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Abstract: As the scale of high performance computing systems increases, optimizing interprocess communication
becomes more challenging while being critical for ensuring good performance. Furthermore, the hardware layer ab-
straction provided by MPI makes it difficult to perform any application optimization that links network utilization with
application communication. We overcome this barrier by extending the Peruse utility in Open MPI to track network
events within MPI operations from the application layer. We also develop a non-intrusive profiling library to make
use of our Peruse enhancement and show how we can use BoxFish with our profiling library to visualize the flow of
application traffic over each link within large scale InfiniBand networks. The tool-chain that we describe can be used
without any modification to the target application and incurs less than 1% application runtime overhead.
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1. Introduction
High performance computing (HPC) systems are rapidly grow-

ing in physical size, with staggering increases in node counts
in recent years. The Tianhe-2 supercomputer which tops the
Top500 list of fastest supercomputers comprises over 16,000
nodes [2]. In fact, each of the five fastest supercomputers in
the world, based on this list, has over 15,000 nodes. Expectedly,
the interconnect networks that support communication among the
thousands of nodes in these systems are simultaneously grow-
ing in complexity. As this complexity increases, inter-process
communication becomes an even more significant factor in the
overall performance of applications, especially for communica-
tion bound applications [4]. It is therefore no surprise that opti-
mizing communication within these large-scale applications is a
standard approach in performance tuning on these massive sys-
tems.

The Message Passing Interface (MPI) [20] has become the
most widely used message passing standard on HPC systems,
defining both communication and process management APIs.
The actually method of performing data communication over the
network hardware is hidden within the MPI library’s implemen-
tation and is transparent to the application. Unfortunately, the
hardware abstraction performed by the MPI library introduces an
obstacle in making a connection between the communication rou-
tines within the application and data transfer events in the hard-
ware layer. The issue is further complicated when considering
collective communication operations, which are critical to some
of the most important HPC applications such as those using fast
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Fourier Transforms (FFTs) [23]. The logic of collectives are com-
pletely hidden within the MPI implementation. Internal commu-
nication semantics are often dynamically chosen at runtime and,
without knowledge of the MPI library’s internals, are virtually
impossible to track.

The profiling interface provided by the MPI standard, PMPI,
allows users to intercept calls to the MPI library. This provides
access to the parameters of the intercepted function, allowing the
user to monitor arguments being used by the MPI operations.
VampirTrace/Vampir [15], Scalasca [6] and other widely used
performance analysis tools rely on PMPI. Since this profiling in-
terface does not penetrate the MPI layer, network performance
information cannot be gathered in this manner. Therefore, any
optimizing strategies relying on tools that use only this interface
will ignore the impact of the network layer activities on an appli-
cation’s performance.

BoxFish [12] is one of the few tools that circumvents this ab-
straction by including network performance metrics in applica-
tion performance analysis. It can overlay performance metrics
from multiple domains, such as application, communication, etc.,
on a graphical representation of the hardware. However, cur-
rent research using BoxFish requires the tracking of port counters
across the network in order to visualize link traffic. The approach
is impractical in complex networks such as TSUBAME2.5’s fat-
tree network, especially when multiple applications are sharing
the system.

To overcome the limitations of currently available tracing and
profiling tools, we design a profiling tool that is capable of ex-
tracting data from within the MPI library with no modifications
to the application source code. Our approach extends the Peruse
utility [1] within Open MPI to track data transmission over In-
finiBand network interfaces. The profiling library that we created
makes use of this extension and tracks the InfiniBand transmis-
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sion events during the application’s run. Finally, we create a vi-
sualization module for BoxFish to visualize our fat-tree network.
Our method facilitates the comprehensive performance analysis
of an application’s communication pattern with minimal intrusion
while utilizing widely available tools.

The rest of the paper is organised as follows. Section 2 covers
the important aspects of the technologies that we used. We give
the details of our implementation and describe the experiments
we conducted in Sections 3 and 4, respectively. In Section 5 we
look at other related research and explain how our work differs
from the others. Then we present the conclusion in Section 6.

2. Technology
2.1 InfiniBand

InfiniBand [10] is a channel-based, low latency, high through-
put switched networking architecture that is widely used in the
HPC industry. The InfiniBand Trade Association proposed the
InfiniBand standard in the year 2000 and the technology is cur-
rently being used by 44.4%, or 222, of the systems on the Top500
list [11].

InfiniBand hardware allows concurrent data flow over inde-
pendent incoming and outgoing channels and also supports of-
floading network communication from the CPU. Applications can
bypass the CPU to gain direct access to the interface by using
ibverbs, the InfiniBand API, resulting in simultaneous end-to-
end connectivity with little impact on CPU load. InfiniBand hard-
ware also provides Remote Direct Memory Access (RDMA) fa-
cilities, transferring data from a process’s memory on the local
host to a process on a remote host without involving the CPU.

In an InfiniBand network, a set of interconnected channel
adapters and switches are referred to as a subnet. A node that is
not a switch may be connected to multiple subnets. Each subnet
is managed by a subnet manager process running on a node, such
as a compute node or a switch, in that subnet. The ibdiagnet
utility is used to query the configuration and status of elements
in the subnets. Each active port on a channel adapter is assigned
a local identifier (LID), which is unique to on that subnet. Ad-
ditionally, each channel adapter’s port is assigned a unique ID
called PGUID, and each channel adapter and switch is assigned a
unique node ID called NGUID. Messages are produced and con-
sumed at channel adapters and forwarded though the subnet via
switches. LIDs are used by switches when forwarding messages
to their destination ports.

2.2 Open MPI
The MPI standard defines a communication and process man-

agement API for processes on distributed systems. It also defines
the portability requirement for all libraries that implement this
API. Open MPI is one of the most widely used MPI library and
has been chosen for this research because it implements the Pe-
ruse interface (see Section 2.3).

Open MPI’s code base is separated into three sections: OMPI,
ORTE and OPAL. It uses the Modular Component Architecture
(MCA) to dynamically search for and load components at run-
time. Fig. 1 illustrates the features of the MCA. MCA frame-
works provide the API for services that are handled by that frame-

Fig. 1 Figure showing a few of the frameworks in the OMPI layer and their
related components

work, but not the implementation of the services. Each frame-
work handles an exclusive set of tasks related to specific area.
For example, transmitting data between processes is managed by
the btl framework and collective communication logics is han-
dled by the coll framework. Each component of a given frame-
work contains a unique implementation of the services handled
by that framework. Components are selected and loaded by the
framework at runtime. Modules are the runtime instantiations of
components.

Our focus in this work is on InfiniBand network traffic, hence
we are most concerned with the openib component in the btl
framework, which manages the transfers of data between pro-
cesses via InfiniBand network adapters. The openib component
uses the ibverbs API to interface with the InfiniBand channel
adapters. All MPI operations involving the InfiniBand channel
adapters are done by this component; it performs all aspects of
connection management and data transfer over the InfiniBand
network. If there exists multiple active InfiniBand ports on the
node, the btl framework will instantiate an openib module for
each port.

2.3 Peruse
The Peruse utility was proposed as a performance revealing

extension to the MPI standard that allows the tracking of internal
events within an MPI library [1]. It accomplishes this by regis-
tering a user-defined callback function to each event of interest
within MPI. Two examples of these events in an MPI_Send op-
eration are (i) the point when the MPI library begins processing
the send request and (ii) the point when the actual data transmis-
sion begins. The Peruse standard defines the API for querying the
events that are supported by Peruse within an MPI implementa-
tion. It also defines the interface for registering callback function,
the function prototype for callback function and methods for en-
abling and disabling events. The callback functions are executed
within the MPI library and are passed variables from within the
MPI space as arguments.

Keller et. al [13] describes the details of implementing Peruse
in Open MPI. Their research reported a 1.7% increase in commu-
nication latency when using Open MPI+Peruse versus the native
Open MPI on an InfiniBand network. Peruse was integrated in
Open MPI through the use of C macros, which are defined in the
Peruse code base. The macros are passed various parameters such
as message size, the communicator involved and the event being
performed in the function from which they are called. A macro is
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inserted at each point in the Open MPI code base where an event
of interest occurs. The code within the macro checks if the cor-
responding Peruse event is activate, packages the arguments for
the callback function and executes the callback function that was
registered for that event if it is active.

The implementation of Peruse in Open MPI is entirely con-
tained within the OMPI code section, and all events are tracked
within the pml framework’s components. pml stands for Point-
to-point Management Layer and, as its name states, it coordinates
the the point-to-point transfer of data in MPI operations. All in-
formation necessary for tracking the events of interest is provided
in this layer. Furthermore, pml components remain hardware ag-
nostic by using btl components to perform the actual data trans-
mission; thus, Peruse gains the flexibility of being hardware ag-
nostic.

2.4 BoxFish
BoxFish is a performance analysis tool that is capable of vi-

sually representing the physical nodes and links in a network. It
uses visualization modules to present performance data in dif-
ferent forms: a Table module presents data in a tabular form,
a 3D Torus module constructs a 3D torus network topology and
presents performance data as the colours of the network elements,
etc. The same performance metrics may be presented simultane-
ous in multiple modules and filters may be applied to modules
individually and in groups.

The core of BoxFish handles the reading or performance data
from input files and stores the information in a generic, module-
independent form. It passes data to the modules as requested, and
manages the linking of performance data across multiple mod-
ules.

3. Design
3.1 Extending Open MPI

First, we created a definition for the ”PERUSE_OPENIB_SEND”
event in the Peruse code base. This event corresponds to points
when data is sent over InfiniBand adapters. We then created a
special Peruse macro to handle these events and properly com-
municate InfiniBand hardware information to the callback func-
tion. Because of reasons mentioned in Section 2.3, the hardware-
specific information required by this macro is not available in
the pml layer where all other events are tracked. The calls to
our macro were therefore added to each point in the openib
component where data is sent to the InfiniBand interfaces. The
activation and monitoring of this event results in the tracking
of point-to-point messages sent over individual InfiniBand ports
from within the MPI library.

3.2 ibprof Profiler
Using the enhanced Peruse, we built the ibprof tool to record

information from the InfiniBand events. The ibprof library,
which can be linked at compile time or preloaded at runtime,
maintains two arrays of traffic counters for each active port on
the system, one array for bytes sent and one for bytes received.
Separate arrays are used for sent and received data because in-
formation transmitted during an RDMA operation is not always

recorded at both the sender and receiver. This is due to the fact
that the size of message fragments used to initiate RDMA opera-
tions may not coincide with the amount of data transmitted during
the operation. The length of each array is equal to or greater than
the maximum LID value in the network. The index of each array
element corresponds to a target LID, and the value of that ele-
ment corresponds to the amount data sent to/received from that
target LID. The array is populated within the user callback func-
tion that has been registered on our new Peruse event. Counter
values are written to Open Trace Format (OTF) files using the
OTF library [14, 16].
ibprof registers and activates the ”PERUSE_OPENIB_SEND”

send event. Depending on the status of its environment vari-
ables, ibprof can capture every ”PERUSE_OPENIB_SEND” event
throughout the entire duration of the program, or limit the scope
to only the events within specified collective operations. Further-
more, the library supports manual instrumentation of the user ap-
plication to specify blocks of operations, or application phases,
for which the event should or should not be activated for.

3.3 Fat-Tree Visualization
We wrote a new visualization module for BoxFish that can ef-

fectively represent the TSUBAME2.5’s fat-tree network. Box-
Fish is used to visualize our profile because of its ability to link
information across multiple domains: application, hardware and
communication domains.

Our application profiles provide information on (i) which MPI
process is running on which node, (ii) the InfiniBand Port config-
uration for nodes with MPI processes and (iii) the size and desti-
nation of traffic sent per port per application phase. We developed
a post-processing script that parses our profiles and ibdiagnet
output files to extract performance metrics and network configu-
ration information. After parsing all input files, the script creates
as connected graph to represent the nodes and links in the net-
work. It then adds weights to the links by tracing application traf-
fic across the network using the port forwarding tables. Finally,
output files are written containing position and performance in-
formation in a format that can be read by BoxFish and visualized
by our module.

4. Experiments
4.1 Overhead Measurements

TSUBAME-KFC was used for experiments to measure the run-
time overhead imposed by our profiling library. The system,
based at the Tokyo Institute of Technology (Tokyo Tech), has
of 40 compute nodes and two 24-port InfiniBand FDR switches.
Each compute node is connected to one of the switches and has
two Intel Xeon E5-2629v2 processors. The switches are inter-
connected using 15 links. Profiling was done by running the tar-
get code with our library preloaded using the LD-PRELOAD com-
mand. No other user processes were running on the system while
experiments were being conducted.

We used an MPI_Alltoall microbenchmark running on 32
compute nodes with message size ranging from 0 bytes to
32 kilobytes. 30 profiled trials and 30 un-profiled trials were ran
for each message size, with each trial comprising of 20,000 iter-
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Fig. 2 Chart comparing the runtime of an MPI Alltoall call with various
message sizes when profiled by our tool.

ations of the collective call (2 initialization runs + 19,998 timed
runs). The minimum of the average of the runs for each trial was
taken as the resulting value since this would be the most repro-
ducible result [7]. Results are shown in Fig. 2. The overhead
ranged from 1.09% to 4.08% of the collective’s runtime.

In addition to the micro-benchmark, we also conducted experi-
ments using the communication bound FT benchmark of the NAS
Parallel Benchmark Suite [22,24]. The FT benchmark makes use
of collective communication to solve a partial differential equa-
tion using fast Fourier Transforms [3]. We ran 100 profiled runs
and 100 un-profiled runs of the benchmark using the class C prob-
lem size on 32 nodes. We took the minimum of the average total
runtime for each trial. The runtime of the benchmark increased
from 12.1849 seconds to 12.1874 seconds when our profiling li-
brary is introduced, representing an overhead of less than 0.02%.

Results presented in this section do not include the time
for writing output to OTF files, which is usually less than
10 milliseconds in our test environment.

4.2 Large-Scale Application Profile and Visualization
For large scale visualization experiments, we used Tokyo

Tech’s TSUBAME2.5 system [8]. This system has over 1,400
compute nodes and over 350 switches. It is designed with 2 sub-
nets and each compute nodes has one link connected to each sub-
net. Based on how the job queues were configured at the time of
the experiments, only 256 nodes could be used; our benchmark
required that the number of nodes be a power of 2.

Fig 3 shows a visualization of the complete run of the FT
benchmark on 256 nodes using the class C problem size. Layer 0
represents all the nodes in the network that possess channel
adapters. This includes all compute and storage nodes. Lay-
ers 1a, 2a and 3a contains all switches in the first subnet and
layers 1b, 2b and 3b contains the switch in the second subnet.
All compute nodes are connected to both subnets, while storage
and specific management nodes are connected to a single sub-
net. Links are coloured based on the link utilization colour range
shown on the upper-right side of the figure. To ensure we ac-
curately represent the bidirectional flow of traffic, each half of a
link is coloured independently based on the traffic sent from the
the node connected at that end. For simplicity, we excluded per-

formance data for the nodes and focused on only the performance
metrics for the links.

The user can select an appropriate colour scheme for display-
ing the elements (links and nodes) and then inspect the image for
links that transfer the most data or possible hotspots. When a link
is selected, it is highlighted in the image; both nodes connected
to that link are also highlighted. Additionally, all other links con-
nected to the highlighted nodes are also highlighted. The remain-
ing links and nodes in the network are faded. The lower section
of 3 shows the selection of the link that transmitted the most data
during the application’s execution. The table on the right in this
image reflects the highlighted elements (links or nodes) and gives
additional information about that element. The colour scheme
chosen for 3 allows to quickly identify the most utilized links, by
scanning the image for the reddest links. Fig. 4 is a visualization
of the same application profile using a different colour scheme for
the links. With this scheme, we can quickly identify the links with
similar performance characteristics and traffic patterns across the
network.

5. Related Work
5.1 Visualization

In their work on visualization approaches for parallel applica-
tions, Muelder, Gygi and Ma [21] discussed the drawbacks of
many visualization approaches at large scales and presented a
new way of visualizing thousands of processes. Their approach
allows the user to drill down into regions of interest from an high-
level overview, making it more scalable than the other methods
they investigated. However, unlike our work, their method does
not include any reference to network hardware information.

Bhatele et. al [5] and Isaacs et. al [12] showed how BoxFish
can be used to effectively explore performance data on large-scale
systems by including the hardware domain. In fact, by using Box-
Fish in addition to other analysis tools, Bhatele et. al gained a
22% performance improvement for an adaptive mesh refinement
library. Their work, however, dealt solely with the 3D torus net-
work of the IBM Blue Gene/P (BG/P) system [9]. Our approach
is independent of any topology and can be used on any system
that utilizes InfiniBand hardware.

5.2 Tracing and Profiling
In their article on the performance analysis of simulations on

BG/P systems, Landge et. al [18] demonstrated how BoxFish can
be used to visualise network traffic generated during an applica-
tion’s execution. In addition to the network performance char-
acteristics of MPI collectives and point-to-point operations, they
presented several case studies in which they investigate the per-
formance characteristics of a layer and plasma interaction simu-
lator running on different BG/P systems. Communication traffic
measurements required for their visualizations were attained by
intercepting MPI calls using the PMPI interface, then capturing
port counters using BG/P system tools. The application’s source
code was also manually instrumented to summarize and output
the communication metrics that was captured during different ap-
plication phases. While our work relates very closely to theirs
in that we seek to visualize the network performance of applica-
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Fig. 3 A BoxFish visualization of the NPB FT benchmark running on 256 nodes of TSUBAME2.5 with
the class D problem size. The upper image shows the full view of the network while the lower
image shows a close-up of the most utilized link being highlighted.

tions running on large scale systems using BoxFish, our approach
to measuring network traffic is very unique. We focus on systems
that use InfiniBand networks and extract application traffic met-
rics from within the MPI layer instead of via port counters. This
gives our approach the advantage of measuring only the traffic
generated by the application we are profiling, even if the network
and systems are being shared with other applications.

Miquel-Alonso, Navaridas and Riruejo [19] described a pro-
cess of using MPI application traces to conduct simulation-based
performance analysis. In order to track the internal point-to-point
communication of collectives with their traces, they modified the
source code of MPICH2 to expose these point-to-point function
calls. They were then able to use the PMPI interface to trace
these internal calls. In a similar manner, Kunkel et. al [17] also
modified the source code of MPICH to gain access to function
calls within collectives via the PMPI interface. Our extension
of Peruse, though considered a modification of Open MPI, is an
extension supported by the Peruse implementation. Additionally,
our modification reveals information of the ports used in the com-
munication while theirs still has no access to information in the

hardware layer.

6. Conclusion
MPI libraries, by design, prevent the user from easily seeing

the correlation between communication events in the applica-
tion and data transmission over network links. This limits opti-
mization strategies that incorporate network performance metrics
when conducting performance analysis. In this paper, we showed
how to overcome this barrier by enabling the tracking of network
communication events within the MPI layer. The Peruse utility,
which is built into Open MPI, was extended to report whenever
the library sent data over InfiniBand interfaces. We built a profil-
ing tool, ibprof, which takes advantage of this extended Peruse
utility and reports the network traffic generated by each process
with minimal intrusion to the application. Our profiler incurs only
0.02% runtime overhead with the NPB FT benchmark and less
than 5% overhead with an MPI_Alltoall collective call.

Additionally, we designed a fat-tree visualization module for
BoxFish and demonstrated its use by visualising the FT bench-
mark on TSUBAME2.5. Using our approach, the user can ac-
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Fig. 4 A BoxFish visualization of the NPB FT benchmark running on 256 nodes of TSUBAME2.5 with
the class D problem size. The colour scheme chosen for the links allow us to quickly see commu-
nication patters across the network.

cess interactive visualizations of application performance data on
large-scale system with minimal intrusion and overhead.
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