
Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

[DOI: 10.2197/ipsjjip.22.486]

Regular Paper

A Web Synchronization Method for Browser-Based
Communications

Kazuyuki Tasaka1,a) Tomohiko Ogishi1

Received: September 16, 2013, Accepted: February 14, 2014

Abstract: In this paper, we propose a web synchronization method (WSM) to share operation data on a browser and
synchronize output time of data among browsers in browser-based communications such as video conferencing and
remote control services. WSM continually provides users with an environment for smooth browser-based communi-
cations even if users are in a heterogeneous environment where network delay and rendering time among browsers
fluctuate. This fluctuation causes the difference of output time among browsers and a lack of synchronization (out-of-
synchronization). This is perceived as being somewhat strange, or even annoying. Several methods have been studied
to prevent out-of-synchronization for streaming content such as video and voice data. WSM synchronizes the output
time of streaming content and/or non-streaming content after sharing browser operations (e.g., page movement) among
conversational partners. WSM also maintains synchronization of the output time even if a device is connected to dif-
ferent access networks during a conversation. Synchronized output is realized by controlling the time to notify each
browser of browser operations, and by controlling the time to send and output web content according to the network
delay and rendering performance. For considering feasibility, WSM works on a web browser and does not need addi-
tional software. We implemented a prototype system and measured the difference in the output time among browsers.
The results show that WSM achieves web synchronization within 300 ms while the target time was 320 ms.

Keywords: web synchronization, browser-based communications, streaming and non-streaming communications

1. Introduction

Communication services using both voice and visual (e.g.,
video and web) media are growing not only in fixed network en-
vironments but also in mobile network environments. In commu-
nication services, voice media plays a fundamental role enabling
multiple users to talk with each other in real-time. Visual media
compensates for difficulties in communication and contributes to
a smooth communication, for example, in the case that a user
wishes to instruct the operation of an item to others.

Figure 1 depicts a use case scenario where a smooth communi-
cation is necessary. At first, two users, Bob and Carol are consult-
ing a travel agency (Alice) for their travel plans using a PC and
a mobile phone, respectively as shown in Scene 1. Then, Alice
as the telephone operator of the travel agency recommends plans
by sharing web contents in addition to giving an oral explanation
as shown in Scene 2. The timings of showing the web contents
and operating actions such as highlighting a button should be syn-
chronized by devices of the operator and users. In the case of the
mobile phone, the synchronization should be continually avail-
able even if the connected network environment is changed, for
example from Wi-Fi to 3G, during the communication as shown
in Scene 3.

The existing techniques [1], [2], [3] realize the sharing of web
contents. The users run a browser and share the operations (e.g.,
webpage movement) among browsers using additional software

1 KDDI R&D Laboratories Inc., Fujimino, Saitama 356–8502, Japan
a) ka-tasaka@kddilabs.jp

Fig. 1 Use case scenario.

or a browser plugin. However, these techniques do not consider
the sharing among conversational partners of voice/video com-
munications. Moreover, these techniques do not focus on the
synchronization of the output time of a webpages. Therefore, it
gives users a feeling of wrongness due to the difference of output
times among browsers in a heterogeneous environment where the
network delay and the rendering time among browsers fluctuate.
This difference causes out-of-synchronization.

There are several reasons for the occurrence of out-of-
synchronization. First, when the bandwidths of the access net-
work of the users are different, the arrival times of the packets
may be different. Second, in the case of the mobile phone, the
bandwidth of the access network for users differs during the com-
munication. Differences in the arrival times of packets cause dif-
ferences in the output time. Third, the rendering times are differ-

c© 2014 Information Processing Society of Japan 486



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

ent among browsers.
In order to prevent the out-of-synchronization problem, sev-

eral methods have been studied [4], [5], [6], [7], [8], [9]. These
studies synchronize the actual output time of the voice and video
data among devices and ensure the quality of the real-time com-
munication. This is realized by sharing the generation time and
the estimated output time among devices and by controlling the
actual output time according to the network delay.

However, they do not deal with the synchronization of non-
streaming content such as web contents. In addition to this issue,
previous methods [1], [2], [3], [4], [5], [6], [7], [8], [9] do not fo-
cus on the sharing of browser operations among conversational
partners.

We propose a web synchronization method (WSM) to share
browser operations among browsers of conversational partners
and to synchronize the output time of voice, video and web con-
tents. WSM starts sharing of web contents and browser oper-
ations among conversational partners who are using voice and
video contents. Moreover, WSM synchronizes output times of
web contents and the operations. For synchronization, we con-
sider the heterogeneity of not only the network delay but also
the rendering performance on browsers and propose a method to
control the output timings of webpages by absorbing the perfor-
mance between devices of users. For considering the feasibility,
we also realize a method without additional software or a plugin
on a browser.

The rest of this paper is structured as follows. Section 2 de-
scribes related works on conventional methods and issues for
smooth communication in a heterogeneous environment. Sec-
tion 3 provides a detailed description of a novel web synchro-
nization method, while Section 4 shows the prototype implemen-
tation and performance evaluations. Section 5 summarizes the
conclusion.

2. Related Works

This section describes existing methods and issues on contin-
ually providing users with an environment for smooth browser-
based communications.

2.1 Web Contents Sharing
Several methods for sharing web contents among users have

been studied [1], [2], [3]. These methods share the operations of
web browsers. Method [1] shares browser operations (webpage
movement, webpage scroll, etc.) among browsers including a
plugin. This method also manages control authority for sharing
of browser operations. Method [2] transmits a browser synchro-
nization signal (e.g., URL of homepage) among devices without
preparing a centralized server by using NAT traversal technique.
Method [3] considers that users move to a different location and
change devices during communication. It keeps web information
(tabs, history, forms, etc.) so that the information can be recov-
ered from any device connected to the Internet.

However, existing methods do not focus on sharing among
conversational partners (e.g., users and an operator) and synchro-
nization well in a heterogeneous environment such that some
users use a PC connected with a fixed network and other users

Fig. 2 Typical control models for synchronization among devices.

use a smartphone on a mobile network.

2.2 Synchronization for Streaming Content
Many researchers have studied methods for synchronization re-

garding the output times of streaming content such as voice and
video [4], [5], [6], [7], [8], [9]. These methods delay the out-
put times of each data packet to ensure the output intervals of
the same kinds of media (voice or video) data are equal to the
generation intervals of the same data. They achieve intra-media
synchronization, which is the difference time between a gener-
ation intervals and an output interval is less than the threshold
(320 ms) [4], [10].

These methods [4], [5], [6], [7], [8], [9] also achieve an inter-
media synchronization that synchronizes the output times be-
tween different kinds of streaming data such as voice and video.

Previous methods [1], [2], [3], [4], [5], [6], [7], [8], [9] de-
scribed above do not focus on the sharing of browser operations
among conversational partners. Moreover, methods [4], [5], [6],
[7], [8], [9] synchronize the output time of streaming content, but
methods [1], [2], [3], [4], [5], [6], [7], [8], [9] cannot synchronize
non-streaming content such as web contents.

2.3 Typical Control Model for Synchronization and Our
Target

Typical models for conventional synchronization methods are
classified into the following three kinds: the Master-slave model
(Fig. 2 (a)) [4], [5], the Maestro model (Fig. 2 (b)) [6], [7] and the
Decentralized model (Fig. 2 (c)) [8], [9].

In the Master-slave model (Fig. 2 (a)), the user decides the pri-

c© 2014 Information Processing Society of Japan 487



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

ority for media data such as voice and video data. The media
data with the highest priority is called the master media, while
the other media data is called the slave media. The device that
receives master media is defined as the master device, and those
that receive slave media are defined as slave devices. Slave de-
vices decide the actual output time of the slave media based on
the media information including the generation time and the out-
put time of the master media. The master device distributes the
media information to the slave devices. The advantage of this
model is to retain the quality of the master media. This model
is typically used in TV communication, where voice data is se-
lected as the master media, because it can retain the quality of
voice communication over visual communication.

In the Maestro model (Fig. 2 (b)), an entity (maestro) collects
the media information of each media data from all devices and
decides the actual output times of the consequent data packets.
Each device outputs the data packets based on the output times
informed by the maestro. This model is typically used in online
games since all types of data packets should be treated with the
same priority. However, this model tends to increase the output
delay compared to the Master-slave model, because each device
outputs a data packet after sending the media information to the
maestro and receiving the actual output time from the maestro.

In the Decentralized model (Fig. 2 (c)), each device mutually
exchanges media information and individually determines the ac-
tual output times of each data from the media information. There-
fore, in this model, all devices can output data with less delay
than the Maestro model. However, this model tends to increase
the network load compared to other models because all pairs of
devices must frequently exchange media information.

In contrast, our method considers synchronization not only for
streaming data but also for non-streaming data of browser based
communication. In this communication, our method uses the
Maestro model in Fig. 2 (b) and the maestro module controls the
output times of the web content for multiple devices in a hetero-
geneous environment based on the rendering times in addition
to network delays. The module needs to decide the timing to
send/output web content and share it with the same priority. We
describe the details in Section 3.2.

3. Proposed Method: A Web Synchroniza-
tion Method for Browser-Based Communi-
cations

We propose a novel web synchronization method (WSM) that
shares browser operations among conversational partners and
meets out-of-synchronization without any additional software
and a plugin on browsers. We believe that WSM is an essen-
tial technology for smooth voice and visual communications in a
heterogeneous environment.

3.1 Requirements
We consider the following requirements for synchronization in

a heterogeneous environment.
Requirement 1: Starting sharing of browser operations inde-

pendent of the timing of communication by voice and/or video.

Fig. 3 Overview of architecture as module composition.

At this time, WSM is unnecessary additional software and no plu-
gin is required for feasibility. Users can utilize a communication
service by using their devices with web browsers without adding
any software or plugin.

Requirement 2: Synchronizing the output times of the web
content among conversational partners in a heterogeneous en-
vironment. The difference in the output times must be within
320 ms [4], [10]. If the difference is over 320 ms, some users can-
not understand the received conversation because all users cannot
look at the same webpage at the same time.

Requirement 3: Continuing to synchronize the output times of
the web content among web browsers even if a device changes
the connected access network, e.g., Wi-Fi to 3G, during the com-
munication.

3.2 Overview of the Proposed Web Synchronization
We show an overview of the architecture with WSM in Fig. 3.

This architecture is based on the Maestro model because all de-
vices equally share web operations without any additional soft-
ware on browsers via a web server in a heterogeneous environ-
ment.

A synchronization module for streaming (Fig. 3 (a)) is included
in the Maestro model. This module controls the output time of
voice/video data by changing the timing to send each data and
indicating the buffering time according to network delay.

The new module for non-streaming content (web content)
(Fig. 3 (b)) plays the role of maestro in the Maestro Model
(Fig. 2 (b)). This module decides the timing to send and output
web content and shares it with the browser information collection
module (Fig. 3 (c)). The browser information collection module
collects the operations to be synchronized by scripts (Fig. 3 (d),
Fig. 4) such as JavaScript on a browser. The request detection
module (Fig. 3 (e)) detects a webpage movement as a browser op-
eration.

Section 3.3 shows detailed methods for detecting browser oper-
ations and sharing the operations among conversational partners
without any additional software for Requirement 1. Section 3.4
shows a method of synchronizing the output times of the web con-
tent for Requirement 2. Section 3.5 shows a method of adjusting
the output time in the case where the connected access network
of a device changes for Requirement 3.

c© 2014 Information Processing Society of Japan 488



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

Fig. 4 A method of creating web content for web synchronization.

3.3 Detection and Sharing of Browser Operations
(1) Detection of user operations

The proposed method detects browser operations in modules
on a web server (Fig. 3 (e)) or on each browser (Fig. 3 (d)) ac-
cording to the kind of browser operation.

For synchronization of a webpage movement, a web server de-
tects the operation from a request message of the web content in
Fig. 3 (e). The detection in the web server can reduce the time to
send a control message to notify browser operations of the web
server compared with the detection in each browser.

On the other hand, it is difficult for a web server to detect some
operations such as a character input in a text area. In this case,
a browser detects the browser operations in Fig. 3 (d) and sends
the information to the web server. The method of detecting the
browser operations are described in detail as follows.

A service provider (or a proxy) creates a web content includ-
ing scripts (e.g., JavaScript) that detects and shares browser op-
erations. This script does not force users to install any additional
software or any plugin for the web browser.

Figure 4 depicts a method of including a script for detecting
and sharing browser operations. Service providers create codes
for the user interface (UI) such as a button and a text area on the
body part in a web content (Fig. 4 (i)). They set an identification
of the UI element (Fig. 4 (iii)) to JavaScript for detecting and shar-
ing browser operations (Fig. 4 (ii)). When a web browser loads
the web content, it registers a list of UI elements (target of syn-
chronization) to the synchronization module (Fig. 3 (b)) via the
browser information collection (Fig. 3 (c)). If users operate UI el-
ements without registration, the synchronization module does not
share the operations. Users can hide the web content including
privacy information.

Fig. 5 Sequence of grouping users after starting a voice/video communica-
tion.

The service providers can newly add codes for synchroniz-
ing browser operations (undefined UI element) such as webpage
scroll and drawing action (e.g., line and circle). For new browser
operations, the service providers define the argument, webSyn-

cregister (e.g., document.getElementById (“scroll”), “scroll”,
“8”) and create codes of JavaScript which detects and acts the
operations.

After the registration, when a user operates a UI element on
a web content, the script detects the kind of operation. Other
browsers load the operation sharing module (Fig. 3 (d)) and run
the operation after receiving the kind of browser operation and
the value from the web server.
(2) Sequence to start sharing user operation among browsers

When the web server or script described in Fig. 4 detects
a browser operation, the proposed method shares it among
browsers. For identifying each media data in Fig. 3, the proposed
method groups ID (UIDr (e.g., SIP URI)) for a streaming data
with ID (UIDw (e.g., Log-in ID)) for non-streaming data.

Figures 5 and 6 show a sequence to group communicating
users by using IDs and start a web synchronization.
Case1: Grouping after starting voice/video communication

This is the case where a user asks an operator to supplement
voice/video communication with sharing of web content. In this
case, users and an operator share browser operations after starting
a voice/video communication.

WSM binds the UIDw of users with the UIDw of the conver-
sational partner (e.g., operator). Figure 5 shows a sequence for
grouping each UIDw.
(i) Starting voice/video communication (Fig. 5 (1)–(2))

An operator, User 1 and User 2 in Fig. 5 start a voice/video
communication. Then, a conference server shares the UIDr with
the synchronization server (Fig. 5 (1)). The operator opens his/her
browser in advance for web communication (Fig. 5 (2)).

c© 2014 Information Processing Society of Japan 489



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

Fig. 6 Sequence of grouping users after starting a web communication.

(ii) ID Grouping for web synchronization (Fig. 5 (3)–(6))
User 1 sends a message to login with his/her UIDw from web

content such as an online travel site (Fig. 5 (3)). The web server
managing web content sends the UIDw of User 1 to the synchro-
nization server (Fig. 5 (4)). The synchronization server searches
the UIDr of User 1 from the UIDw and obtains the UIDr of the
operator as a conversational partner from the result (UIDr of User
1). In advance, the service provider registers a list of the UIDr and
the UIDw with users and operators in a synchronization server.

The synchronization server obtains the UIDw of the operator
from the UIDr of the operator and replies the UIDw of the oper-
ator to the web server (Fig. 5 (5)). The web server (and the syn-
chronization server) groups each UIDw (Fig. 5 (6)).
(iii) ID Grouping for additional users (Fig. 5 (7)–(10))

Regarding other users such as User 2, devices and servers run
the same sequence as that with User 1 and start web synchroniza-
tion (Fig. 5 (7)–(10)).
Case2: Grouping after starting web communication

Some users call to a call center to ask an operator to sup-
plement details about web content with voice/video communi-
cation. Users and the operator start voice/video communication
after starting browsing.

WSM searches the UIDw of the operator who can communi-
cate with the user and groups the UIDw. WSM searches the UIDr
from their UIDw and calls from a conference server to the UIDr.
Figure 6 shows the sequence.
(i) Ready for communication (Fig. 6 (1))

As the ready phase, the operator waits for a call from the user
and opens his/her browser in advance (Fig. 6 (1)).
(ii) ID grouping for web synchronization (Fig. 6 (2)–(5))

User 1 sends a message to login with his/her UIDw from the
web content to the web server during web browsing (Fig. 6 (2)).
The web server sends the UIDw of User 1 to the synchroniza-

Fig. 7 Flowchart to decide the output time in a synchronization server.

tion server (Fig. 6 (3)) and obtains the UIDw of the operator who
can communicate with the user (Fig. 6 (4)). At this time, the web
server (and the synchronization server) binds and groups each
UIDw (Fig. 6 (5)) for web synchronization.
(iii) Starting voice/video communication (Fig. 6 (6)–(9))

User 1 sends a request message (including the UIDw or UIDr
of User 2) for starting a voice/video communication from contact
information on his own web site to a web server. The web server
forwards it to a synchronization server (Fig. 6 (6)). The synchro-
nization server searches the UIDr of User 1 and User2 and the
operator from each UIDw (Fig. 6 (7)) and sends them to the con-
ference server (Fig. 6 (8)).

The conference server calls the users and the operator based on
3rd party call control protocol [11] (Fig. 6 (9)). The users and the
operator start a voice/video communication.
(iv) ID grouping for additional users (Fig. 6 (10)–(11))

The web server groups each UIDw (Fig. 6 (10)–(11)) after lo-
gin by User 2 as well as User 1.

In each case, the processing time on each server is out of
scope. We assume the difference of the processing time for each
browser is negligible. If that difference increases and causes
out-of-synchronization, we need consider load sharing for each
server.

3.4 Control of Output Time on the Web Browser
WSM estimates the actual output time of web content based

on parameters such as the network delay (throughput) on access
networks and the rendering performance of each web browser.
Figure 7 shows a flowchart to estimate the ideal output time. The
ideal output time means a time when each device should output
each data for synchronization.
(i) Getting initial parameter values (Fig. 7 (1)–(3))

First of all, when the operator and each user login to a web
server (Fig. 7 (1)), a synchronization server obtains three initial
parameter values to estimate the ideal output time to synchronize

c© 2014 Information Processing Society of Japan 490



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

output times (Fig. 7 (2)). The method is described in detail as fol-
lows.

When the operator or users login (Fig. 5 (2), (3), Fig. 6 (1), (2)),
browsers obtain three initial parameter values: the upload de-
lay (Tud i−1

(D)) of a login message for login, the download delay
(Tdd i−1

(D)) of web content and the rendering time (Trt i−1
(D)). D

and i mean the identification of the device name and the sequence
number of the packet, respectively. The browsers send each value
to the web server.

In Fig. 7 (3), the synchronization server calculates the upload
throughput (Dud i−1

(D) (= Tud i−1
(D) / Sc)) and the download

throughput (Ddd i−1
(D) (= Tdd i−1

(D) / Sl)) from the upload delay,
the download delay, the content size of the control packet (Sc)
and the content size of the login page (Sl). The server calculates
the rendering performance (Rp i−1

(D) (= Trt i−1
(D) / Sl)) from the

rendering time and the content size. This function uses these pa-
rameters for calculations in Fig. 7 (6) and Fig. 7 (8).
(ii) Calculation of each parameter value (Fig. 7 (4)–(7))

The synchronization server detects the operations (e.g., web-
page movement) by receiving a notification from the web server
(Fig. 7 (4)). The synchronization server obtains the content size
of the control packet (Sc) and the web content (Sw) from the
web server (Fig. 7 (5)). The synchronization server calculates the
download delay (Tdd i

(D) (= Sw / Ddd i−1
(D))) of the web content

and the rendering time (Trt i
(D) (= Rp i−1

(D) x Sw)) for the con-
troller (Fig. 7 (6)). In the controlee, the server also calculates the
download delay (Tcd i

(D) (= Sc / Ddd i−1
(D))) of control packet for

sharing the operations and the upload delay of a request message
of the web content (Tud i

(D) (= Sc / Dud i−1
(D))) (Fig. 7 (7)).

(iii) Setting of ideal output time and waiting time to control out-
put time (Fig. 7 (8)–(9))

The synchronization server calculates the ideal output time
based on each value (Tcd i

(D), Tud i
(D), Tdd i

(D), Trt i
(D)). The ideal

output time is the last time as the result of comparison between
the estimated output time of the controller (Tdd i

(D) + Trt i
(D))

and that of each controlee (Tcd i
(D) + Tud i

(D) + Tdd i
(D) + Trt i

(D))
(Fig. 7 (8), Fig. 8). The synchronization server decides the wait-
ing time (Twt i

(D)) in such a way that the actual output time be-
comes equal to the ideal output time (Fig. 7 (9), Fig. 8) within a
setting value for time out of web sessions on browsers.

Case 1 (Fig. 8 (a)): The web server sets the waiting time
(Twt i

(z)) for the controller and delays the sending of the web con-
tent to the controller if inequality (1) is established (e.g., Con-
troller is Device Z and Controlee is Device X).

Tdd i
(z) + Trt i

(z) < Tcd i
(x) + Tud i

(x) + Tdd i
(x) + Trt i

(x) (1)

Case 2 (Fig. 8 (b)): The web server sets the waiting time
(Twt i

(x)) for the controlee and delays the sending of the web con-
tent if Eq. (2) is established.

Tdd i
(z) + Trt i

(z) > Tcd i
(x) + Tud i

(x) + Tdd i
(x) + Trt i

(x) (2)

The synchronization server sends a control packet that requests
the operations from the controller to each controlee via the web
server. Each controlee receives the control packet and runs the
operation (e.g., webpage movement). The web server sets the
waiting time for the controlee. After the waiting time, the web

Fig. 8 Ideal output time and setting of waiting time in each case.

server sends the web content to the controlee.
Case 3 (Fig. 8 (c)): There is no waiting time for all devices if

Eq. (3) is established.

Tdd i
(z) + Trt i

(z) = Tcd i
(x) + Tud i

(x) + Tdd i
(x) + Trt i

(x) (3)

(iv) Updating each parameter value (Fig. 7 (10)-(12))
The web server sends web content to each device. The syn-

chronization server obtains each parameter value from each de-
vice via the web server in the same sequence for initial param-
eter values (Fig. 7 (10)). The synchronization server updates the
throughput, the rendering performance (Fig. 7 (11)) and the se-
quence number (Fig. 7 (12)).

3.5 Adjustment of Output Time
Our proposed method adjusts the output times of web content

for each device so that the web synchronization works well even
If the devices are connected to different access networks (e.g., Wi-
Fi area and mobile phone area) according to the user’s movement.
In this time, the browser re-connects web sessions to control the
browser with the server. The browser runs the sequence based on
Ajax/Comet.

When a device changes the access network, three parameter
values (Tcd i

(D), Tud i
(D), Tdd i

(D)) have the possibility of fluctu-
ating at either of the following points (Point 1: before notifying
the browser operations of each controlee, Point 2: between point
1 and the point before requesting for a new webpage from each
controlee, Point 3: between point 2 and before sending a new
webpage). At each point, the synchronization server estimates
the network delay and the rendering time and sets an appropriate
waiting time. Tcd i

(D) in Point 1, Tud i
(D) in Point 2 and Tdd i

(D)

in Point 3 change according to the throughput of a new access
network. The synchronization server updates or sets Twt i

(D) ac-

c© 2014 Information Processing Society of Japan 491



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

cording to the change in Tcd i
(D), Tud i

(D) and Tdd i
(D).

If the synchronization server estimates that the arrival of web
content to the controller is earlier than that to the controlee as
shown in Case 1, it sets the waiting time Twt i

(D) for the con-
troller. If the synchronization server estimates that the arrival of
a web content to the controlee is earlier than that to the controller
as shown in Case 2, it sets Twt i

(D) for the controlee. Otherwise
if the arrival times are the same as shown in Case 3, the waiting
time is not set for the controller or the controlee.

4. Implementation and Performance Evalua-
tion

4.1 Implementation of Proposed Method
We implemented modules as described in Section 3 and in-

stalled the modules onto a web server, a synchronization server
and a conference server (OS: Redhat Enterprise 5 64 bit, CPU:
Xeon 3.0 x4, Memory: 4 GByte).

We used asterisk [12] as a tool for the conference server. For
web synchronization, we used Ajax (Asynchronous JavaScript
and XML) as a tool to send the browser operation to a web server
and Comet (Reverse Ajax) as a tool to receive the browser oper-
ation from the web server. To start and control voice and video
communications using Real-Time Transport Protocol (RTP) [13],
we used Session Initiation Protocol (SIP) [14]. We used Simple
Object Access Protocol (SOAP) for sending/receiving messages
between the web server and the synchronization server, and be-
tween the synchronization server and the conference server.

Figure 9 shows an experimental environment of the prototype
system. Users 1, User 2 and Operator make voice communi-
cation using Device A (a mobile device), Device Y (a mobile
device) and Device Z (a fixed device), respectively. For a non-
streaming communication, they use Device X (a fixed device) in-
stalled with Firefox browser, Device Y installed with Android
standard browser and Device Z installed with Internet Explorer,
respectively.

Each fixed device has a LAN interface (100M-TX). Device X
and Z are connected to Gateway 1 and 3, respectively. On the
other hand, each mobile device has a Wireless LAN (WLAN)
interface (IEEE802.11g) connected to each Wi-Fi AP (Access
Point). Device A and device Y access to Gateway 1 and 2, respec-
tively. Device Y also has a communication interface for access to
a Mobile Phone Network.

Fig. 9 Experimental environment.

The synchronization server and the web server connect to the
core router via the core network. Each gateway and core router
has a function of a network emulator (NIST Net [15]) and is ca-
pable of changing the network bandwidth for performance evalu-
ation. The NIST Net network emulator is a general-purpose tool
for emulating performance dynamics in IP networks.

4.2 List of Experiments
4.2.1 Performance of Web Synchronization

We measured the time difference in the output of web content
and operation among user’s browsers using the proposed method
and the conventional method described in Section 2.1 in order to
compare the accuracy of web synchronization. The web server
collects the output time from each browser and calculates the
difference as the difference time by subtracting the output time.
In the measurement, we changed the setting of two parameters
(the throughput (network delay) and the content size (rendering
time)). We evaluated the influence of the changes in the network
bandwidth and web content size on the performance of web syn-
chronization.

Experiment 1: We changed the bandwidth on the access net-
work (WLAN) for Device Y in Fig. 9 from 1 Mbps to 20 Mbps
(actual max speed in Wi-Fi AP) by setting the bandwidth in Gate-
way 2. We fixed the bandwidth of other access networks (Device
X and Device Z: 20 Mbps) and the web content size (3 Mbyte:
size of the top page in a Japanese travel agency).

We evaluated the influence of the change in throughput on web
synchronization by using the results of this measurement.

Experiment 2: We changed the content size on the web server
from 200 KByte to 3 MByte and fixed the throughput (Device X
and Device Z: 20 Mbps, Device Y: 1 Mbps) on access networks.
Device Y accesses to Wi-Fi AP in this measurement.

We evaluated the influence of the change in the content size on
web synchronization by using results of this measurement.
4.2.2 Performance of Synchronization Adjustment

Experiment 3: We measured the output time of the web con-
tent on each device when Device Y switches to a different access
network between a WLAN and a mobile phone network. In this
case, we fixed the bandwidth on access networks for Device X
and Device Z and the content size (3 Mbyte).

We evaluated the adjustment of web synchronization when a
device changes access networks.
4.2.3 Scalability

Experiment 4: We measured the maximum number of web ses-
sions that can be simultaneously handled in the architecture of
WSM (Fig. 3). In this experiment, we increase the number of
web sessions from 3 to 1,000 by simulation.

From this measurement result, we show the influence of the
change in the number of web sessions on web synchronization.

4.3 Experimental Results
4.3.1 Performance of Web Synchronization

Figures 10 and 11 indicate the experimental results corre-
sponding to Experiments 1 and 2.

Measurement Result 1: Figure 10 shows the results of Exper-
iment 1, which is the maximum difference in the output time of

c© 2014 Information Processing Society of Japan 492



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

Fig. 10 Difference in output time of web content among browsers according
to increase of difference in bandwidth among devices.

Fig. 11 Difference in output time of web content among browsers according
to increase of web content size.

web content among browsers of each user and operator according
to the difference in throughput.

The maximum delay time in Fig. 10 specifies the delay from
the time when the web content is requested at the controller to
the time when the web content is output to the last controlee.

In the proposed method, the difference in the output time is
from about 200 ms to about 300 ms regardless of the difference
in bandwidth (throughput) among devices. These results mean
that the difference between actual values of the network delay,
the rendering time and their estimated values is within the target
time of web synchronization by the proposed method described
in Section 3.4. This indicates that the proposed method achieves
synchronization for web communication within the target time
(320 ms).

On the other hand, in the conventional method, the difference
in the output times increases according to the difference in band-
widths among devices. This indicates the conventional method
depends on the network delay and is out-of-synchronization.

The above results indicate that the proposed method can con-
tinually synchronize the output time on each browser even if the
difference in network delay and web content increases.

Measurement Result 2: Figure 11 shows the results of Experi-
ment 2. The difference in the output times in the proposed method
are from about 200 ms to about 300 ms even if the differences in
content size increase. These results mean that the difference be-
tween actual values of the network delay, the rendering time and
their estimated values is within the target time of web synchro-
nization by the proposed method described in Section 3.5. This
indicates that the proposed method achieves synchronization for

Fig. 12 The difference in output time of web content when a device moves
between WLAN and mobile phone area.

web communication within the target time (320 ms).
On the other hand, in the conventional method, the differences

in the output times increase according to the difference in the con-
tent size on the web server. This indicates that the state in the
conventional method is out-of-synchronization and dependent on
the content size and rendering time.

Therefore, the proposed method achieves a smooth communi-
cation from continual synchronization even if the content size and
the difference in the rendering time among browsers increase.

The results of Experiments 1 and 2 indicated that the proposed
method can synchronize the output times of non-streaming con-
tent among browsers within 320 ms in heterogeneous environ-
ments to fulfill Requirement 2 in Section 3.1.
4.3.2 Performance of Synchronization Adjustment

This section indicates the measurement results on the change
in the difference in output time when Device Y in Fig. 9 moves
between WLAN and mobile phone areas. We evaluated the ad-
justment of synchronization from the results.

Measurement Result 3: Figure 12 shows the results of Experi-
ment 3, which is the change in the differences in the output times
on devices.

In the proposed method, the difference in the output times was
in the range between about 200 ms and 300 ms even if network
delay (or throughput) changed according to a change in access
networks. This result indicates that the proposed method achieves
synchronization for web communications within the target time
(320 ms).

In the conventional method, the difference in the output times
fluctuates according to the change of access network by Device
Y. In downloading of the 5th, 8th, 11st, 14th webpage after the
changes, the difference in output times increases due to time to
switch an access network. The difference in the output times in-
creases when the link speed of the connected access network for
a device changes from a higher one to the lower one. This result
indicates that the difference in throughput among devices influ-
ences the output times in the conventional method.

Therefore, the proposed method continually achieves web syn-
chronization of the output time among browsers even if the
throughput of the access network changes to fulfill Requirement
3 in Section 3.1.

c© 2014 Information Processing Society of Japan 493



Journal of Information Processing Vol.22 No.3 486–494 (July 2014)

4.3.3 Scalability
Measurement Result 4: We confirmed that our system could

handle all sessions and synchronize output times even if the num-
ber of web sessions was increased from 3 to 1,000. The number
of web sessions corresponds to the number of users in the exper-
iment.

The results of Experiment 4 indicates that the proposed method
can stably synchronize the output time. If service providers want
to handle sessions of over 1,000 users and a server cannot handle
all web sessions at the same time, they can take measures such
scale out and scale up of each server based on existing technolo-
gies. As a future work, we will consider efficient management of
web sessions.

5. Conclusion

We propose a web synchronization method (WSM) that starts
sharing browser operations among browsers before/after the start
of voice and video communications. WSM meets issues on out-
of-synchronization of conventional methods in a heterogeneous
environment where the network delay and rendering time fluctu-
ate. WSM also continues to synchronize the output times of non-
streaming data in addition to the output times of voice and video
data even if a device is connected to different access networks
during a conversation. The synchronization is realized by dynam-
ically changing the time to share browser operations and the time
to send web content according to the network delay and rendering
time on each browser. We implemented a prototype system and
measured the difference in the output time among browsers. The
experimental results show that WSM achieves web synchroniza-
tion within about 300 ms while the target time is 320 ms even if
the network delay and the rendering time fluctuate. From the ex-
perimental results, users can receive the same conversation con-
tent as the web content on browsers at the same time. Moreover,
the proposed method is applicable to a training service and tele-
conference for business as scenarios that require synchronization.
In the training service, a teacher remotely instructs his/her stu-
dents on how to show commercial products to their customer. In
the teleconference service, business partners remotely share and
edit materials for a conference on their browsers. In future, we
will consider web synchronization according to the processing
load on devices and servers and evaluate the availability.

Acknowledgments We are indebted to Dr. Yasuyuki
Nakajma, President and Chief Executive Officer of KDDI R&D
Laboratories Inc. and Shigehiro Ano, Executive Director, for
their continuous encouragement of this research.

References

[1] Hwan-Gu, L., Won-Tae, K., Sun-Ja, K. and Cheol-Hoon, L.: Design
and Implementation of Mobile Cobrowsing Service which supports
the sharing of webpage among mobile users, Proc. IEEE Conf. Con-
vergence and Hybrid Informatin Technology (ICHIT’08), pp.266–269
(2008).

[2] Hongo, N., Yamamoto, H. and Yamazaki, K.: Browser Synchroniza-
tion System for Supporting Elderly People and IT Shortfalls, Proc.
IEEE Conf. Computer Software and Applications Conference (COMP-
SAC 2013) (2013).

[3] Valle, R., Passito, A., Novellino, R. and Penaranda, A.: Synchroniza-
tion Web Browsing Data with Browserver, Proc. IEEE Symp. Comput-
ers and Communications (ISCC 2010), pp.738–743 (2010).

[4] Ishibashi, Y. and Tasaka, S.: A Media Synchronization Mechanism for
Live Media and Its Measured Performance, IEICE Trans. Commun.,
Vol.E81-B, No.10, pp.1840–1849 (1998).

[5] Wongwirat, O. and Ohara, S.: Haptic media synchronization for re-
mote surgery through simulation, IEEE Trans. Multimedia, Vol.13,
No.3, pp.62–69 (2006).

[6] Wagner, P. and Frossard, P.: Playback delay and buffering optimiza-
tion in scalable video broadcasting, Proc. IEEE Conf. Multimedia Ser-
vices Access Network (MSAN’05), pp.746–752 (2005).

[7] Ishibashi, Y. and Tasaka, S.: A group synchronization mechanism
for live media in multicast communications, Proc. IEEE Conf. Global
Communications (Globecom’97), pp.746–752.

[8] Ishibashi, Y. and Tasaka, S.: A distributed control scheme for causal-
ity and media synchronization in network multimedia games, Proc.
IEEE Conf. Computing Communication and Network (ICCCN 2002),
pp.144–149 (2002).

[9] Tasaka, K., Imai, N., Isomura, M. and Idoue, A.: A media synchro-
nization method for real-time group communication in a multiple de-
vice environment, Proc. IEEE Conf. Intelligence in Next Generation
Networks (IMSA 2008), pp.1–6 (2008).

[10] ITU-T Recommendation G.114, One-way transmission time (2003).
[11] Rosenberg, J., Peterson, J., Schulzrinne, H. and Camarillo, G.: Best

Current Practices for Third Party Call Control (3pcc) in the Session
Initiation Protocol (SIP), RFC3725 (2004).

[12] Digium, Asterisk: The open source PBX and telephony platform
(2006).

[13] Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, V.: A Trans-
port Protocol for Real-Time Applications, RFC1889 (1996).

[14] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson,
J., Sparks, R., Handley, M. and Schooler, S.: SIP: Session Initiation
Protocol, RFC3261 (2002).

[15] NIST Net, available from 〈http://www-x.antd.nist.gov/nistnet/〉.

Kazuyuki Tasaka was received his B.E.
degree from Niihama National College of
Technology in 2002, and his M.E. and
Ph.D. degrees from Nara Institute of Sci-
ence and Technology in 2004 and 2010,
respectively. Since joining KDDI in 2004,
he has worked in the field of network ar-
chitecture, communication protocols and

mobile communications. He is currently a research engineer of
the Smart Network Administration Lab. in KDDI R&D Laborato-
ries, Inc. He received the Best Paper Award for Young Researcher
of IPSJ National Convention in 2005, the FIT Young Researcher
Award of IPSJ National Convention in 2009 and the Paper Award
of Multimedia, Distributed Cooperative and Mobile Symposium
in 2007 and 2011. He is a member of IPSJ and IEICE.

Tomohiko Ogishi was received his B.E.
degree in electrical engineering from the
University of Tokyo, Japan, in 1992, and
Ph.D. degree in engineering from Univer-
sity of Electro Communications, Japan, in
2008, respectively. Since joining KDD in
1992, he has been working in the field of
Testing and monitoring of communication

systems. He is currently the Senior Manager of Smart Network
Administration Lab. in KDDI R&D Labs Inc. He received Young
Engineer Award of IEICE in 1998.

c© 2014 Information Processing Society of Japan 494


