IPSJ Transactions on Computer Vision and Applications Vol.6 53-57 (July 2014)

[DOI: 10.2197/ipsjtcva.6.53]

Express Paper

Quality-dependent Score-level Fusion of
Face, Gait, and the Height Biometrics

1,a) Lo

Yasusat MAKIHARA!'®  Da1Go MURAMATSU

YasusHr Yagr!9

TakuarRO KIMURA

Received: March 14, 2014, Accepted: April 24, 2014, Released: July 25, 2014

Abstract: This paper describes a quality-dependent score-level fusion framework of face, gait, and the height biomet-
rics from a single walking image sequence. Individual person authentication accuracies by face, gait, and the height
biometrics, are in general degraded when spatial resolution (image size) and temporal resolution (frame-rate) of the
input image sequence decrease and the degree of such accuracy degradation differs among the individual modalities.
We therefore set the optimal weights of the individual modalities based on linear logistic regression framework de-
pending on a pair of the spatial and temporal resolutions, which are called qualities in this paper. On the other hand,
it is not a realistic solution to compute and store the optimal weights for all the possible qualities in advance, and
also the optimal weights change across the qualities in a nonlinear way. We thus propose a method to estimate the
optimal weights for arbitrary qualities from a limited training pairs of the optimal weights and the qualities, based on
Gaussian process regression with a nonlinear kernel function. Experiments using a publicly available large population
gait database with 1,935 subjects under various qualities, showed that the person authentication accuracy improved by
successfully estimating the weights depending on the qualities.
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1. Introduction

Forensic technologies are essential for recent criminal inves-
tigation and also realization of a safe and secure society, since
they contribute to prompt solution of criminal cases as well as to
act as deterrents to crimes. Biometrics [10] such as DNA, finger-
print, voice, and signature, are now regarded as powerful tools to
verify a person (e.g., a perpetrator and a suspect) in the forensics
community and have been exploited for criminal investigation as
well as expert evidences in the court. In particular, due to the
exponential increase of CCTVs in the public space, the CCTV
footage-based forensics are indispensable for modern criminal in-
vestigation.

The CCTV footage provides a variety of biometric traits in-
cluding but not limited to the face[19], the gait[15], and soft
biometrics [9] (e.g., the height, shoulder width, arm length, hair
color and type, and tattoo). While these individual biometric
traits have their own advantages (e.g., identification at a distance
from a camera for gait), their accuracies are in general inferior to
those by hard biometrics such as DNA and fingerprint.

One of reasonable solutions to enhance the accuracy and relia-
bility for forensic use, is multi-modal biometrics [16]. In fact, fu-
sion of face and gait have been extensively studied in biometrics
field [4], [6], [11], [20], [21] because both the face and gait are
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often simultaneously captured by a single CCTV. Moreover, the
height information is also available as an additional soft biometric
modality when a camera calibration is done in advance [13].

Whatever the modality combination is, the most prevailing way
to fuse the multiple biometric traits is the score-level fusion, and a
key to success in the score-level fusion framework is to assign the
optimal weights to the individual scores considering accuracies
of the individual modalities. Furthermore, the optimal weights
may depend on a kind of data quality, i.e., quality measure [2],
which are utilized to improve the accuracy of multi-modal bio-
metrics [2], [14], [18].

Considering a case of the CCTV footage-based forensics (e.g.,
fusion of the face, the gait, and the height biometrics [13]), two
of the most significant quality measures are (1) the spatial reso-
lution (or image size) and (2) the temporal resolution (or frame-
rate). Since the spatial resolution (SR) of a target person highly
depends on an observation distance from the camera as well as
the CCTV footage size itself, it may considerably differ among
situations. In addition, the SR obviously makes a large impact on
the accuracies of the face trait as well as the height trait.

Moreover, the temporal resolution (TR) of the CCTV footage
may largely differ among situations (e.g., a low frame-rate due
to limitation of the communication band width and storage size,
while a high frame-rate in places on high alert). Although the TR
may make a little impact on face and height traits since they are
static features in essence, it severely affects the gait trait since it
exploits the temporal aspect.

We therefore propose a framework of quality-dependent score-
level fusion of the face, the gait, and the height biometrics, where
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the weights for face, gait, and the height traits are appropriately
set by considering the SRs and TRs as a quality. In this context,
contributions of this paper are summarized as the follows two
points.

Quality-dependent score-level fusion of face, gait, and the
height biometrics: While the previous study [13] sets fixed
weights to individual biometric traits, we set flexible weights so
as to improve the accuracy as much as possible under a given
quality. More specifically, we employ a linear logistic regres-
sion (LLR) framework [1], since the LLR provides a probabilistic
value rather than just a fused score, which is essential for forensic
use [17].

The optimal weights estimation from finite training sets: Al-
though we need to cope with a test subject observed with an ar-
bitrary quality, it is an unrealistic solution to compute and store
the optimal weights for all the possible qualities in advance. We
therefore estimate the optimal weights for such an arbitrary qual-
ity from a finite training pairs of the weights and the qualities. In
addition, because the optimal weights may change in a non-linear
way depending on the qualities, we introduce a Gaussian process
regression (GPR) with a non-linear kernel function as a weight
estimator.

2. Matching of Individual Modalities

In this section, we explain how to calculate the dissimilarity
scores of individual face, gait, and height biometrics from an orig-
inal image and silhouette as shown in Fig.1 (see [13] for more
details).

In this paper, we refer face to a peripheral region of face includ-
ing hair and face contour parts in addition to face region itself,
namely, a head region (see Fig.2). We calculate a face dissimi-

(a) Original image

(b) Silhouette

Fig. 1 An original walking image and an extracted silhouette. The av-
erage size of the silhouette region over subjects is approximately
90 x 180 pixels.

1 0

(a) 640 x 480  (b)320 x240  (c) 160 x 120 (d) 80 x 60

Fig. 2 Examples of face templates for various sizes [pixels] of original im-
ages. As areference, the sizes [pixels] of face regions of this specific
subject is 27 X 21, 14 x 12, 6 x 6, and 3 x 2 for (a)—(d), respectively.

(a) 30, 640x480  (b) 30, 80x60 (c) 3, 640x480 (d) 3, 80x60

Fig. 3 Examples of GEIs (denoted as a pair of frame-rate [fps], the original
image size [pixels]).
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larity score Sf4c. as a cosine distance between a gallery template
face image and a probe face image after face alignment by tem-
plate matching.

As for the gait, we first construct a size-normalized silhouette
sequence with 88 x 128 pixel-size and then average them over one
gait period to compute gait energy image (GEI) [5] (see Fig. 3).
We calculate a gait dissimilarity score sy, as the Euclidean dis-
tance between probe and gallery GEIs.

We compute the apparent height of the subject based on the
bounding box of the silhouette. Since we assume that a camera is
calibrated and that the ground plane constraint on the bottom of
the foot is available, we convert the height in the image coordinate
into that in the world coordinate, namely, the actual height. We
then compute the height dissimilarity score sje;gn as an absolute
difference between the gallery and probe heights.

3. Proposed Method

3.1 Quality-dependent Score-level Fusion Framework
‘We first normalize the dissimilarity scores to eliminate the sub-
ject dependency before fusion. Let s,(i, j)) be a dissimilarity
score of modality m € {face, gait, height} between the i-th probe
and the j-th gallery, and let §,,(7, j) be the associated normalized
score. We compute the normalized score 5,,(i, j) as
Sm(is J) = (D)

Sm(is J) = T (D

where u,,,(7) and o,(i) is the mean and the standard deviation as-
sociated with the i-th probe and the modality m, respectively, and
they are calculated using the i-th probe and available independent
training data.

We then calculate a posterior probability of an event that the
two gait image sequences originate from the same subject (the
event is denoted as X = 1, while the complementary event,
i.e., originating from different subjects, is denoted as X = 0)
conditional on a set of the normalized dissimilarity scores § =
[S taces Sgaits E/w,-gh,]T. Note that this kind of probabilistic score
is meaningful for the purpose of forensics and expert evidence
in the court, unlike a non-probabilistic score such as a sum of
scores [12].

Moreover, because the SR ¢gs and TR g7 impact the scores and
their discrimination capabilities, the quality ¢ = [¢s, gr]” should
be taken into account for the posterior calculation. We therefore
consider the quality-dependent posterior probability P(X = 1[5; q)
and compute it by the LLR framework [1], where a logit function
of the posterior is approximated by a weighted sum of the dissim-
ilarity scores as

log( P(X = 1[5;9) ) _

1-P(X=1fs;9) Z U (@) Stac(q), )

me( face,
gait,height}

where «,,(q) is the weight for the modality m, and @.(q) is a con-
stant. These LLR weights @fuce, Qgaits Qheighi» and a. are opti-
mized using a training set of the dissimilarity scores s and the
labels X € {0, 1}, depending on the quality ¢ of the given gait
image sequences.
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3.2 Weight Estimation

As also described in Section 1, it is an unrealistic solution
to compute and store the optimal weights for all the possible
qualities in advance. We therefore estimate the optimal weight
a, with a quality ¢, given in a test case, and also with a fi-
nite training set D = [Q,@]”, which are N pairs of the quali-
ties O = {g;}(i = 1,...,N) and the weights @ = [a,...,ay]"
which is a set using a training set of the dissimilarity scores as-
sociated with the training quality Q. Since we independently es-
timate the weights for individual modalities and constant term,
we omit the subscripts for the modalities and constant instead of
adding a training sample index i as a subscript for the weight «;.

In addition, since it is known that the accuracies of individual
modalities vary in a non-linear way (e.g., the accuracy of face bio-
metrics rapidly drops as the SR is less than a certain value, while
that of gait biometrics does so as the TR is less than a certain
value), the weights should be represented as a non-linear function
of the qualities. We therefore introduce GPR with a non-linear
kernel function as a weight estimator. More specifically, we esti-
mate the weight a. as a posterior distribution given a quality g.
and the training set D, i.e., P(a.|q., D).

Assuming that a regression parameter is drawn from a Gaus-
sian distribution and that each training weight «; is drawn from
each Gaussian distribution N/ (a/,-;y,-,oﬁi), where y; and o'il. are
an expectation and a variance (i.e., observation noise level)
of the weight a;, it is well known that the posterior distri-
bution P(a.lq.,D) is also derived as a Gaussian distribution
N(a.; ., 02) [3].

For this derivation, we first introduce a radial basis function
(RBF) kernel k(g;, g ;; 6) which indicates an affinity between two
qualities ¢; and g as

3)

2r2

lgi — q;lI*
k(gi.q;;0) = veXp(——’ ,

where 0 = [v,7]” is a parameter vector for the RBF kernel. Note
that this is originally defined as an inner product in a higher-
dimensional space mapped from the quality via a kernel trick.
Considering a linear regression of the weight from the quality
mapped in the higher-dimensional space, the posterior distribu-
tion N(a.; pt., o2) is derived as Ref. [3]

w, = kNK+32) e 4)
o7 = k(g..q.;0) -k (K +X) 'k, + 02 Q)

0%

where K is an N X N square matrix whose (i, j) component
is k(gi,q;; ), k. is an N-dimensional vector whose i-th row is
k(gi,q+;0), X is an N X N diagonal matrix whose (7, /) component
is 0'1.2, and 0'3’* is an observation noise level for the test weight.

We finally adopt the expectation u as the weight a, for the
given quality q., which is represented as a weighted sum of the
training weights @, considering the affinity k. between the quality
a. and the training qualities Q calculated via the RBF kernel as
well as the affinity K within the training qualities Q and training
weight variance X.

© 2014 Information Processing Society of Japan

Table 1 The combinations of SRs [pixels] and TRs [fps].

Data set SR TR
Trainin 640 x 480, 320 x 240, 160 x 120, | 30, 15, 7.5,
g 106 x 80, 80 x 60, 53 x 40 53,1
Test 480 x 360, 213 x 160, 10, 6,
128 X 96, 91 x 68, 64 x 48 3.75,2

4. Experiment

4.1 Setup

As a data set used in our experiments, we drew 1,935 sub-
jects from the OU-ISIR Gait Database, the large population data
set[8], and picked up two walking image sequences per sub-
ject observed from a 85-deg view (approximately side view) as
a gallery and a probe, which were originally captured with the
image size of 640 x 480 pixels at 30 fps.

We randomly divided the 1,935 subjects into disjoint training
and test sets, and then trained the weights by LLR with the train-
ing set. We repeated this two-fold cross validation 100 times so
as to reduce the influence of the random divisions, and used the
expectation and variance of the weights over the 100-time trials
for GPR.

Moreover, we downsampled the walking image sequences with
respect to both the SR and the TR (see Figs. 2 and 3 for examples
of downsampled face templates and GEIs), and defined training
and test sets of the qualities (combinations of SRs and TRs) used
for GPR as listed in Table 1. We set the quality value used in
GPR as a log of the ratio of the downsampled SR or TR to the
original one (e.g., gs = log(0.5) for a half-sized image) and also
experimentally set the RBF kernel parameters as » = 0.2 and
v=1.

We compared the proposed quality-dependent LLR whose pa-
rameters are estimated by GPR (denoted as LLR (GPR)) with
three benchmarks: (1) sum-rule [12] (denoted as Sum), (2) LLR
with fixed parameters regardless of the quality [13] (denoted as
LLR (Fixed)), and (3) quality-dependent LLR whose parameters
are trained using the same quality of the test set, namely, using a
sort of ground truth (GT) data (denoted as LLR (GT)). Note that
LLR (GT) is actually unavailable under situations of the finite
training sets.

4.2 Results

We evaluate the accuracy in a verification scenario (one-to-
one matching) with a receiver operating characteristics (ROC)
curve which indicates a tradeoff between the false acceptance rate
(FAR) of different subjects and the false rejection rate (FRR) of
the same subject. We show the ROC curves for combinations of
typical high and low SRs and TRs as shown in Fig. 4. As a result,
while all the benchmarks are comparative for a high SR and a
high TR setting (Fig. 4 (a)), it turns out that the proposed method
clearly outperforms Sum and LLR (Fixed) and that it is compar-
ative to LLR (GT) when either the SR or TR, or both of them are
low (Fig. 4 (b)—(d)).

In addition, we summarize equal error rates (EERs) of FARs
and FRRs as shown in Table 2, and also analyze the EER transi-
tion along with either SR or TR as shown in Fig. 5. Consequently,
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Table 2 EERs [%] for the combinations of SRs [pixels] and TRs [fps] of test data. Bold indicate the best
accuracy among Sum, LLR (Fixed), and LLR (GPR).

Fusion | SR 480 x 360 213 x 160 128 x 96 91 x 68 64 x 48
rule TR | 10 6 3.75 2 10 6 375 2 10 6 375 2 10 6 375 2 10 6 375 2
Sum 09 25 86 171 |12 34 97 19028 62 140 23652 93 189 29383 138 240 335
LLR (Fixed) | 1.0 23 83 169 |13 3.7 100 194 |37 7.7 154 253|677 115 213 31.8|9.7 153 257 356
LLR(GPR) | 1.0 22 61 83 |13 34 87 122|23 49 127 180 |34 6.8 159 232 |46 10.7 215 30.6
LLR (GT) 1.0 22 57 81 |1.1 34 84 11819 49 125 17333 6.8 157 219|44 107 213 287
0.0 0.20 10 %
Sum Sum 9 ITE(F' " Sum
—LLR Fixed) | |1 v | LLR (Fixed) e :LLR Gl;; 3 . :LLR (Fixed)
0.04 —LLR (GPR) 0.15 —LIR (GPR) ; - LLR EGT) ) 30 HJE (81;1)0
—LLR (GT) .
0.03 g 6 o
& &o.10 & S g2 | TN e
m0.0Z = = 515 -
3 10
0.05 2
0.01 5
1
0 0 0 -3 =3 =3 0 % - o = (=3
0.00 0.00 3 X 2 4 3 3 X &” 2 X
000 001 002 003 004 005 0.00 0.05 0.10 0.15 0.20 3 = % x = 3 = % X S
FAR FAR - a 2 = ] %
(a) (b) Spatial Resolution [pixels] Spatial Resolution [pixels]
0.5 — 08 E‘fﬁ et N (a) 10 fps N (b) 2 fps
—~LLR (Fixed 07 \» | 1Xe
—IRG | LR Gh o o || S e
~—LLR (GT) : 14 —LLR (GPR) 0 —LLR (GPR)
03 0.5 12 —-LLR (GT) ---LLR (GT)
= \ —25
§ o4 £10 s
To2 = =i g2
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Fig.4 ROC curves on the SRs (left: 480 x 360 pixels, right: 64 x 48 pixels)
and the TRs (top: 10 fps, bottom: 2 fps) of test data.

although EERs get worse as either SR or TR decrease for all the
methods, the proposed LLR (GPR) successfully mitigates such
accuracy degradations since it appropriately sets the weights of
individual modalities depending on the quality, namely, the SR
and TR. As a result, we can see that the proposed LLR (GPR)
achieves the best EER for almost all the combinations of SR and
TR.

5. Discussion

Other approaches to score-level fusion: In addition to LLR
used in this paper, several approaches to score-level fusion such
as support vector machine (SVM), kernel density estimation
(KDE), and minimum-rule could be exploited in multi-modal bio-
metrics. These approaches were evaluated in score-level fusion of
face, gait, and the height biometrics and it is reported that some of
them are comparable to LLR in Ref.[13]*'. However, note that
some of the approaches such as SVM, sum-rule, and minimum-
rule just return a score, while LLR returns a posterior probability
of the same subject, which is quite important for the purpose of
criminal investigation and forensics.

The required number of SRs and TRs of training data: Al-
though we used the fixed number of SRs and TRs as training data
to estimate the weights, it is naturally expected that the weight

*I' " As areference, EERs by SVM for the typical high and low combinations
of SRs [pixels] and TRs [fps] of training data are shown in the supple-

mentary material.
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3.75 6 3.75 6
Temporal Resolution [fps] Temporal Resolution [fps]

(c) 480x360 pixels

Fig. 5 EER transition along with the SRs under fixed TRs (top) and with
the TRs under fixed SRs (bottom).

(d) 64x48 pixels

estimation accuracy changes as the number of SRs and TRs of
training data changes (e.g., the accuracy would get worse if we
decrease the number of SRs and TRs of training data, and vice
versa). We therefore plan to confirm how many combinations of
SRs and TRs are necessary for a reasonable weight estimation
accuracy through experiments of sensitivity analysis in future re-
search.

Effect of quality errors: Although we assume that SRs and TRs
as qualities are accurately given in advance based on the camera
specification (e.g., image size and frame-rate) and the depth to the
target subject, quality errors may be induced by several factors:
camera calibration errors, bounding box errors, and frame-rate
fluctuations with network cameras. We therefore need to evalu-
ate the sensitivity of such quality errors on the accuracies of the
multi-modal biometrics in future research.

6. Conclusion

This paper described a quality-dependent score-level fusion
framework of face, gait, and the height biometrics from a sin-
gle walking image sequence. We considered the SR and TR as
a quality and set the optimal weights of the individual modalities
based on the LLR framework depending on the qualities. We also
estimated the optimal weights for a given test quality from a finite
training pairs of the optimal weights and the qualities with a GPR
framework. Experiments using a publicly available large popula-
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tion gait database showed that the proposed method outperformed
the other benchmarks in verification scenarios.

Since we evaluated the proposed method with the database cap-
tured under a relatively controlled indoor environment, a future
avenue of research involves rigorous experimental validation with
more realistic data sets (e.g., CCTV footage in outdoor). In addi-
tion, it is also important to analyze sensitivities of the number of
SRs and TRs of training data as well as the quality errors on the
accuracies of the proposed multi-modal biometrics.

Another future avenue is the implementation of CCTV
footage-based person verification system for criminal investiga-
tors [7] including the proposed quality-dependent multi-modal
biometrics so as to yield practical applications.
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