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Abstract: We focus on the automatic transportation estimation task, which automatically estimates transportation
modes given GPS trajectories of a user. Previous works have used supervised learning frameworks to estimate trans-
portation modes and have reported that it achieves certain performances. However, the main drawback of supervised
learning is the requirement of a significant amount of labeled data. Active learning is an effective solution to this
problem. Although many studies have developed a wide variety of active learning algorithms, it has previously been
unclear as to whether active learning works well for the automatic transportation mode estimation task. In addition, no
previous work reveals which aspects are useful for selecting better instances in terms of model improvement for this
task. We propose a novel aspect, geographical orientation, to develop a semi-stream-based active learning method. Our
method takes into account geographical distance and density separately from the information based solely on feature
space.

1. Introduction
Due to the rapid increase of GPS-embedded equipment such as

smartphones and tablets, mining a user’s context from his/her raw
GPS trajectories is an important task in recording a user’s lifelog
(e.g., Moves*1). Moves is a smartphone application which auto-
matically estimates a user’s stay area and transportation modes
from his/her raw GPS trajectories. Automatic assignment of stay
areas and/or transportation modes to a user’s raw GPS trajectories
can be regarded as assigning semantic labels to raw information.
That semantic information is valuable in terms of not only lifelog,
but also additional information for personalized applications.

We show the automatic transportation mode assignment task
in Figure 1. Automatic transportation mode assignment can be
divided into two tasks [1][2]: (1) GPS trajectory segmentation,
and (2) automatic transportation mode estimation. GPS trajec-
tory segmentation is the task of splitting raw GPS trajectories into
multiple segments. Automatic transportation mode estimation is
the task of estimating the transportation modes of given segments.

Supervised learning is used to build a multi-class classifier to
estimate the transportation modes for the task. Zheng et al. [1][2]
conducted experiments on real users’ datasets and reported that
supervised learning achieves a constant accuracy on transporta-
tion mode inference. We deemed the performance of the GPS
trajectory segmentation method presented by Zheng et al. [1][2]
to be sufficient for our purposes. Thus, in this paper, we focus on
the automatic transportation mode estimation task.

The main drawback of the supervised learning approach is the
necessity for a significant amount of labeled data. Preparing
enough annotations is difficult due to the high annotation cost.

1 University of Alberta
2 NTT Service Evolution Laboratories, NTT Corporation
*1 https://play.google.com/store/apps/details?id=com.
protogeo.moves

Fig. 1 The automatic transportation mode assignment task we tackle in this
paper.

This fact keeps the supervised machine learning approach from
achieving a constant performance. If we are able to select appro-
priate instances to be annotated, the classifier built with sophis-
ticated training data will achieve a higher performance than the
classifier built with randomly selected training data.

This situation leads us to active learning. Active learning is
an important strategy in the case where supervised learning algo-
rithms perform well, but there are not enough labeled data avail-
able. Fundamentally, the core goal of active learning is to itera-
tively select the instance that will improve the current model the
most when the instance is annotated by human assessors (often
called oracles). Every time a new instance is labeled by the ora-
cle, it will be inserted into the training dataset, which the active
learning classifier will then be retrained on.

Although semi-supervised learning is an alternative solution to
a lack of labeled data, we focus on the active learning approach in
this paper for following two reasons: (1) Adding labeled data is
necessary when the size of the initial training data is very small.
(2) Active learning can be combined with semi-supervised learn-
ing. Thus, we assume that applying semi-supervised learning is
out of the scope of this paper.

The different approaches to active learning vary in terms of in-
stance selection methods. One basic strategy is the uncertainty
sampling approach, which selects the target instance based on
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the uncertainty score of the instances calculated by the current
model. Density-weighted methods [3] are more sophisticated and
incorporate density information of the instance with other basic
information (e.g., uncertainty score). One representative density-
weighted method is the information density algorithm [4]. The
information density algorithm calculates the density score of an
instance by taking the average similarity between the instance
and other instances, as calculated by some similarity function.
This algorithm can avoid choosing outlier instances in the feature
space because outlier instances have low scores in terms of den-
sity. While these algorithms performed nearly adequately in other
tasks, even the slightest of improvements in accuracy would have
a strong impact on our task. This is especially true during the
initial iterations of active learning because the cost of annotation
in our task is very high.

We consider the idea that the geographical orientations of in-
stances have essential information that can improve inference
models in geo-spatial tasks such as the transportation mode as-
signment task tackled in this paper. Intuitively, instances in areas
that have not yet been explored by the training data will have
much information for improving the current model. On the other
hand, instances which are near other instances that are already
in the training set will potentially contain redundant information.
This leads us to propose two novel aspects for active learning: ge-
ographical uniqueness and geographical representativeness. In
this paper, we use geographical orientation as an inclusive term
for the combination of these two concepts.

The geographical orientation algorithm consists of three parts:
(1) base information, (2) geographical distance information, and
(3) geographical density information. Conventional pool-based
or stream based sampling algorithms such as density-weighted
methods can be used to obtain the (1) base information. Our
method uses distance/density information in geographical space
instead of feature space. The novelty of our method is using geo-
graphical space separately from feature space to calculate selec-
tion scores for instances in the pool.

Through the experiments, we verify the effectiveness of our
method, and thus confirm that our method captures the intuitive
aspects of the task. We use our method to train a classifier for
determining the transportation modes of GPS trajectories. A pre-
viously existing baseline method is then trained in the same way.
Through comparison of the performances achieved, we conclude
that our method has substantial benefits. We also conduct an ex-
periment comparing different options for parameter selection of
the method, from which we determine that our method is very
flexible in terms of function selection.

Our contributions in this paper include:
• The development of a novel active learning algorithm that in-

corporates geographical orientation separately from feature
space density information.

• The confirmation that geographical orientation aspects are
effective indicators of useful instances to label in terms of
accuracy for an active learning framework in the transporta-
tion mode assignment task.

The rest of the paper is organized as follows: We present the
system overview and proposed method in Section 2. We report
on the experiments conducted and discuss their results in Section

Fig. 2 System overview

3, and review related work in Section 4. Finally, we conclude the
paper in Section 5.

2. Automatic Transportation Mode Assign-
ment

2.1 System overview
An overview of the system is drawn in Figure 2. The system

consists of three parts: (1) training phase, (2) prediction phase,
and (3) model maintenance phase. Each phase is described be-
low.
Training phase. Given GPS trajectories and (partial) transporta-
tion mode annotations of the GPS trajectories as input, the sys-
tem splits the GPS trajectories into segments. In this step, ei-
ther splitting by a constant time range or splitting with a change-
point based algorithm [1][2] are valid procedures for segmenta-
tion. Note that we do not assume any specific algorithm for the
segmentation method. Next, the system extracts features for each
segment. After feature extraction, we can regard each segment
as a separate instance. We then annotate segments with their re-
spective transportation modes in order to create labeled instances.
The segments that are not assigned labels are stored as unlabeled
data. Those unlabeled data will be used in the model mainte-
nance phase for applying active learning. Finally, the system uses
a supervised learning algorithm to build a multi-class classifier.
Prediction phase. In the prediction phase, raw GPS trajectory in-
puts are split into segments, and then their features are extracted
in the same manner as in the training phase. After that, the clas-
sifier predicts the transportation mode for each segment.
Model Maintenance phase. In model maintenance phase, the
system selects an instance to be annotated. The instance is chosen
via active learning from candidates in the unlabeled data created
in the training phase. The selected instance is displayed to an ora-
cle to be annotated. Then, the annotated instance is removed from
the unlabeled data set and added to labeled data set. The current
classifier is then retrained using the updated labeled data. This
step is repeated until some stopping condition is met (such as a
certain percentage of the unlabeled instances becoming labeled).

The instance selection module is the target of this paper, as well
as focus of our contribution. Although, in reality, a user can only
annotate his/her own GPS trajectories, we assume that the ora-
cle can annotate any unlabeled data instance in this paper. This
problem is out of the scope of the paper.
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2.2 Active Learning for Model Maintenance
In a real life scenario for automatic transportation mode esti-

mation, an oracle would label GPS trajectories from their trajec-
tory history. However, a user is likely to only accurately remem-
ber the trajectories from their recent history, so the system would
only ask for the label of a trajectory if it is contained within a
small pool of most recent trajectories. In this paper, we define
the semi-streamed sampling scenario, which assumes that a small
set of labeled data and small pool (i.e., unlabeled data) are avail-
able. The number of points in each subset given is the pool-size-
per-iteration. In the semi-streamed-based sampling scenario, the
general task of active learning algorithms is summarized as: cal-
culating a selection score for each instance in each of the pools.
Because the semi-streamed sampling scenario involves selecting
points from a pool, all pool-based sampling methods can be ap-
plied to it. We deemed this to be a more accurate representation
of reality than an entirely pool-based scenario, while still having
the properties of, and adhering, to the framework of a pool-based
approach. Selecting from only a small subset of points simulates
the algorithm asking the user to label a point from their recent
history.

Different sampling methods differ in the definition of un-
certainty measure. Density-weighted methods incorporate den-
sity information to calculate the selection score. The density-
weighted methods are usually used together with other sampling
methods. We describe a density-weighted algorithm called the
information density algorithm and then present our proposed al-
gorithm.
2.2.1 Information Density Algorithm

Density weighted methods [3][4] are pool-based sampling
frameworks which take into account the concept of representa-
tiveness. Representativeness is a measure of how well an unla-
beled instance helps describe other instances in the dataset. For
example, an instance that is densely surrounded by other data
would have high representativeness, as these other instances can
be accurately described by it. An instance in a sparsely populated
area, on the other hand, would have low representativeness, as la-
beling this data point would tell us little about the other instances
in the pool.

One popular density weighted algorithm is the information
density algorithm, which can be generally written as:

x∗ = argmax
x
ϕIn f o(x) × ϕDensity(x)β.

Here, ϕIn f o(x) represents the informativeness of x according
to some base strategy (e.g., uncertain sampling, query-by-
committee etc.). We refer to ϕIn f o(x) as the informativeness func-
tion in this paper. ϕDensity(x) is a function that returns the repre-
sentativeness of x according to the density information. We refer
to ϕDensity(x) as the representativeness function in this paper:

ϕDensity(x) =

 1
U

U∑
u=1

sim(x, x(u))

 ,
where U is the number of training samples in x. β is a tuning pa-
rameter for balancing ϕBase(x) and ϕDensity(x). Settles and Craven
[4] use cosine similarity as the representativeness function:

simcos(u, v) =
⟨u, v⟩

∥ u ∥2∥ v ∥2
, (1)

where ⟨·, ·⟩ denotes the inner product.

2.3 Geographical Orientation Algorithm
We propose the geographical orientation algorithm in this pa-

per. We consider the idea that the geographical information of
an instance contains some information useful for improving the
model. Intuitively, GPS trajectory data in areas that have not
been explored by the training data have less redundant informa-
tion than data points close to instances currently in the training
set. This is the concept of geographical uniqueness, which can
be expanded upon when we consider that there is another aspect
for choosing instances: especially in geo-spatial tasks. For exam-
ple, when the training data contains no labeled data in certain ar-
eas (we refer to these as sparse areas), the instances in the sparse
area should improve the current model more than instances which
are not in the sparse area. We combine these intuitions into one
method.

Our method is based on the assumption that a unique instance
in the geographical space has essential information in terms of
model improvement. We note that the application of informa-
tion density algorithms with geographical features (e.g., longi-
tude, latitude) cannot capture these characteristics because infor-
mation density algorithms assign high scores on agglomerated in-
stances in the feature space. Geographical features contain infor-
mation which is significantly different from the rest of the feature
set, and so we want to treat them differently, and train them sep-
arately. Thus, we separately calculate the geographical unique-
ness score with the geographical distance function, which assigns
scores on unlabeled instances based on the geographical distance
from labeled data.

We draw this intuition in Figure 3. In this figure, we sep-
arately prepare the feature space (below) and the geographical
space (above). When instances represent some geographical po-
sitions (e.g., longitude and latitude values of the starting point of a
segment), we can deploy the instances in the geographical space.
There are three unlabeled instances around the top left area in the
feature space. Those instances have very high selection scores if
we use the information density algorithm because they are near
the separating hyperplane (i.e., a high informativeness score) and
they are aggregated (i.e., a high representativeness score). When
switching the viewpoint to the geographical space, we find that
those instances are surrounded by the labeled instances. This
means that those instances have low geographical uniqueness in
this situation. On the other hand, the instances around the bottom
right in the feature space are located in separate areas in the geo-
graphical space. The instance has high informativeness and rep-
resentativeness scores, and high geographical uniqueness score
simultaneously. In this example, our method selects this instance
as a query for the oracle in the model maintenance phase.

Geographical uniqueness differs from information density. The
information density algorithm assumes that instances in high-
density areas have more information. Instead, geographical
uniqueness captures the intuition that data in rare areas have more
information.

We call this approach the geographical orientation algorithm
in this paper. The geographical orientation algorithm consists of
three factors: (1) base factor, (2) geographical distance factor, and
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Fig. 3 Intuitive description of our method.

(3) geographical density factor.
The geographical orientation algorithm can be written as fol-

lows:

x∗ = argmax
x
ϕBase(x) × ϕGeoDist(x)γ × ϕGeoDens(x)δ.

Here, ϕBase(x) is the function for calculating the base factor. The
base factor should return a measure of the points estimated “use-
fulness”, where a high value corresponds to a more useful in-
stance. It should be calculated in a given feature set, and con-
ventional methods including the information density algorithm
can be applied. For example, a function that returns a high value
for points which have a low classification certainty can be used
in order to combine geographical orientation with least confident
sampling. As for new factors, ϕGeoDist(x) and ϕGeoDens(x) capture
the geographical orientation in unlabeled data.
Geographical distance factor. The geographical distance factor
represents the geographical uniqueness directly. The factor takes
a higher score if the instance is not surrounded by other instances
in the training data. We note that our method does not define the
calculation method of ϕGeoDist(x). Several functions can be used
as ϕGeoDist(x). In this paper, we use the minimum distance from
the training data as the geographical distance factor:

ϕGeoDist(x) = min
x∈D
∥ x(i) − x ∥2,

where D denotes the set of instances in the training data, and x(i)

denotes the i-th candidate instance in the instance selection step,
with only features latitude and longitude.
Geographical density factor. The geographical density factor
works for avoiding selecting outliers in the geographical space as
annotations. This factor can be regarded as the density calculation
part of the information density algorithm. We note that the geo-
graphical density factor differs from the information density al-
gorithm because the geographical density factor uses the density
information in the geographical space separately from the feature
space. The calculation is, however, done in a similar manner to
that of the geographical density factor:

ϕGeoDens(x) =

 1
U

U∑
u=1

geosim(x, x(u))

 ,

where U is the number of training samples in x. Note here
that the geographical orientation algorithm does not define a
specific geosim function; one of many possible functions can
be used, such as cosine similarity Eq. (1), Euclidean distance
geosimEuc(u, v) =∥ u−v ∥2, or Gaussian similarity geosimG(u, v) =
exp
(
∥ u − v ∥22 /σ2

)
, where σ represents the variance in the Gaus-

sian distribution.

3. Evaluation
We conducted the experiments with a real-world dataset for

the automatic transportation mode assignment task to verify the
effectiveness of out method.

3.1 Dataset
In this paper, we used the GeoLife dataset*2, which contains

182 users’ GPS trajectories with partial transportation annota-
tions. Each user has his/her track point recorded every 1-3 sec-
ond(s), which consists of longitude, latitude, and a timestamp.
Some users annotate their GPS trajectories with their transporta-
tion modes (e.g., walk, car, bus etc.). In this experiment, we only
consider seven transportation modes out of the eleven given trans-
portation modes (walk, bike, bus, car, taxi, subway, train) because
the number of labeled instances of the other transportation modes
is too small to be accurately evaluated. The majority of the points
also lie between the latitudes [5.49, 54.68], and the longitudes
[89.44, 140.29]. For the simplicity of our calculations, we opted
to ignore any data points that lied outside of this range. We also
consider that the annotation set of a user who makes few annota-
tions has annotation bias. That is, if a person who usually drives a
car to work assigns the car label only a few times, the annotation
result does not reflect the real user activity. We assume that if a
user assigns many labels to their dataset, this is indicative of their
dataset being accurately annotated. Thus, we remove the data
of users who have a small number of annotations: specifically
less than ten annotations. From this reduced dataset, we parsed
the GPS points into trajectories using the methods described in
Zheng et al. [1]. As a result, we have the dataset of 54 users,
and 45,668 data instances. We calculate the features described
in [1] (segment distance, maximum/average velocity, maximum
acceleration, heading change rate, stop rate, etc.) for each of the
segments*3.
Evaluation Measure. We used accuracy learning curves as the
performance evaluation metric. To globally compare different
methods, we also used a deficiency metric [5] that has been widely
used in active learning studies [6][7]. A deficiency metric shows
the overall performance of an active learning method by return-
ing a numerical value corresponding to the performance over all
active learning iterations. The value given is equal to the ratio
between the areas above the two learning curves being compared.
Thus, this measure is always non-negative and a lower value im-
plies that the learner preforms better compared to the algorithm
it is being compared to, and vice versa. A value of 1 implies that
the two methods preform equally as well. In these experiments,
we show the deficiency scores for multiple steps of the algorithm,

*2 http://research.microsoft.com/en-us/downloads/
b16d359d-d164-469e-9fd4-daa38f2b2e13/

*3 We used the same threshold values used by [2] to calculate heading
change rate, stop rate, and velocity change rate
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corresponding to different training set sizes.
Because each segment consists of multiple labeled GPS points,

deciding the true label of each segment, as well as deciding ex-
actly how to measure accuracy, can be difficult. In our experi-
ments, the label that each segment consists of the most is what
we assign to the ground truth for each segment. For example, if
90% of the points in a segment are labeled as “walk”, and 10% are
labeled as “bike”, we would assign “walk” to be the ground truth
of the segment. Any segments whose most common mode takes
up less than 75% of the segment are ignored. Different methods
for measuring accuracy are also available. In our experiments, we
weigh each segment based on its distance feature [2].

Acc =

∑m
j=1 CorrectSegment[ j].Distance∑N

i=1 Segment[i].Distance
,

where N is the total number of segments, and m is the number of
correctly predicted segments.

3.2 Experiment 1: Comparison of Distance Functions
We compared three different functions for geosim(): (1) cosine

similarity, (2) Euclidean distance, and (3) Gaussian similarity.
Settings. As a classifier for this experiment, we used a Decision
Tree classifier, which was determined to be the best performing
classifier in Zheng et al. [1][2] . We used the scikit-learn library*4

for the implementation of the Decision Tree classifier. As input,
each parsed GPS segment is treated as an instance, using the fea-
tures described in section 3.1. 80% of the data is used as training
data, and the remaining 20% is used as test data. The trajectories
are sorted such that segments of a given user will only appear in
either the training data or test data in order to avoid bias towards
any of the users. Cross validation is performed on the data in 5
iterations: a different 20% of the data is used every time, and the
final result is taken as the average of the passes. We repeat this 5-
fold cross-validation process 5 times with different random seeds,
resulting in total of 25 iterations.

We used a pool-size-per-iteration of 50. We used a Decision
Tree as the base classifier. The function for calculating the base
factor of the geographical orientation algorithm was an informa-
tion density algorithm with least confidence sampling as a base.
For β, γ, δ, a value of 1 was selected for each. For Gaussian simi-
larity, σ was set to 1.
Results. We show the results in Figure 4. The x-axis represents
the number of training data that have been selected and labeled
by active learning. The curves shown represent the average of
the 5-fold cross-validation iterations, and the error bars represent
on standard deviation on either side. The graph shows that the
results of using different similarity functions are more or less the
same. This implies flexibility of the algorithm: the results will
not change much for the system if any of the above methods are
used.

3.3 Experiment 2: Comparison of Active Learning Methods
We conducted an experiment to compare the different active

learning methods. We prepared the information density algorithm
(ID) as a baseline method. We also prepared the geographical dis-
tance algorithm (GDI), geographical density algorithm (GDE),

*4 v.0.14 http://scikit-learn.org/
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Fig. 4 Results of the distance functions from Experiment 1.
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Fig. 5 Training accuracies from Experiment 2.

and geographical orientation algorithm (GO) as proposed meth-
ods.
Settings. We used a Euclidean similarity function as geosim()
for GDI and GO. The values of β, γ, δ were decided using a grid
search cross validation on the values {0.2, 0.4, . . . , 2.0} for each of
the parameters. In GOA, the selected values of β, γ, δ were 1.6, 2,
and 1 respectively. In information density, the selected value of β
was 1.6 to match GOA. All other relevant settings were set to be
the same as those in Experiment 1.
Results. We show the results in Figure 5. The x-axis represents
the number of training data in the training set, as selected by ac-
tive learning. We show the accuracy of the GO in comparison
with the results from using only GDI or GDE. It is clear that GO
outperforms the performance of either GDI or GDE individually.
As is shown in the graph, GO is also competitive with ID. The
algorithm appears to have similar performances in some areas,
though there is a significant difference during the first 100 itera-
tions, and after about 600 iterations. In addition to this, the defi-
ciency scores of GO with ID as a base method show a significant
improvement. The deficiency score represents the overall per-
formance of the method taking into account all accuracies from
below one point. To evaluate the significance of the values ob-
tained by the deficiency score, we performed a paired t-test on
the deficiency scores attained across all 5 iterations. We used the
null hypothesis that the deficiency scores average to 1, implying
that the methods perform equally as well, and a significance level
of 0.1. As can be seen by the deficiency scores in Table 1, when
the size of the training set is less than 100, GO preforms much
better than the ID. This initial section is very valuable to active
learning, as the main goal of active learning is to label very few
points, and still achieve a high accuracy. While the deficiency
score briefly rises, it consistently stays below one. It also tends
to decrease during the latter iterations, implying improved per-
formance over ID during this time, which is further supported by
the learning curves and the results from the paired t-test. We can
reject our null hypothesis when the size of the training set is 100
or 700, showing that GO is indeed significantly better than ID for
datasets of these sizes, but no worse than ID for datasets of sizes
in between.
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Table 1 Deficiency scores from Experiment 2. A bold number indi-
cates a value where geographical orientation outperforms informa-
tion density, and an asterisk denotes a statistically significant rate
(paired t-test p < 0.1).

# data 100 200 300 400 500 600 700
score .790∗ .859 .860 .848 .838 .822 .812∗

4. Related Work
Density-weighted methods [3] in pool-based sampling scenar-

ios are related to the geographical orientation algorithm. Settles
and Craven [4] propose the information density framework. The
main idea of their method is that informative instances should not
only be uncertain, but also be representative of the underlying
distribution in feature space. Their method uses similarity scores
among instances to calculate the representativeness of instances.
Other density-weighted methods are generalized to the informa-
tion density framework. The variations of those density-weighted
methods is in how they calculate density weights for each in-
stance. Fujii et al. [8] propose the instance selection method that
maximizes two aspects of the instances: (a) difference from the
labeled instances, and (b) similarity to the unlabeled instances.
Although the aspect of (a) is similar to our method, our method
differs from their method in two ways. First, their method does
not consider splitting features into two feature sets to calculate
the selection score. Second, their method calculates the score of
(a) in the same manner as the expected error reduction frame-
work [3][9]; that is, they calculate how much the model is likely
to change based on current labeled and unlabeled instances. In-
stead, our method calculates the similarity between the labeled
instances directly. McCallum and Nigam [10] propose a density-
weighted algorithm for text classification. The algorithm can be
regarded as a special case of the information density algorithm by
Settles and Craven [4]. Li et al. [11][12] develop an extension of
SVMs, called HintSVM, which takes into account the uncertainty
and representativeness for the density-weighted method.

There are several studies on active learning for user activity
recognition. Alemdar et al. [13] apply active learning to activ-
ity recognition in a home setting. They use three uncertainty
sampling methods: least confident sampling, margin sampling,
and entropy based. They confirmed the effectiveness of active
learning methods for this task. Longstaff et al. [14] apply semi-
supervised learning and active learning for an activity recognition
task. They have compared least confident sampling and three
semi-supervised learning algorithms. The experimental results
show that a semi-supervised learning algorithm called democratic
co-learning achieves competitive performance with least confi-
dent sampling. This supports the idea that active learning robustly
performs better than semi-supervised learning because it uses ad-
ditional labeled data. Stikic et al. [15] apply least confident sam-
pling and the co-testing algorithm for activity recognition tasks.
They verify that least confident sampling performs better than co-
testing for the tasks.

To the best of our knowledge, no previous work has tackled
the problem of active learning for automatic transportation mode
assignment. In addition, this is the first work to develop an active
learning algorithm that explicitly incorporates geo-spatial knowl-
edge.

5. Conclusion
We proposed a novel active learning method that uses geo-

graphical orientation in the geographical space separately from
the distribution information in the feature space. The geographi-
cal orientation algorithm contains two novel aspects: (1) the ge-
ographical distance factor assigns high scores to instances that
are not surrounded by the instances in the geographical space of
the training data; (2) the geographical density factor assigns high
scores to instance that are surrounded by the instances in the ge-
ographical space of the unlabeled data. Since geographical dis-
tance/density factors capture the information that complements
the information obtained by conventional methods such as the in-
formation density algorithm, we combined those two factors with
the conventional information density algorithm to develop the ge-
ographical orientation algorithm. Experiments have shown that
the geographical orientation algorithm outperforms conventional
active learning methods in the automatic transportation mode as-
signment task. We have concluded that the orientation informa-
tion in the geographical space has complementary information to
that in feature space.
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