown rotation and wish to recover the best possible rota-
tion between the two. This will be achieved by trying all possible
rotations, i.e., circularly “sliding” the query panorama by differ-
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Fig. 2 Tiled representation of image descriptors and matching with the or-
dering constraint. Given tiled representation of image descriptors,
e.g., the tile width 120◦, we seek for the best match between the
query (left) and database (right) images by searching over the circu-
lar sliding angle θ in the query image.

Fig. 3 Matching with the circular ordering constraint for the tiled BoVW.
Illustration of matching between a query q and a database image d
when the tile width τ and the sliding interval α. Here τ = α = 120◦.
This is achieved by explicitly enumerating all tile orderings of the
query and taking the ordering with the highest matching score.

ent amounts (denoted as θ) as illustrated in Fig. 2 and taking the
rotation with the highest similarity.

Matching tiled BoVW. In the case of matching BoVW, finding
the best rotation θ is formulated as

argmax
θ∈(0,360◦]

⎛⎜⎜⎜⎜⎜⎜⎝
Nτ∑

i

qθ�i di

⎞⎟⎟⎟⎟⎟⎟⎠ , (1)

where qi and di are the L2-normalized BoVW vectors of the i-th
tile. Explicitly enumerating the different orientations θ considers
the matching with all the tile configurations while preserving the
ordering of the tiles. The individual per-tile dot products can be
computed efficiently using an inverted file indexing structure as
in the standard BoVW model. In addition, as the tiled-BoVW
vectors are generally much sparser than the non-tiled BoVW vec-
tors computing the per-tile matching score is also very fast. Note
that for a given rotation the panoramas are matched tile-by-tile re-
specting the coarse position of visual words within the panorama
and hence encoding some spatial information, similar to spatial
pyramids [17].

In detail, the computational overhead of matching with the cir-
cular ordering constraint is proportional to the sampling interval α
of the circular sliding angle θ. Therefore, it is necessary to find the
tile width τ and the interval α to achieve a scalable, robust and ac-
curate retrieval and localization. The naive but effective choice of
them is τ = α. Figure 3 shows an example of computing the simi-
larity scores between query and database tiled-BoVW descriptors
for τ = α = 120◦. We take the final similarity score of this pair
of images as the maximum of the scores (sθ=0◦ , sθ=120◦ , sθ=240◦ ),
where

sθ=0◦ = q�1 d1 + q�2 d2 + q�3 d3 (2)

sθ=120◦ = q�2 d1 + q�3 d2 + q�1 d3 (3)

sθ=240◦ = q�3 d1 + q�1 d2 + q�2 d3. (4)

Matching tiled VLAD. It is possible to conduct the same match-

ing process for the tiled VLAD representation. Although dot
products among PCA-compressed tiled-VLAD descriptors can be
efficiently computed using multi-core parallelization, we cannot
use the inverted indexing due to the non-sparseness of the VLAD.
Instead of computing the similarity between the descriptors by
dot products, we can compute for each orientation θ of the query
the sum of distances between individual tile descriptors

argmin
θ∈(0,360◦]

Nτ∑

i

|| qθi − di ||. (5)

Efficient matching can be achieved by using approximate nearest
neighbor search [20], [22] or product quantization [12].

4. Experiments

In this section we describe the experimental validation of our
approach on the Pittsburgh and Shibuya datasets. We first de-
scribe the experimental set-up of the two datasets and give the
implementation details. Then, we show and discuss the results.

Pittsburgh dataset. The geotagged image database is formed
by 10,586 Google Street View panoramas of the Pittsburgh area
downloaded from the Internet. As testing query images, we use
1,000 panoramas randomly selected from 8,999 panoramas of the
Google Pittsburgh Research Data Set *1 (Fig. 4 (a)). From each
panorama of 3,328×1,664 pixels, we cropped the bottom 572 pix-
els in order to remove the blending artifacts present in the street
view images. The ground truth is derived from the GPS positions
of the query images similarly to Ref. [27].

Shibuya dataset. We collected a new Shibuya dataset by down-
loading 24,701 Google Street View panoramas of the Shibuya
area in Tokyo (Fig. 4 (d)). Each panorama has a resolution of
3,328 × 1,664 pixels and is cropped in the same manner as the
Pittsburgh dataset.

As testing query images, we took wide angle view images us-
ing cameras on five different smartphones: iphone4, iphone5,
iphone5s, LG-Android, and NEC-Android. We captured a total
of 366 panoramic query images using three different applications
running on the device [29], [30], [31]. All panoramas have 360◦

horizontal FoV. To investigate the benefit of using a large FoV
images, we also took several perspective images at the same loca-
tion of each panorama image. This results in total of 947 perspec-
tive images and we randomly choose one perspective image for
each panorama location resulting in a test set of 366 perspective
views. We resized the perspective images to have the maximum
of the height/width 640 pixels to obtain roughly the same resolu-
tion as the Google Street View panoramas, assuming that FoV is
60◦. This dataset is available on request.

Implementation details. We build a visual vocabulary of
200,000 visual words by approximate k-means clustering [20],
[22] for BoVW and 256 centroids by k-means for VLAD.
For each dataset, the vocabulary is built from features de-
tected in a subset of randomly selected database panorama im-
ages. We use the SIFT descriptors with the upright image grav-
ity vector followed by the RootSIFT normalization [2]. If the

*1 Provided and copyrighted by Google.
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Fig. 4 Comparison with baselines. Locations of query (blue dots) and database (gray dots) images (a)
and (d). The fraction of correctly localized queries (Recall, y-axis) vs. the number of top N re-
trieved database images (x-axis) for the proposed methods (“tile”) compared to their corresponding
baselines (“pano”) for BoVW (b), (e) and VLAD (c), (f) representations.

query panorama followed a consistent projection model, adopt-
ing spherical SIFT [8] would have been also a reasonable choice.
We keep the standard (upright) SIFT because our query panora-
mas are generated by different types of projections.

Comparison with baseline BoVW methods. We compare
the proposed method with several baselines: the standard tf-
idf weighting (pano tf-idf) [22], burstiness weights (pano brst-
idf) [10], and a binarization (pano bin-idf) [11]. For the proposed
method, the tiled BoVW with an ordering constraint, we set the
vertical image tile width τ = 20◦ and the circular sliding interval
α = 20◦, and applied the same weighting scheme as the baselines
(tile tf-idf, tile brst-idf, and tile bin-idf).

For each method, we measure the percentage of correctly lo-
calized queries (Recall) similarly to Refs. [4], [24]. The query is
correctly localized if at least one of the top N retrieved database
images is within m meters from the ground truth position of the
query.

Figure 4 (b) shows the results of different methods on the Pitts-
burgh dataset for m = 25 meters while varying the value of N.
Figure 4 (e) shows the results on the Shibuya dataset for m = 50
meters while varying the value of N. The distance threshold m

is relaxed for the Shibuya dataset because of the typical GPS dis-
tance between the query and the corresponding database image is
larger compared to the Pittsburgh dataset where both query and
database images are captured in the middle of the street. All the
tiling representations consistently outperform their correspond-
ing baselines. Notice that the improvement at the top 1 recall is
more than 20%.

Comparison with baseline VLAD methods. Figure 4 (c) and
Fig. 4 (f) show the same experiments but for the standard VLAD
descriptor including PCA compression (VLAD PCA128, VLAD

Table 1 Memory footprint of the Pittsburgh database (MB).

tile width (degree) 360 60 20 10

tiled BoVW 466 477 481 484
tiled VLAD PCA 128 5.4 33 98 195
tiled VLAD PCA 512 22 130 390 780

PCA512) [9]. We examined even lower PCA compression rates
but did not see significant improvements in accuracy. Our tiled
VLAD with an ordering constraint (tile VLAD) gives significant
improvements compared to the baselines (pano VLAD).

Scalability. Table 1 shows the size of database represented by the
tiled BoVW and VLAD. For the BoVW, we count the memory
complexity by 8 bytes (4 bytes for index and 4 bytes for weight)
per visual word entry. For the VLAD, we count 4 bytes (single
precision) per dimension. The tiled VLAD PCA 128 at the tile
width 20◦ is compact enough to be loadable on the recent mobile
devices and yet gives good performance as shown in Fig. 4.

Impact of FoV. On the Shibuya dataset, we compare the perfor-
mance with 366 perspective query images in order to understand
the benefits of large FoV. The recall obtained by the perspective
queries using the bin-idf and VLAD PCA 512 representation is
shown (black dashed curves “prsp”) in Fig. 4 (e) and (f), respec-
tively. We can clearly see that place recognition with narrow FoV
is extremely difficult on this real challenging dataset.

Qualitative examples. Figures 5 and 6 show example matches.
Each figure shows the query image (top), the best matching
database image (middle) correctly matched by the proposed
method (tile bin-idf), and the best matching image (bottom) in-
correctly matched by the baseline method (pano bin-idf). The
colored horizontal bars indicate the similarity score between the
matched tile descriptors for the query and the best matching
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Fig. 5 Matching example of the query image captured by PhotoSynth on
the Shibuya dataset. (Top) the query image. (Middle) the best
matching database image “correct” by the proposed method (tiled
bin-idf). (Bottom) the best matching image “incorrect” by the base-
line method (pano bin-idf). See text for detailed explanation of the
colored bars.

Fig. 6 Matching example of the query image captured by Dermander on the
Shibuya dataset. See the caption of Fig. 5 for details.

database image using the circular ordering constraint. The col-
ors correspond to the Matlab “jet” color map, i.e., red indicates
high similarity and blue indicates low similarity. The similarity
scores are normalized independently for each pair of images such
that the maximal similarity is equal to one for visibility.

5. Conclusion

We have demonstrated localizing query panoramas with a large
field of view given a large database of street-level geotagged
imagery. We have shown that panoramic image representation
by vertical image tiles together with a tile ordering constraint
significantly improves place recognition performance on a real
challenging dataset. As our planet is covered by panoramic im-
ages [28] efficient visual matching to this imagery is of significant
practical importance.
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