
IPSJ SIG Technical Report

Performance modeling of a hierarchcial N-body algorithm
for arbitrary particle distribution

(Unrefereed Workshop Manuscript)

Keisuke Fukuda1,a) NaoyaMaruyama2,3 Jeremy S. Meredith4 Jeffrey S. Vetter4

SatoshiMatsuoka1

Abstract: Hierarchical algorithms are considered to be important in next-generation large scale scientific computing.
Such algorithms are typically compute-intensive and have higher communication locality that are beneficial on future
supercomputers with much less B/F ratio. However, one of the big challenges of such algorithms is that the data
structures and computation/communication patterns are irregular and it is difficult to analyze and predict the perfor-
mance. In this paper, we introduce a performance modeling method for Fast Multipole Method, a typical example
of hierarchical algorithms for N-body problems, using a domain specific performance modeling language Apsen. We
show that our modeling scheme can adapt to various particle distributions parameters and provides useful information
to application researchers to optimize algorithmic parameters.

1. Introduction
Many studies predict the next generation supercomputers will

be more flops rich and bandwidth poor and the B/F ratio will be
even smaller than those of the present supercomputers. In ad-
dition, the cost of data movement will continue increasing and
global communications will be inefficient. One of the big issues
of extremely large scale scientific applications is to reduce global
communications and increase compute intensiveness.

The Fast Multipole Method (FMM) is an approximating al-
gorithm for N-body applications and other scientific problems.
It is a hierarchical algorithm, which is based on recursive de-
composition and tree data structures. It is considered promis-
ing for extremely large-scale simulations thanks to its reduced
global communications and higher compute intensiveness and lo-
cality. Yokota et al. have shown that FMM is more efficient than
a conventional FFT-based spectral method with more than 4000
GPUs[1]. FMM was developed as an N-body algorithm, but now
it is known to be useful for other applications including precon-
ditioner for the boundary element method.

Despite the benefits of FMM, there are several big challenges
in FMM. One of the challenges is difficulty of performance anal-
ysis and prediction caused by the irregularity of data structures
and computations. FMM is based on recursive decomposition of
the simulation space and uses an octree as a main data structure,

1 Tokyo Institute of Technology, Meguro-ku, Tokyo, 152–8550 Japan
2 RIKEN Advanced Institute of Computational Sciences, Kobe-shi,

Hyogo, 650–0047, Japan
3 JST CREST
4 Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN,

U.S.A.
a) fukuda@matsulab.is.titech.ac.jp

where computation, memory access and communication patterns
are more complex than many other algorithms that are based on
matrices or regular grids. FMM is an adaptive algorithm, which
means that the shape of the tree data structure highly depends on
particle distribution of input data and not predictable before run-
time. In addition, FMM can support any computation kernel if
appropriate multiple and local expansions are given. They have
different spatial and computational complexities[2].

Performance modeling is an effective approach to analyze and
predict the performance of an application. Performance modeling
efforts for FMM, however, has been limited. This is mainly be-
cause the irregularity and data dependency. Mathematical models
cannot express the “shape” of a tree. Choi et al[3] have build a
detailed analytical performance model which considers memory
and cache hierarchy for KIFMM: one of the major implementa-
tions of FMM. Their models are limited to uniform particle dis-
tribution which generates a perfectly balanced tree and assumes
deep understanding of the behavior of the application.

In this paper, we propose a performance modeling method us-
ing a domain specific modeling language Aspen. In Aspen, ap-
plications and platform hardware are modeled in a domain spe-
cific language (they are called “application modes” and “machine
models”). Number of flops, memory reads and writes, commu-
nication, processor flops and bandwidth and many other charac-
teristics are expressed. Aspen runtime combines an application
model and a machine model to predict performance. Using As-
pen delivers several benefits. First, the tree data structures and
flow of computations can be fully expressed in Aspen grammar,
which means any particle distribution can be supported. Second,
the models are composable: since not only applications but ma-

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29



IPSJ SIG Technical Report

chines are modeled, performance models can be combined and
applied to a new hardware. Many supercomputers nowadays
are accelerated with NVIDIA GPUs or Intel MIC processors and
new generations of the accelerators or even a new device might
be supported. There are also a wide variety of interconnects.
Many GPU-accelerated supercomputers have fat-tree infiniband
network, while IBM Blue Gene series and the K computer have
their own interconnects. If the application and hardware perfor-
mance models are integrated, it is not realistic to support all plat-
forms or rebuild the model for new hardware.

2. N-body algorithms and the Fast Multipole
Method

2.1 Family of N-body algorihtms
N-body problems appear in many scientific applications in-

cluding astrophysics, molecular dynamics, acoustic analysis, and
electromagnetics. The computation complexity of the native
method is O(N2) and several approaches have been proposed to
reduce the complexity. The most accepted algorithms are Barnes-
Hut tree algorithm[4] and the Fast Multipole Method(FMM)[5].
They are approximate algorithms and reduce the computational
complexity to O(NlogN) and O(N) respectively. We focus on
FMM in this paper.

2.2 Fast Multipole Method
FMM was first proposed by Greengard[5]. In this paper, the

algorithm is described only as long as necessary and details and
mathematical aspects of the algorithm are not given. For more
details, Greengard[5] and Yokota wrote a very good survey[2].

FMM achieves O(N) complexity by aggregating far particle
information becase the force from other particles decays rapidly,
while force from near particles is still calculated directly in the
same manner of the naive N-body computation. The aggregated
data of particles is called “multipole” and “local” from the math-
ematical techniques.

Within a single timestep, the computational domain is split re-
cursively into an octree of which each leaf cell has at most Ncrit

particles. Ncrit is a user-defined parameter that determines bal-
ance of direct computation and approximate computation. The
generated octree is higher and there is more approximate com-
putations and less direct computations. Ncrit is typically between
16 and 256 for CPUs and more than 1000 for GPUs and mas-
sively parallel many core processors. After building an octree,
actual force calculation is done in an evaluation step. There are
six phases in the evaluation step: P2P, P2M, M2M, M2L, L2L.
P2P phase evaluates the forces between near particles and the rest
of the phases are for approximate computation. These six phases
are common between FMM implementations, although there is
great difference in their execution order and control flows.

In P2P phase, direct N-body calculation is done with a limited
set of leaf cells. In a typical implementation and configuration,
P2P happens only between a pair of neighboring cells. Each leaf
cell has at most Ncrit particles and number of P2P interactions is
proportional to the number of leaf cells: O(N/Ncrit). Thus the
complexity of total amount of P2P computations is O(NNcrit).

Approximate computation begins with P2M(Particle to Multi-

M2M	

M2L	

L2L	

P2M	 L2P	

Fig. 1 Picture of P2M, M2M, M2L, L2L, L2P phases

pole) phase. First, particles in a leaf cell are aggregated into an
vector called “multipole” using a mathematical technique called
“multipole expansion.” Next, M2M (Multipole to Multipole)
phase walk the tree upward from the leaves to the root to ag-
gregate children’s multipole vectors into the parent’s single mul-
tipole vector recursively. M2M is followed by M2L (Multipole
to Local) phase that computes interactions between “far” nodes
and converts the multipole vector of a source node to a vector
called “local” of the target node. This means information from
far particles is transmitted to receiver particles. A local vector of
a node is transferred to the child nodes using “local” expansion.
This phase is called L2L (Local to Local). After L2L interactions
reach the leaf nodes and local vectors are ready, the particles re-
ceive information in L2P (Local to Particle) phase.

Another parameter P is used to specify accuracy of evaluation.
Multipole expansion converts the force kernel into a series. Ap-
proximation is done by ignoring the terms after the P-th term. P
is typically between 4 and 12 depending on applications.

2.3 ExaFMM
ExaFMM is an implementation of FMM developed by Yokota

et al.[6] It is one of fastest implementations as of 2013[2]. It is a
collection of C++ header files and designed to be an integration
framework for many N-body applications.

In this paper we focus on a single-node, multithreaded version
of ExaFMM. ExaFMM is parallelized using MassiveThreads[7]
by Taura[8].
2.3.1 Tree construction

ExaFMM first constructs an octree using recursive decomposi-
tion of the space. As described above, the space is decomposed
into 8 children recursively until all of the leaf nodes have at most
Ncrit particles. The tree can be adaptive, which means that levels
of a leaf cells differ, depending how many particles are within a
certain area. After the decomposition, the octree is converted into
a linked list of nodes.
2.3.2 Evaluation

In ExaFMM, there are three major steps in the force evalua-
tion phase: upwardPass, dualTreeTraversal, and downwardPass.
It is a unique feature of ExaFMM that the three steps are imple-
mented in a recursive and task parallel way. They start from the
root cell and traverse the tree spawning tasks if necessary. The
efficient implementation of underlying MassiveThreads runtime
enables tens of thousands of tasks run efficiently on a multicore

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29



IPSJ SIG Technical Report

CPU. upwardPass calculates P2M kernel from particles to multi-
pole within each leaf cell and M2M kernel from children’s multi-
pole to parent’s multipole. dualTreeTraversal computes M2L ker-
nel or P2P kernel on every pair of tree nodes, depending on if they
are “near” or “far”. Finally, downwardPass is an inversed process
of upwardPass, where L2L and L2P kernels are calculated. Be-
low are shown the pseudo code of the three steps (partially cited
from Taura[8]).

// upwardPass

def upwardPass(cell) {

for ch in children of cell {

// spawn child tasks if necessary

upwardPass(ch)

}

if(cell is leaf?) {

P2M(cell)

} else {

M2M(cell)

}

}

// dualTreeTraversal

def daulTreeTraversal (C1, C2) {

if (C1 and C2 are far enough) {

M2L(C1, C2)

}

else if (C1 is leaf and C2 is leaf) {

P2P(C1, C2)

}

else if (C1 is leaf) {

for cc in C2’s children {

traverse(C1, cc)

}

}

else if (C2 is leaf) {

for cc in C1’s children {

traverse(cc, C2)

}

}

else if (C1 == C2) {

for a,b in C1’ children where a < b {

traverse(a,b)

}

}

else if (radius(C1) > radius(C2)) {

// If C1 is a larger node

for c in C1’s children {

traverse(c, C2)

}

}

else {

// If C2 is a large node

for c in C2’s children {

traverse(C1, c)

}

}

}

// downwardPass

def downwardPass(cell) {

// calculate L2L from the parent to cell

L2L(cells)

if(cell is leaf?) {

L2P(cell)

} else {

for ch in cells’ children {

downwardPass(ch)

}

}

}

3. Aspen
In this section, we give a brief overview of a performance mod-

eling domain specific language Apsen. We don’t describe the
grammar or detailed information how Aspen works here. For
more details, refer Spafford et al.[9].

In Aspen language, calculation, memory access and communi-
cation of an application are explicitly written. It also has hard-
ware specifications, called machine models, including floating
point calculation units, accelerators, memory devices, and net-
work devices and topologies. The Aspen runtime combines the
application model and machine model to estimate runtime, en-
ergy consumption, scalability and other aspects of application ex-
ecution.

Aspen was originally proposed as a high-level modeling sys-
tem to enhance co-design and cooperation between application
researcher and computer scientists and enables efficient future
supercomputer designs, but it is also useful for our purposes of
modeling irregular applications. Modeling such applications with
conventional mathematical models is highly challenging. Aspen
allows application models to be written using data structures and
control flows, which are enough expressive to model tree data
structures and traversal operations. Another benefits of adopting
Aspen is that it provides modular and composable components of
application and machine models so that the force kernels of an
application and ExaFMM framework can be separated in a so-
phisticated way.

4. Modeling
We build a performance model of ExaFMM in two steps: mod-

eling of the 6 find-grained kernels (P2P, P2M, M2M, M2L, L2L,
L2P) and combining them in the control flow of upwardPass, Du-
alTreeTraversal, and downwardPass phases.

4.1 Modeling 6 Kernels
In this section, we build models of 6 fine-grained kernels (P2P,

P2M, M2M, M2L, L2L, L2P). As described above, ExaFMM is
designed as a framework to support any user-provided kernels if
sufficient multipole and local expansions are given. Thus these
kernel models can be built by users and integrated into the con-
trol flow model. The models are self-contained: flops, memory
accesses based on necessary algorithmic parameters such as P
are sufficient and they don’t need the information of ExaFMM.

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29



IPSJ SIG Technical Report

In this paper, we focus on the Cartesian expansion kernels, which
are embedded in ExaFMM distribution and are the simplest.

The actual models of the kernels are fairly straightforward. Be-
low is an example of P2P kernels. Constant numbers embedded
in the model is calculated by the model generation routine from
the algorithmic parameters. Although such constants can be pa-
rameterized in the model and given in the evaluation time, we
decided to embed the numbers directly in the models due to mi-
nor technical issues of Aspen runtime.

kernel P2P_100_125_True {

// mutual = True, Ni=100, Nj=125, nn=12500, n2=225

execute {

loads [225 * 4 * wordSize] from srcBodies

loads [225 * 4 * wordSize] from trgBodies

flops [12500 * 3*3] as simd

flops[12500 * 6 + 3] as simd

flops [12500 * 1] as simd

flops [12500 * 1] as sqrt, simd

flops [12500 * 2] as simd

flops [12500 * 6] as simd

flops[12500 * 1 * 4] as simd

stores [125 * wordSize * 4 * 1] to srcBodies

}

execute {

flops [100 * 4] as simd

stores [100 * wordSize * 4] to trgBodies

}

}

4.2 Modeling tree structure and control flows
After the models of the six kernels are ready, we can generate a

whole application model of ExaFMM. In a normal situation it is
necessary to port all of the tree-construction code of ExaFMM to
a model generation program to model ExaFMM’s behavior with-
out actually running ExaFMM. However, it’s a technical issue and
the range of this paper is to evaluate how the models can estimate
the behavior of ExaFMM. Thus we re-use the ExaFMM code and
generate Aspen code after an octree is generated. As described
above, a simple linked list of octree nodes is obtained from the
tree construction phase and it is feed to model generation script.
Below is a small part of the generated Aspen code.

model exaFMM {

param P = 4

param wordSize = 4

param NCHILD = 8

param NTERM = P*(P+1)*(P+2)/6

data CX [3*wordSize]

data BX [3*wordSize]

data Xi [3 * wordSize] // Target node’s X

data Xj [3 * NCHILD * wordSize] // Parent node’s X

data Li [NTERM * wordSize] // for L

data Lj [NTERM * wordSize] // for L

data Mi [1 * wordSize] // for M

data Mj [1 * wordSize] // for M

data B_TRG [NBODY * 4 * wordSize] // for L2P

kernel main {

call upwardPass

call dualTreeTraversal

call downwardPass

}

kernel upwardPass {

call P2M_125

// ...

// ...

call P2M_125

call M2M

}

kernel dualTreeTraversal {

call P2P_125_125_True

call P2P_125_125_True

// ...

// ...

}

kernel downwardPass {

call L2L

call L2P_125

// ...

// ...

call L2L

call L2P_125

}

4.3 A comparison target as a simple model
We setup another model as a comparison target to show how

our Aspen model is useful. It is based on the computational com-
plexity of each phase and performance fitting.

ExaFMM executes P2M and M2M together as upwardPass,
M2L and P2P as dualTreeTraversal, and L2L and L2P as down-
wardPass. Thus we build and tune for each of the three passes and
sum up them to estimate the overall evaluation time. Table 4.3
shows the computational complexity of each of the six phases.

Thus we define model as:

T = aNP2 + b
N

Ncrit
P4 + c

N2P6

Ncrit
+ dNNcrit + e

N
Ncrit

P4 + f NP2

where T is the evaluation time to estimate and a, b, c, d, e, f are
scalar parameters. We adjust the parameter with a relatively large
case N = 1000000,Ncrit = 128 with lattice distribution. Ap-
parently, this model does not consider particle distribution, since
such a mathematical model cannot take a shape of a tree into con-
sideration.

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29



IPSJ SIG Technical Report

Table 1 Computational Complexities of ExaFMM phases

Phase Complexity Note

P2M NP3
Num of leaves is O(N/Ncrit),
each P2M is O(NcritP3)

M2M NP4

Ncrit

Num of M2M calls is O(N/Ncrit)
Each M2M is O(P4)

P2P NNcrit

Num of leaves is O(N/Ncrit)
and each P2P call is O(N2

crit)

M2L N2P6

Ncrit

Num of M2L calls is O(N2/Ncrit
2)

each M2L call is O(P6)
(given by Yokota et al.[2].)

L2L NP4

Ncrit
Same as M2M

L2P NP3 Same as P2M

5. Analysis and Evaluation
5.1 Evaluation environment

All the evaluations are done on TSUBAME2.5 installed in
Tokyo Institute of Technology. We use a single “thin” nodes
which have two sockets of 6-core, 2.96GHz Intel Xeon x5670
and 54GB of DDR3 main memory.

The performance models written in Aspen are also evaluated
on using the TSUBAME2.5 machine model. The interpretation
of the models is done on “fat” nodes with 96GB main memory.

5.2 Analysis of kernels
Before evaluating the overall performance of the models, we

evaluate each of the 6 kernel models (P2M, M2M, M2L, P2P,
L2L, L2P) individually. Since each kernel call is very low-level
and find-grained to measure with normal gettimeofday or similar
system calls, we adopt RDTSC (Read timestamp counter) oper-
ation of Intel Processors. Note that this analysis is not about the
total amount of P2P/M2L/L2L time, but each function call of the
phases.

Here we show three figures: Fig. 2, Fig. 3 and Fig. 4. P2P and
M2L are the most significant phase in ExaFMM and we choose
one from the rest of the phases.

In Fig. 2, the red dots show measured samples of P2P kernels.
Ni and N j are numbers of the two leaf cells in each interaction.
The red solid line is estimated performance by Aspen. Note that
the X-axis is Ni×N j. The dotted green line shows O(Ni×N j) and
O(Ni+ N j) for reference. The actual dots implies that with small
Ni and N j the number of flops is small and the memory access,
which is O(Ni+ N j) because just particle positions potentials are
read, and asymptotically becomes O(Ni × N j). With enoughly
large Ni × N j, where approximately Ni,N j ≥ 20, the estimated
time is about 1/3 of the actual samples.

Fig. 3 is M2L. Since the M2L kernel, not the total time of all

M2L kernels, only depends on the accuracy parameter P, 1%
trimmed mean of 1000 times of M2L function call. The red
line is actual samples and the yellow is estimated time by As-
pen. The actual samples show outlier at P=7, but the two lines
have same complexity. L2L modeling in Fig. 4 is from the rest
of the phases, which are less significant in ExaFMM. Similar to
M2L, L2L phase only depends on the parameter P, but we show
all the actual samples, not mean values, because the variance is
relatively large. However, the estimated values are more accurate
than P2P and M2L models.

100 101 102 103 104

Ni * Nj

10-8

10-7

10-6

10-5

10-4

T
im

e
 [

s]

exaFMM P2P performance(log scale)

Aspen model (collapsed loops, SIMD)

Actual Samples(RDTSC) (icc -O3, SIMD)

Fig. 2 Actual and Estimated Performance of P2P kernel

4 6 8 10 12 14
P

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

T
im

e
 [

s]

exaFMM M2L performance (1% trimmed mean)

Apsen model (double loops)

Actual samples (RDTSC, icc -O3)

Fig. 3 Actual and Estimated Performance of M2L kernel

4 5 6 7 8
P

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

T
im

e
 [

s]

exaFMM L2L performance

Apsen model (double loops, SIMD)

Actual L2L samples (icc -O3, SIMD)

Fig. 4 Actual and Estimated Performance of L2L kernel

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29



IPSJ SIG Technical Report

5.3 Overall Evaluation
Fig. 5 and Fig. 6 show runtime of the evaluation phase of actual

ExaFMM runs and estimation by the Aspen models with P = 4, 6
and 50000 particles. Particle distributions are lattice, plummer
and sphere, and Ncrit values are 16, 32, 64, 128, 196, 256 and
512. The estimated times by Aspen (blue bars) are normalized
using the case of the leftmost lattice-16 case.

In Fig. 5, and Fig. 6, the proposed Aspen model gives more use-
ful information about the application behavior. An important role
of performance modeling is to help application researchers/users
to determine the best algorithmic parameters to minimize the
computation time. In this case, the most important parameter
is Ncrit, because it greatly affects the overall computation time.
There’s always a tradeoff of direct and approximate computation
time and it is not obvious which Ncrit values is optimal for a given
condition. The Aspen model indicates 64 for all of the three dis-
tributions in this case. From the actual results, the values are the
second-best for lattice and sphere and the best for plummer dis-
tribution out of 7 choices for each. On the other hand, the simple
model implies 16 for all of the case, but the value is the worst for
lattice and plummer, and 5th for the sphere distribution.

The error values of Aspen models are at most 3× approxi-
mately, which are corresponding to the results of per-kernel anal-
ysis shown in the section 5.2. Table 5.3 and Table 5.3 We observe
a similar result in Fig. 6,

Table 2 Breakdown of Plummer-512 case

Step Actual Time Estimated Time

upwardPass 0.00380 0.00093

dualTreeTraversal 1.39707 0.39563

downwardPass 0.00334 0.00096

Table 3 Breakdown of Lattice-128 case

Step Actual Time Estimated Time

upwardPass 0.00355 0.00087

dualTreeTraversal 0.53717 0.15575

downwardPass 0.00311 0.00089

6. Related Work
Choi[3] and Chandrawmowlishwaran[10] have proposed a

very accurate performance model of KIFMM: another efficient
implementation of FMM. They consider memory hierarchy in-
cluding L2 and L3 cache, but their model assumes uniform par-
ticle distribution and detailed knowledge about the implementa-
tion. Although our model also requires some knowledge about
the ExaFMM implementation, the necessary information is only
the abstract structure of the recursive tree traversal and not de-
tailed behavior.

Teng et al. gave a theoretical analysis on load balancing
between distributed computing nodes in a large scale simula-
tion[11]. Althouhg the reuslt is insightful, it is not practical for
real world FMM implementations.

7. Future work
Our current modeling scheme has two major limitations.

First,the current model assumes single-node execution and does
not consider inter-node MPI communication. Second, in current
Aspen implementation the model calculation time is long and the
Aspen runtime consumes large memory. The results shown in
this paper is limited to 50000 particles, which is much smaller
than actual simulation.

8. Conclusion
In this paper, we proposed a performance modeling method of

the Fast Multipole Method for any particle distribution using a
domain specific modeling language Aspen. Our model assumes
less information about the implementation and gives accurate re-
sult for various particle distribution and algorithmic parameters
and provides useful information to tune the algorithmic parame-
ter for the application researchers.

References
[1] R. Yokota, L. Barba, T. Narumi, and K. Ya-

suoka, “Petascale turbulence simulation using a highly
parallel fast multipole method on GPUs,” Computer
Physics Communications, Sep. 2012. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0010465512002974

[2] R. Yokota, “An FMM Based on Dual Tree Traversal
for Many-core Architectures,” Sep. 2012. [Online]. Available:
http://arxiv.org/abs/1209.3516

[3] J. Choi, A. Chandramowlishwaran, K. Madduri, and R. Vuduc,
“A cpu: Gpu hybrid implementation and model-driven scheduling
of the fast multipole method,” in Proceedings of Workshop on
General Purpose Processing Using GPUs, ser. GPGPU-7. New
York, NY, USA: ACM, 2014, pp. 64:64–64:71. [Online]. Available:
http://doi.acm.org/10.1145/2576779.2576787

[4] J. E. Barnes, “A modified tree code: Don’t laugh;
It runs,” Journal of Computational Physics, vol. 87,
no. 1, pp. 161–170, Mar. 1990. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/002199919090232P

[5] L. Greengard and V. Rokhlin, “A fast algorithm for particle simula-
tions,” J. Comput. Phys., vol. 73, no. 2, pp. 325–348, 1987. [Online].
Available: http://portal.acm.org/citation.cfm?id=36895.36901
http://www.sciencedirect.com/science/article/B6WHY-4DD1T30-
K7/2/2b3def8a3a8d71ff0d1697298ea6d2c8

[6] R. Yokota and L. a. Barba, “A tuned and scalable fast multipole
method as a preeminent algorithm for exascale systems,” Inter-
national Journal of High Performance Computing Applications,
vol. 26, no. 4, pp. 337–346, Jan. 2012. [Online]. Available:
http://hpc.sagepub.com/cgi/doi/10.1177/1094342011429952

[7] J. Nakashima, S. Nakatani, and K. Taura, “Design and implementa-
tion of a customizable work stealing scheduler,” in Proceedings.3rd
International Workshop on Runtime and Operating Systems for Su-
percomputers.

[8] K. Taura, J. Nakashima, R. Yokota, and N. Maruyama, “A Task Par-
allelism Meets Fast Multipole Methods,” in Workshop on Latest Ad-
vances in Scalable Algorithms for Large-Scale Systems (ScalA), no. 1,
2012.

[9] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific
language for performance modeling,” in 2012 International
Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, Nov. 2012, pp. 1–11. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=2388996.2389110
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6468530

[10] A. Chandramowlishwaran, J. W. Choi, K. Madduri, and R. Vuduc,
“Brief Announcement: Towards a communication optimal fast multi-
pole method and its implications for exascale,” in Proceedings of the
ACM Symposium on Parallel Algorithms and Architectures (SPAA),
no. 2, Pittsburgh, PA, USA, 2012.

[11] S.-H. Teng, “Provably Good Partitioning and Load Bal-
ancing Algorithms for Parallel Adaptive N-Body Simula-
tion,” SIAM Journal on Scientific Computing, vol. 19,
no. 2, pp. 635–656, Mar. 1998. [Online]. Avail-
able: http://epubs.siam.org/doi/abs/10.1137/S1064827595288942

6ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29



IPSJ SIG Technical Report

http://portal.acm.org/citation.cfm?id=289842

7ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29



IPSJ SIG Technical Report

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

1.6	  

la+
ce
-‐16
	  

plu
mm

er-‐
16
	  

sp
he
re-‐
16
	  

la+
ce
-‐32
	  

plu
mm

er-‐
32
	  

sp
he
re-‐
32
	  

la+
ce
-‐64
	  

plu
mm

er-‐
64
	  

sp
he
re-‐
64
	  

la+
ce
-‐12
8	  

plu
mm

er-‐
12
8	  

sp
he
re-‐
12
8	  

la+
ce
-‐19
2	  

plu
mm

er-‐
19
2	  

sp
he
re-‐
19
2	  

sp
he
re-‐
25
6	  

la+
ce
-‐51
2	  

plu
mm

er-‐
51
2	  

sp
he
re-‐
51
2	  

Ti
m
e	  
[s
]	

Par,cle	  distribu,on	  and	  Ncrit	

Evalua,on	  ,me	  (P=4)	

Actual	  

Simple	  Model	  

Aspen	  Model	  

Fig. 5 Aspen Model and Actual Performance with P=4

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

la*
ce
-‐16
	  

plu
mm

er-‐
16
	  

sp
he
re-‐
16
	  

la*
ce
-‐32
	  

plu
mm

er-‐
32
	  

sp
he
re-‐
32
	  

la*
ce
-‐64
	  

plu
mm

er-‐
64
	  

sp
he
re-‐
64
	  

la*
ce
-‐12
8	  

plu
mm

er-‐
12
8	  

sp
he
re-‐
12
8	  

la*
ce
-‐19
2	  

plu
mm

er-‐
19
2	  

sp
he
re-‐
19
2	  

sp
he
re-‐
25
6	  

la*
ce
-‐51
2	  

plu
mm

er-‐
51
2	  

sp
he
re-‐
51
2	  

Ti
m
e	  
[s
]	

Par,cle	  distribu,on	  and	  Ncrit	  

Evalua,on	  ,me	  (P=6)	

Actual	  

Simple	  Model	  

Aspen	  Model	  

Fig. 6 Aspen Model and Actual Performance with P=6

8ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-145 No.26
2014/7/29


