
Journal of Information Processing Vol.22 No.3 418–424 (July 2014)

[DOI: 10.2197/ipsjjip.22.418]

Invited Paper

Geocookie: A Space-Efficient Representation
of Geographic Location Sets

Peter Ruppel1,a) Axel Küpper1,b)

Received: November 1, 2013, Accepted: March 13, 2014

Abstract: A new approach is presented that allows a user agent to compute a compact browser cookie-like character
string (called Geocookie) for a third party, whereby for any given geographic location the third party can either infer
that the location is definitely not covered by the Geocookie, or it can infer that the location is probably covered by
the Geocookie, depending on whether the user agent has or has not included the location beforehand. The approach
extends the concept of a Bloom filter and combines it with Geohashes, thus making it possible to store information
about visited geographic locations in the filter. Geocookies can be used in many different scenarios for location-based
queries and location-based services, whenever a user agent wants to inform a third party about a set of visited locations
such that the third party can compile a result that either favors or excludes these locations. In contrast to existing
approaches such as session cookies that are mapped to server-sided stored location trajectories, Geocookies provide a
compact and privacy-preserving structure which does not reveal the actual set of all visited locations, but provides a
one-way check function which can be used by the third party to evaluate given locations against the Geocookie. In ad-
dition, Geocookies provide plausible deniability in case of location matches. This paper introduces a formal definition
for Geocookies together with a discussion on practical applications and embedding into HTTP headers.

Keywords: data structures, spatial data, data efficiency, location privacy, location-based services

1. Introduction

Information retrieval for location-based applications often in-
volves the filtering and processing of datasets on the basis of user-
dependent trajectories and sets of visited places, respectively. For
example, a system that recommends geographic points of interest
(POIs) to users may exclude suggestions for places the users have
already been to, but at the same time favors new POIs that are
near to the ones that have been visited before. In another scenario
a service omits location search results that are near to locations
seen before by the user, or it limits the results to the places that
are well known by the user. Both scenarios usually require the
application to be aware about the set of places visited by the user,
i.e. that the set is either stored within the application context and
linked with a user identifier, or that the set is forwarded to the ap-
plication with every request. Either way the full disclosure of a set
of visited places is unfavorable, mainly because of the following
two reasons: on the one hand the set can grow very large in case
the user visits a lot of places. Especially when the set is provided
on a per-request-basis, this can render the queries impracticable.
On the other hand an even more challenging issue is the possible
traceability of trajectories which concerns the location privacy of
users.

The general problem statement for such application scenarios

1 Technische Universität Berlin, Department of Telecommunication Sys-
tems, Service-centric Networking, Berlin, Germany, http://www.snet.
tu-berlin.de

a) peter.ruppel@tu-berlin.de
b) axel.kuepper@tu-berlin.de

can be formulated as follows: given a set L = {l1, l2, . . . , ln} of
geographic location elements and a location element p, determine
whether there is at least one element in L that covers p. Addition-
ally, the problem can be extended to determining whether there
is at least one element in L which is apart from p no more than a
given distance d, where d corresponds to e.g., the Euclidean dis-
tance. If both L and p are stored in the same system, such queries
can be easily carried out by any current spatial database. How-
ever, the complexity rises when there is a large number of loca-
tion sets, e.g., one set L per user in a many-user system, together
with a high rate of checks to be performed. Such a scenario is
the typical challenge for any location-dependent messaging and
geofencing application. Location-dependent messaging systems
deliver messages to recipients only at certain locations, possibly
considering additional contextual constraints that have been de-
fined when the message was sent. Geofencing applications trig-
ger events based on the entering, leaving, staying or the recur-
rence of mobile targets in certain geographical regions, called ge-
ofences.

Besides performance there is a second challenge for future
location-based services: the characterization and portability of
location sets. Given that more and more location-dependent tasks
are fulfilled on mobile devices, it is required to process e.g., lo-
cation trajectories not only in central databases but also on the
device. At the same time there is a lack of approaches to port a
location set from one application to another, for example when a
mobile user wants to use her personal set of visited places as input
in different location-based applications. Thereby the issue is not
merely the recording of locations in a standardized format such

c© 2014 Information Processing Society of Japan 418

Journal of Information Processing Vol.22 No.3 418–424 (July 2014)

as the XML-based GPS Exchange Format. The point is rather to
provide a compact data structure that holds a scalable amount of
geographic location elements, especially when the location set is
to be a) frequently exchanged between two parties, b) frequently
matched against other location elements, and c) frequently ex-
tended by additional location elements.

Efficiently determining whether a given item is a member of a
set has been extensively researched in the past. One of the most
prominent approaches is the hash-coding method originally intro-
duced by Bloom [2] (known as Bloom filter), which has been ap-
plied to many fields of applications, e.g., for recognizing known
malicious Web URLs or for testing whether a given file is already
present on a disk before performing the actual seek operation. A
Bloom filter allows to efficiently identify nonmembership of an
item in a set S with a certain (adjustable) false-positive rate for
the membership detection. It relies on an m-bit vector V (initially
set to 0) and k independent hash functions h1, . . . , hk. An item
x is added to the filter by setting the bits at h1(x), . . . , hk(x) in V

to 1. The same way membership of an item y can be tested: if
any of the bits at h1(y), . . . , hk(y) in V is 0 then y is identified as
a nonmember, and a probable member otherwise. The false posi-
tive rate of the Bloom filter depends on the size of V , the number
k of hash functions and the number |S | of elements, and can be
adjusted to the specific application requirements.

However, when comparing and matching geographic location

elements it is not only required to identify exact matches, for ex-
ample comparing two pairs of latitude/longitude coordinates, but
also to take into account matches as a result of being covered by
other location elements or because of their spatial proximity to
the element under consideration.

The goal of this paper is to introduce a novel combination of
existing Bloom filter and location hashing approaches that allows
to efficiently evaluate spatial containment of a geographic loca-
tion in a set of previously collected locations. Generally speak-
ing the anticipated application domains are both native and web-
based LBS applications that rely on filtering geographic locations
in order to compile their responses.

The remainder of this paper is structured as follows: the fol-
lowing section introduces the fundamentals of the data structure
and describes how location elements can be added and tested.
Also the false positive rate of the proposed approach is discussed.
Section 3 highlights different use cases and exemplifies numbers
for the utilization of the approach within HTTP, followed by a
discussion in Section 4. Section 5 concludes the paper and high-
lights future work.

2. Geocookies

In the following a new data structure, called Geocookie, is in-
troduced. The approach is based on the well-known concept of
a Bloom filter [2] and combines it with Geohashes, which have
been introduced by Niemeyer [10]. The main idea behind the
Geocookie is to provide a space-efficient method for representing
a set of geographic locations, and to allow for fast membership
tests on the set, i.e., to check whether a certain geographic loca-
tion is covered by any location element in the Geocookie. Once
a location element has been added to the Geocookie, it cannot be

removed, and an increasing number of elements in the Geocookie
will increase the false positive rate of membership tests (but the
false positive rate can be adjusted as described below and non-
existing members are always identified correctly). This is why
Geocookies are not intended for perfect checks on geographic ob-
ject, but rather for various optimization purposes in the domain of
location data queries.

The Geocookie is a space-efficient data structure that can be
used to test whether a geographic location is spatially covered by
at least one member in a set L = {l1, l2, . . . , ln} of geographic lo-
cations that have been added to the Geocookie beforehand, where
every li ∈ L, 1 ≤ i ≤ n is described by a polygon of arbitrary size,
thus making it possible to also represent single points.

A Bloom filter is used to store the elements and to test for mem-
bership: initially, a Geocookie is an m-bit vector V , whose bits
are all set to 0. In addition there need to be k independent hash
functions defined. For a given geographic location element l the
Geocookie provides two operations:
• add(l): adds the geographic location l to the set L. Adding an

element to L will result in some of the bits in V to be set to 1,
which depends on the hash functions and the mapping of 2D
geographic areas onto one-dimensional identifiers, which is
discussed below in Section 2.1.

• isCovered(l): returns false if �li ∈ L : li ⊇ l (i.e., there is
no element in L that fully covers l), or true, if the geocookie
already contains an element (area) that probably covers the
given location l. The false positive rate is a function of the
Geocookie’s size and the chosen mapping function, which is
discussed below in Section 2.2.

Furthermore, we assume that the set L of geographic locations in
the Geocookie is
• monotonically increasing, i.e., the number of elements in L

may increase over time, but elements are not removed,
• diverse, i.e., the polygons stored in L significantly vary in

size and geographic distribution,
• possibly overlapping, i.e., any pair of elements in L might

have a non-empty intersection for the corresponding areas,
and

• approximative, meaning that the elements in L may be sub-
ject to minor inaccuracies when being mapped onto the real
world.

2.1 Adding Locations to the Geocookie
Existing Bloom filters already provide methods to add and test

e.g., URLs or other textual elements in an efficient manner. How-
ever, when storing and testing geographic locations it is not only
required to recognize an exact area, but also to test whether a
given location is inside a previously stored area. Geographic lo-
cations are typically described e.g., by a coordinate, a circle, or
by a polygon that represents an area. In either way they can be
approximated by some geometric object such as the minimum
bounding rectangle or minimum bounding circle. Our approach
is to rely on such approximations when performing the compari-
son between locations, thus trading some accuracy for efficiency.

We utilize the existing concept of a Geohash to approxi-
mate and process geographic locations within the geocookie.

c© 2014 Information Processing Society of Japan 419

Journal of Information Processing Vol.22 No.3 418–424 (July 2014)

The Geohash is a simple and brilliant method invented by
Niemeyer [10] for geocoding a pair of latitude/longitude co-
ordinates into a shorter hash. For example, the WGS84 co-
ordinate 52.513061, 13.320048 can be encoded into the string
u336xpeqg85d. The encoding is achieved by recursively dividing
the latitude (and longitude respectively) into two intervals. Start-
ing from the intervals −90◦ to 0◦ and 0◦ to 90◦ a binary 0 is noted
if the latitude falls into the lower interval and binary 1 in case
of the upper interval. In the second round the according interval
0◦ to 90◦ is further subdivided into the intervals 0◦ to 45◦ and
45◦ to 90◦ and so on. The two resulting bit sequences are then
alternately interleaved and the result is encoded to Base32 [1].
Geohash encoding brings several advantages: the accuracy of a
geohash can be coarsened by just removing characters from the
end of the hash. Furthermore, two hashes with the same prefix
usually point to the same region, i.e., geohashes can be used for
rough estimate proximity searches. However, in certain cases two
locations that are in close proximity can result in totally different
hashes, e.g., if one is directly west of the prime meridian and the
other location is directly east of it.

The accuracy of a position information given in geohash nota-
tion depends on the length of the geohash. For example, a geo-
hash of length 4 is accurate ±0.087◦ in the latitude and ±0.18◦

in the longitude, which is equivalent to ±20 km. Extending the
length to 6 will increase the latitude accuracy to ±0.0027◦, longi-
tude accuracy to ±0.0055◦ and ±0.61 km overall.

A first and straightforward approach for realizing the add() op-
eration of the Geocookie could be as follows: for a given location
l find its minimum bounding rectangle lmbr. Then compute a geo-
hash cp(l), called common prefix of l, which is defined as the
geohash that has the same prefix for all points inside lmbr. Then
add cp(l) to the internal Bloom filter of the geocookie.

Obviously this naive approach has several disadvantages: first
of all it does not scale well in case of many single-point locations
that are all next to each other. Consider e.g., locations originating
from a Global Positioning System (GPS) receiver that rapidly re-
ports many locations which are all apart from each other by only
a few meters. Such data points will unnecessaryly fill the geo-
cookie and lead to an undesirable false positive rate later on. Also
this naive approach does not properly handle all kinds of poly-
gons. For example a diagonal polygon that represents a larger
coast area will result in a large minimum bounding rectangle and
thus in a short geohash, which does not properly reflect the actual
area. A third drawback is that redundant information might be
added in case some (smaller) location is added, but some other
(larger) area, which contains the former, is already present in the
filter.

The issue of multiple nearby locations can be solved by intro-
ducing a maximum length cpmax for the common prefixes. De-
pending on the application requirements, cpmax could be set e.g.,
to 8, which is equal to an accuracy of ±0.000085◦ for the latitude
and ±0.00017◦ for the longitude, or ±19 m in total.

Large areas can be handled by introducing a minimum length
cpmin for the common prefixes. In case |cp(l)| < cpmin, then mul-
tiple geohashes with longer prefixes need to be computed for l as
follows: identify the set F = { f1(l), . . . , fq(l)} of geohashes, such

that

∀ f (l) ∈ F : | f (l)| = cpmin (1)

and

∀ f (l) ∈ F : f (l) ∩ l � ∅ (2)

and ∀p ∈ l:

∃ f (l) ∈ F : f (l) is a prefix of geohash(p) (3)

whereas f (l)∩ l denotes the intersection of all points that are con-
tained in the rectangle represented by the geohash f (l) and all
points contained in l. The basic idea behind this approach is to
raster the overlarge location element l into many smaller rectan-
gular fragments whose size equals the size of the rectangles that
are represented by Geohashes with the minimum allowable length
cpmin.

After the common prefix cp(l) for l has been identified (or mul-
tiple f1(l), . . . , fq(l) respectively), the corresponding identifier is
added to the Bloom filter. Given that a location area element
might be covered by other location elements that exist in the
Bloom filter, we perform an additional check before adding the
element in order to reduce overall redundancy. Let prei(cp(l)),
1 ≤ i < |cp(l)|, be the prefix of cp(l) with length i. To decide
whether or not to add cp(l), check for every prefix prei(cp(l)),
1 ≤ i < |cp(l)| of cp(l), whether isCovered(prei(cp(l))) returns
true or false. If all checks for the prefixes return false then
add cp(l) to the Bloom filter, otherwise discard it. Addition is
achieved by applying the k independent hash functions onto the
Geohash and by setting the resulting bit positions in V to 1.

Choosing the right values for cpmax and cpmin depends on the
specific application scenario, but for obvious reasons very low
values for cpmin, e.g., 1 to 3, might quickly lead to many false
positives when elements are tested for membership.

2.2 Testing for Coverage
Once location elements have been added to the Geocookie,

the purpose of the isCovered(l) method is to check, whether a
given location element l is covered by any of the elements already
stored in the Geocookie.

In the first step a common prefix cp(l) is computed the same
way as before by taking into account the minimum bounding rect-
angle lmbr, cpmin and cpmax. In case the resulting Geohash is too
short, multiple longer Geohashes f1, . . . , fm are computed as be-
fore.

In the second step classical Bloom filter checking is performed
on each Geohash. Therefore the k hash functions are applied on
each Geohash. The resulting values of each of the k hash func-
tions point to positions in the bit vector V . If at least one of these
bit positions in V is set to 0, then the Geohash element is defi-
nitely not contained in the Geocookie. In case all of the resulting
k bits in V are set to 1, then the Geohash element is probably

contained in the Geocookie. The probability of false positives
depends on the length of V and the number k of hash functions,
and is discussed below.

However, testing only for the Geohash of l will not reveal any

c© 2014 Information Processing Society of Japan 420

Journal of Information Processing Vol.22 No.3 418–424 (July 2014)

coverage of existing (larger) regions. In case the initial check
returns false (i.e., the Geocookie does not contain the Geohash
value), additional checks need to be performed. Again, all pre-
fixes prei(cp(l)) are tested too and only if none of these checks
return true the location is identified as a non-member of the Geo-
cookie.

2.3 False Positives and Location Coverage
The probability Pf p for a false positive when testing an element

in a Bloom filter is

Pf p =

⎛⎜⎜⎜⎜⎜⎜⎝1 −
(
1 − 1

m

)kn
⎞⎟⎟⎟⎟⎟⎟⎠

k

(4)

where m is the number of bits in V , k is the number of independent
hash functions and n the number of locations already stored in the
Bloom filter [9]. For example, if a 25 kB bit array (200.000 Bits)
is already filled with 10.000 elements using 10 hash functions,
the false positive rate will be 0.00009. Recent work [4] suggests
that this classic formula is wrong for small values of m, but the
error can be neglected if m is large enough (> 1000).

For fixed values of m and n the optimum value for k, with re-
spect to a minimum false positive rate, is k = ln 2 m

n [7].
Some of the location elements in the Geocookie might lead to

multiple Geohashes because they exceed the minimum allowable
prefix length and need to be fragmented. Thus the number of lo-
cation items l may be lower than the actual number n of items
that are added to the Bloom filter. Therefore the proportion f of
location fragmentation needs to be considered, which is defined
as the ratio between the number of Geohashes and the number of
distinct location elements.

Thus the false positive rate for the Geocookie becomes

Pf p =

⎛⎜⎜⎜⎜⎜⎜⎝1 −
(
1 − 1

m

)kn f
⎞⎟⎟⎟⎟⎟⎟⎠

k

(5)

Furthermore, the coverage ratio c ≥ 1 of a location element
and its resulting Geohash bounding boxes is employed, it is de-
fined as the fraction between the area covered by the Geohash
approximation and the area covered by the location. The value
of c for a location cannot be deduced once the location has been
added to the Bloom filter. It is therefore important to calculate it
during the addition, and utilize an increased Geohash raster reso-
lution in case the desired coverage ratio cannot be met with the
current prefix length.

Figure 1 shows an example for varying bit vector lengths and
the resulting false positive rates for optimal k and f = 1.

Figure 2 shows the same scenario, but for f = 2, which equals
two fragments per location element.

By keeping track of the number of previously stored elements,
it is possible to assess the current statistical false positive rate for
every Geocookie instance. Once it reaches a certain threshold,
e.g., 0.001, it can be declared as full, thus inhibiting more addi-
tions. For some application scenarios it could be reasonable to
focus on a single resolution in terms of the geo raster approxima-
tion. In that case cpmin will be equal to cpmax, which will remove
the necessity to perform additional checks on different prefixes.

Fig. 1 False positive rates for different numbers of |L|: 10,000 (black),
20,000 (red), 30,000 (blue), 40,000 (green).

Fig. 2 False positive rates for different numbers of |L|: 10,000 (black),
20,000 (red), 30,000 (blue), 40,000 (green).

While the false positive rate of a Geocookie is affected by both
the size of V and the number k of hash functions, the complexity
of adding a location element or testing for coverage is O(k).

The question which hash functions to use is the same as for
any Bloom filter. Most importantly the hash functions need to
be independent. In addition they should be as fast as possible
with a uniform distribution. Good candidates are MurmurHashes,
mainly because of their speed. But also SHA hashes can be ap-
plied, e.g., by taking fixed-length snippets of SHA-512 as values
for hi(x).

2.4 Related Work
There exist several extensions to the classical Bloom filter. An

extensive overview on network applications is given by Broder
and Mitzenmacher [3]. Counting Bloom filters have been intro-
duced by Fan et al. [6], they allow to delete elements from the fil-
ter by applying counters for each individual bit in the filter. Com-
pressed Bloom filters [8] reduce the size of the data that is actually
transmitted over the network by using larger but sparser bit vec-
tors. Spectral Bloom filters [5] allows to filter elements based on

c© 2014 Information Processing Society of Japan 421

Journal of Information Processing Vol.22 No.3 418–424 (July 2014)

their multiplicities in a multiset. However, existing approaches
do not apply to geographical coordinates and they do not provide
the means to test for cover of location elements. Geohashing on
its own is widely used today e.g., in spatial databases and web
map services for efficient storage and indexing. According to our
present knowledge the proposed Geocookie approach is the first
of its kind to combine location hashing with Bloom filters.

3. Geocookies for Location Data Processing

The general data structure of a Geocookie can be utilized in
various different ways. In the following we classify different use
cases and discuss their adaptability.

3.1 Types of Geocookies
Browser Geocookies can be used to append location sets to

usual HTTP requests. Therefore the bit vector V is either send
in the HTTP header or as an HTTP POST parameter. That way
a client (browser) can send the Geocookie on a per-request basis
to servers, where the location set acts as a filter on the returned
response elements. The embedding of Geocookies into HTTP is
discussed below in Section 3.4.

Local Geocookies can be applied both locally in mobile de-
vices’ browser storage and native applications’ contexts, or also
on the server side. The advantage of local geocookies is that they
provide very fast means to assess whether location data, such as
newly received GPS coordinates, are relevant in the current ap-
plication context. On server-sided applications local Geocookies
facilitate location-dependent event processing. For example, a
Geocookie may present a set of certain cities or regions. Incom-
ing location events can then be matched against the Geocookie
and in case the event location is covered can trigger the accord-
ing event. Essentially such a procedure is similar to other means
such as basic Bloom filters, hash maps or bit maps, except for
validating the coverage of location objects. If an application pro-
cesses solely 2D point coordinates, then the Geocookie will not
add significant performance, except for space savings when all
coordinates are coarsened by limiting the length of Geohashes –
which basically trades accuracy for performance. But in case the
application has to deal with areas, polygons and coverage of ob-
jects, then the combination of Bloom filters and Geohashes is a
convenient approach.

Hierarchical Geocookies provide a facility to separate multiple
layers of location granularity in an application context. Therefore
several Geocookies are maintained, which are configured with in-
creasing values for cpmax. The coarser ones will require less space
and can be used to reveal rough information about contained lo-
cations. In parallel, more fine-grained Geocookies are created,
possibly focussed on certain Geohash prefixes.

Public Geocookies represent a fixed set of locations that are
not specific to a certain person or trajectory, but rather represent
a group of locations in popular queries. For example, a public
Geocookie may represent all pedestrian zones in a specific city or
all points that are within a 1 kilometer radius of a train station.
Assuming that no elements are added after its creation, the pa-
rameters for m and k can be fine tuned in order to minimize the
size of V and achieve an acceptable false positive rate.

Concealed Geocookies contain either additional artificial loca-
tion elements or are configured with a high false positive rate,
which both disguises the actual set of locations of interest. It can
be applied e.g., as a browser Geocookie and will hide the gen-
uine elements from a server, thus making it possible to cloak e.g.,
trajectories or queries around visited places. That way concealed
Geocookies also warrant plausible deniability in terms of queried
locations, which increases the location privacy in some applica-
tion scenarios.

3.2 General Privacy Considerations
Location privacy approaches can be grouped generally into

three categories: privacy policies, data abstraction, and identifier
abstraction. Privacy policies let users specify how location data
about them should be processed. Data abstraction is achieved
by artificially obfuscating location data, i.e., reducing the spatial
and/or temporal accuracy, whereas identifier abstraction utilize
pseudonyms that are linked to location data. In addition, there
exists concepts such as k-anonymity, which describes the prop-
erty of a target of being indistinguishable from at least k other
targets.

The privacy properties of a geocookie belong to the class of
data abstraction. However, it induces a different kind of privacy
that is not directly related to k-anonymity, but to plausible deni-
ability. By passing on a geocookie and making a statement such
as “These are the places I’ve been to in the last year, please com-
pile some travel recommendations for me,” the sending party can
plausibly deny that a certain location element is contained in the
geocookie. The receiving party could only learn about the ac-
tual false positive rate Pf p (and thus about the probability that the
denial is false), if and only if it knows the number n of existing
elements in the geocookie. But given that n is only known by the
sender, plausible deniability is guaranteed.

3.3 Distance-based Testing
So far, we described a combination of Bloom filters and Geo-

hashes that allow to examine whether a location element is cov-
ered by any element in a location set. With a small modification
it is possible to also allow a distance parameter d, so that the
function isCovered(l) not only returns true if l is covered by an
elements in L, but also if an element in L is apart from l not more
than d. Therefore we need to recursively lookup the eight neigh-
boring Geohash cells of cp(l) and perform a regular Bloom filter
test on their Geohashes.

3.4 HTTP Embedding
Geocookies can be embedded in HTTP request either as or-

dinary browser cookies or as POST parameters. Current Web
browsers limit the size of header cookies to 4,096 Bytes, which
directly limits the size of V . Figure 3 gives an overview on
varying numbers of |L| and the resulting false positive rates for
m = 32,000. A second scenario for m = 64,000 is depicted in
Fig. 4.

Depending on the application requirements, such a size can al-
ready serve a couple of thousands of location elements. In case
more elements (or a lower false positive rate respectively) are re-

c© 2014 Information Processing Society of Japan 422

Journal of Information Processing Vol.22 No.3 418–424 (July 2014)

Fig. 3 False positive rates for a fixed-length HTTP-Geocookie with m =
32,000 for a varying number of elements in L. The four different
values for k are the optimal values for n = 1,000, 2,000, 3,000 and
4,000 respectively. For example, the red curve (k = 11) is the opti-
mal solution for 2,000 elements.

Fig. 4 False positive rates for a fixed-length HTTP-Geocookie with m =
64,000 for a varying number of elements in L. The five different val-
ues for k are the optimal values for n = 3,000, 4,000, 5,000, 6,000
and 7,000 respectively. For example, the red curve (k = 11) is the
optimal solution for 4,000 elements.

quired, Geocookies can also be saved in the local Browser stor-
age. The exact maximum allowable space varies from browser to
browser, but currently is in the order of magnitude of a few MB
per domain. At the same time these larger Geocookies can be
transmitted as POST parameters, their size is not limited by the
sender but only by the receiving application.

If Geocookies are exchanged between two parties it is required
that not only the bit vector, but also the numbers for |L| and k,
as well as the exact hash functions and the values for cpmin and
cpmax are named. So far they can be appended as additional
HTTP header fields. The design of a standardized protocol for
Geocookie exchange is outside the scope of this paper and object
of future work.

4. Discussion

The presented approach aims at application scenarios that be-
nefit from fast coverage checks and which at the same time are
tolerant towards a certain false-positive rate. This compromise
cannot be made globally, but rather needs to be adjusted to the ap-
plications’ needs. One fundamental decision is the determination

of the minimum and maximum length for the Geohash prefixes.
Some levels, e.g., sub-meter accuracy, will not add any value
to most applications. At the same time the difference between
the minimum and maximum prefix length defines how coarse-
grained large location elements will be mapped.

In case the application is less focused on varying polygons, but
more on the geographical distribution of homogeneous location
elements, then it can perfectly make sense to set cpmin = cpmax.
This can significantly reduce the overall number of objects in the
Bloom filter, but only if there are no outliers, i.e., large polygons
that will cause a high number of fragments to be inserted.

An open issue is the removal of previously inserted location el-
ements. There exist approaches to remove elements from a classic
Bloom filter by basically counting the number of times a certain
bit has been set to 1 and decrementing the corresponding num-
bers upon removal of an element. However, these approaches
apply to single-identifier items only. For the Geocookie, one lo-
cation element can cause multiple Geohashes to be added to the
Bloom filter. In that case the relation between these rectangular
regions (Geohashes) cannot be recovered later on. And given that
different location elements may spatially overlap, their resulting
Geohash fragments cannot be removed without possibly destroy-
ing another element.

A second challenge for future work is to keep track of the time
at which a location element has been added. This would require
to extend the filter by time stamps and could support applications
that rely on time-based ordering of locations.

5. Conclusions

In this paper we have proposed a compact representation of
geographic location sets, which is based on the well-known con-
cepts of Bloom filters and Geohashes. Compared to existing ap-
proaches the advantage is that polygonal location elements can
be maintained and tested for coverage. The granularity of stored
location elements can be adjusted by defining upper and lower
bounds for the Geohashes, and the false positive rate for coverage
checks can be computed and adjusted in advanced. Geocookies
support various use cases such as passing location sets in browser
requests, speeding up local lookups on location elements or shar-
ing fixed location sets that act as filters for location-based queries.

References

[1] RFC 3548 - The Base16, Base32, and Base64 Data Encodings (2003).
[2] Bloom, B.H.: Space/time trade-offs in hash coding with allowable er-

rors, Comm. ACM, Vol.13, No.7, pp.422–426 (July 1970).
[3] Broder, A. and Mitzenmacher, M.: Network applications of bloom fil-

ters: A survey, Internet Mathematics, Vol.1, No.4, pp.485–509 (2004).
[4] Christensen, K., Roginsky, A. and Jimeno, M.: A new analysis of the

false positive rate of a bloom filter, Inf. Process. Lett., Vol.110, No.21,
pp.944–949 (Oct. 2010).

[5] Cohen, S. and Matias, Y.: Spectral bloom filters, Proc. 2003 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’03, pp.241–252, ACM (2003).

[6] Fan, L., Cao, P., Almeida, J. and Broder, A.Z.: Summary cache:
A scalable wide-area web cache sharing protocol, IEEE/ACM Trans.
Netw., Vol.8, No.3, pp.281–293 (June 2000).

[7] Kirsch, A. and Mitzenmacher, M.: Less hashing, same performance:
Building a better bloom filter, Random Structures & Algorithms,
Vol.33, No.2, pp.187–218 (2008).

[8] Mitzenmacher, M.: Compressed bloom filters, IEEE/ACM Trans.
Netw., Vol.10, No.5, pp.604–612 (Oct. 2002).

c© 2014 Information Processing Society of Japan 423

Journal of Information Processing Vol.22 No.3 418–424 (July 2014)

[9] Mullin, J.K.: A second look at bloom filters, Comm. ACM, Vol.26,
No.8, pp.570–571 (Aug. 1983).

[10] Niemeyer, G.: Geohash, available from 〈http://geohash.org〉.

Peter Ruppel is a senior researcher and
lecturer at Telekom Innovation Labo-
ratories, a private-public partnership of
Deutsche Telekom AG and Technische
Universität Berlin. He holds a doctoral
degree in computer science from LMU
München. His current research interests
include Location-based Services, Mobile

Applications, Location Data Analysis and Positioning Systems.

Axel Küpper is a professor for Service-
centric Networking at Telekom Innova-
tion Laboratories, which is a private-
public partnership of Deutsche Telekom
AG and Technische Universität Berlin,
and a co-founder of Bitplaces GmbH,
a Berlin-based start-up offering solutions
for the next generation of Location-based

Services. Prior to his current tenure, he researched and lectured at
RWTH Aachen and LMU München, where he received his post-
doctoral lecture qualification while working as an assistant pro-
fessor and research assistant at the institute for computer science.
His current research topics include Location-based and Context-
aware Services, Cloud Computing, Semantic Web, Online Social
Networks, and Business Process Management.

c© 2014 Information Processing Society of Japan 424

