
IPSJ SIG Technical Report

Towards Cloud Bursting for Extreme Scale
Supercomputers

(Unrefereed Workshop Manuscript)

Tianqi Xu1 Kento Sato1 SatoshiMatsuoka1

Abstract:
Extreme-scale HPC systems, which consist of a large number of compute nodes, can provide high computational ca-
pacity for multiple users. However, computing nodes in the systems occasionally can not meet the demand due to
bursty job requests in short period times. In order to accommodate the bursty requests, we consider federating HPC
systems with public clouds, which is known as cloud bursting. Although the federated systems can acquire virtually
infinite computational power with cloud bursting, the QoS may not be guaranteed due to a significant performance
gap between HPC systems and public clouds. The most critical problem is a gap in I/O performance. In this paper,
we propose an I/O acceleration technique using distributed cloud bursting buffers. We also create the I/O performance
model to explore the effectiveness. Our model-based simulations, which target the TSUBAME supercomputer for an
HPC system, and AMAZON EC2 for a public cloud, show that the distributed cloud busting buffer can improve I/O
throughput while reducing the cost.

Keywords: Supercomputer, Cloud, Burst buffer

1. Introduction
Supercomputers provide an increasing number of scientific

applications with high computational power by a large number
of processors, large bandwidth memory and interconnects. Al-
though supercomputers can also offer high computational capac-
ity, the computational resources are not unlimited. Supercomput-
ers can not meet the demands of users when the demands exceed
the limit. For example, on grand challenge projects, computa-
tional resources are exclusively used for the scientific discover-
ies [1], [2], and the system can not provide adequate resources
for other jobs. In addition, under power budget constrain [3], [4],
a part of compute nodes are required to be shutdown to reduce its
power consumption, which also leads inadequate of resources for
all users.

One of solutions to provide adequate computational resources
under the constrains, is federating the supercomputer with pub-
lic clouds. By moving a part of jobs to public clouds when there
are not enough compute nodes available, we can meet the needs
for users’ requests even under the constrains, which is known as
cloud bursting [5], [6]. Although cloud bursting is technically
feasible [7], [8], [9], and is employed by several private compa-
nies, there are several problems if we apply this technique to su-
percomputers. One of the problems is a significant performance
gap between supercomputers and public clouds especially in I/O
performance For example, if we migrate a part of jobs from a
supercomputer to a public cloud or run jobs on a public cloud in-

1 Tokyo Institute of Technology, Japan, Tokyo, Meguro, okayama 2-12-1

sted of a supercomputer, and the jobs need data located in a par-
allel file system (PFS), the data need to be transferred between
the two system. Because the two systems are usually geograph-
ically distributed, and network throughput between the systems
is quite low, the low I/O throughput suffers supercomputer users.
Thus, improving I/O throughput between two systems, which are
geographically distributed each other, is critical in federating su-
percomputers with public clouds.

In this paper, we propose I/O burst buffer architecture. The I/O
burst buffers consists of I/O dedicated staging nodes, which cache
hot files in the buffers, and enables asynchronous write back for
improving both read and write operations to remote file systems.
We also model the I/O burst buffers to optimize configurations of
the I/O burst buffers according to dynamically changing environ-
ments According to our simulation, we can achieve a 4-20 times
higher throughput (depends on data locality and other factors) by
using 20 I/O buffer nodes on Amazon EC2 environment, as well
as reduce 2-12 times of cost.

Our contributions can be summarized as following:
• A I/O burst buffer architecture for increasing data transfer

throughput between two systems;
• A throughput-based I/O burst buffer model, which estimate

I/O throughput of systems with I/O burst buffers, and a cost-
based I/O burst buffer model, which estimate overall cost
give a system configuration;

• Evaluation of the I/O burst buffer architecture based the per-
formance models by using real data obtained from several
benchmarks from the TSUBAME supercomputer and Ama-
zon EC2.

c⃝ 2014 Information Processing Society of Japan 1

Vol.2014-HPC-145 No.5
2014/7/28

IPSJ SIG Technical Report

Fig. 1 I/O Throughput to Lustre inside TSUBAME direct mount

Fig. 2 I/O Throughput from AMAZON EC2 to file system inside our lab
using sshfs

Fig. 3 point to point connection inside AMAZON

Fig. 4 point to point connection throughput between AMAZON and our lab

The rest of this paper is organized as follows. In Section 2,
we clarify the motivation and the background. We introduce an
overview of the I/O bursting buffer architecture in Section 3, and
show the performance models to evaluate the I/O bursting buffer
architecture in Section 4. In Section 5, we present our experimen-
tal results based of our performance models. Finally, we detail
related work in Section 6, and conclusion in Section 7.

2. Background and Motivation
2.1 Public Cloud

Public cloud is one in which the services and infrastructure
such as applications and storage are provided off-site over the
Internet, the main benefit of using a public cloud service are:
easy fast and inexpensive set-up because hardware, application

Table 1 TSUBAME thin node specification
CPU Intel Xeon 2.93GHz CPU (4 cores)*2

Memory 54GB (16 GB)
SSD 120GB
GPU NVIDIA Tesla K20X *3

Network QDR InfiniBand *2 (80Gbps)

and bandwidth are covered by the provider, easy to scale to meet
needs, no wasted resources because you pay for what you use.
There are many companies provide public cloud solution like
google, IBM, Microsoft etc., among them, Amazon Elastic Com-
pute Cloud (Amazon EC2)[10] is one of the most famous public
cloud, like other public cloud, Amazon EC2 provides Virtualize
computing, and owns computing and data centers in several geo-
graphic regions. Amazon EC2 provide a large amount of instance
types optimized to fit different use cases comprise varying com-
binations of CPU, memory, storage, and networking capacity. In
this study, we used general purpose m3.xlarge instance which has
4 vCPUs, 15GiB memory, 2*80GB SSD storage and high level
interconnection network network condition in Tokyo region, we
run Amazon Linux AMI 2014.03.2 (HVM), which is based on
Linux 3.10 on these instances. Amazon EC2 charges for nodes
usage, Amazon use a pay-as-you-go pricing policy[10], which
means you pay only for what you use, there is no minimum fee
and you will pay for compute capacity by the hour with no long-
term commitments.

2.2 Federation between supercomputers and clouds
When we try to federate supercomputer with public clouds,

there are need to have a similar performance and environment be-
tween these two systems. So we virtualize the supercomputer(like
TSUBAME U queue) and federate VMs running on supercom-
puters with VMs provided by public cloud. By using VMs, we
can run the same image on both supercomputer and public cloud
as well as set both the same specification, and make it looks the
same to user.

2.3 Challenges in Federation with clouds
Although we virtualize supercomputer and obtain a similar en-

vironment on both supercomputers and clouds, there are still sev-
eral problems remains, for example, input data of applications
running on supercomputer is usually stored in shared storages in
the same system and can be read from and wrote to these storages
with a extremely high throughput.

We use Iperf[11], which was developed by NLANR/DAST as a
modern alternative for measuring TCP and UDP bandwidth per-
formance, and IOR[12], which is widely used for benchmark-
ing parallel file systems using POSIX, MPIIO, or HDF5 inter-
faces. Fig. 1 shows read and write throughput from TSUBAME
V queue nodes (VM running on TSUBAME Thin node, which
specification is shown in Table 1) and TSBUAME Lustre file
system, which is mounted by using lustre client, it is a intercon-
nection throughput inside TSUBAME supercomputer, we can see
that I/O throughput growing as numbers of nodes growing, and
the aggregate read and write throughput reach 6-8GB/s with 64
nodes, the same result also can be seen in [13]. However, Fig. 2
shows I/O throughput between AMAZON EC2 nodes and a file

c⃝ 2014 Information Processing Society of Japan 2

Vol.2014-HPC-145 No.5
2014/7/28

IPSJ SIG Technical Report

system machine inside our lab, since TSUBAME Lustre can not
be accessed outside of TSUBAME because of security problem,
instead of TSUBAME Lustre file system, we used a file server
inside our lab, which has 1GBit/s internet bandwidth, also be-
cause of security problem, we used sshfs[14],which is a filesys-
tem client based on SSH File Transfer Protocol, to mount this file
system from Amazon. We can see that the I/O throughput also
grows as number of nodes grows but the aggregate throughput
is only 100-140 MB/s, which is limited by Internet bandwidth,
about 40-80 times smaller than throughput inside TSUBAME.
For data-sensitive application, low I/O throughput is devastating,
especially for application running on supercomputers, further-
more, lower I/O throughput leads a longer execution time, ac-
cording to Amazon pay-as-you-go policy, longer execution time
means more cost.

However, when we look at interconnection network through-
put inside Amazon as Fig.3 shows, although we only show the
result up to 8 pairs of nodes, each node achieved only 135MB/s
(1GBit/s), the influence between nodes is extremely small, figure
shows a perfect linear line also a strong scalability. since when
we running the benchmark, many other users were also running
applications on Amazon, so we can assume that highest through-
put 1GB/s (8Gbit/s) shown in Fig. 3 is not the maximum band-
width of interconnection network in Amazon EC2 . Comparing
Fig. 3 with Fig. 2 and Fig. 4, interconnection network throughput
is much higher than Internet, it shows that our solution, by using
I/O buffer nodes can achieve a higher interconnection network
throughput than Internet.

To solve this problem, we propose our I/O burst buffer archi-
tecture, since usually Internet throughput is the bottleneck, by
using parallel I/O and cacheing file in I/O buffer nodes, we can
fully utilize the Internet bandwidth as well as avoid frequently
transferring file between two systems, hence achieve a high I/O
throughput. Although using I/O buffer can increase I/O through-
put, reduce the execution time and cost, I/O buffer nodes will be
charged for usage, also a better instance will cost more than a
normal one, there will be a trade-off between I/O performance
and monetary cost, we introduce a throughput-based model and a
cost-based model to predict the throughput and overall cost.

3. I/O Burst Buffer Overview
An overview of I/O burst buffer architecture and two kinds of

buffer model: one-side buffer and two-side buffer are described
in this section. As we mentioned in the previous section, our
model takes advantage of high throughput inside a system, and
use buffer queue system in order to increase throughput between
two systems. Two kinds of buffer are used in our I/O burst buffer
architecture, the first one is in client computing node, first buffer
user I/O in the same node, another one is in I/O buffer nodes.
The main idea is that some of computing nodes serve as a I/O
buffer nodes in each system, for write I/O data, if buffer queue
in I/O buffer nodes is not full, data can first be buffered in buffer
queue in the same system, and then be transferred to final storage
system, and for reading, if that file is stored in the buffer queue,
computing nodes can read from I/O nodes through interconnec-
tion network. In other cases (buffer queue is full when issue a

Fig. 5 I/O server and buffer queue

Fig. 6 overall illustrate of I/O Burst Buffer Architecture

write request or requested file is not stored in buffer queue when
issue a read request we call it cache miss), an read from or write
back operation described below will be executed.

3.1 Assumptions
First, we make several assumptions for the federated environ-

ments as follows.
• All computing nodes are connected by large bandwidth and

interconnection network, note network topology maybe dif-
ferent in each system, so topology is not specified here, inter-
connection network performance is measured by throughput.

• There is a shared storage for date sharing inside system, all
computing nodes are connected with shared storage, also the
filesystem of shared storage is not specified and performance
is measured by throughput.

• All nodes used by the same job are allocated in the same sys-
tem, since the Internet bandwidth is low and unstable, user
do not want to make communication between nodes via In-
ternet.

3.2 I/O Burst Buffer Architecture
There are two kinds of nodes in our I/O burst buffer architec-

ture: computing nodes and I/O burst nodes, computing nodes run
user’s application and I/O burst nodes. Among I/O burst nodes,
there is a master nodes, which maintain a global buffer queue and
a namespace, control buffer read and write, and manage I/O buffer
nodes, buffer data is distributed to all I/O buffer nodes in order to
enable concurrent read and write.

Fig. 5 is a illustrate of I/O server inside client nodes and buffer
queue in I/O burst nodes. In each computing node, there is a I/O
server, which is a filesystem client used to buffer I/O data, com-
municate with I/O buffer nodes, including send I/O request and
send or receive I/O data.

When a user application issue a write request, I/O data will be
buffered in that node by I/O server, when user close the file, call
flush function or I/O data size exceed I/O server buffer size, I/O

c⃝ 2014 Information Processing Society of Japan 3

Vol.2014-HPC-145 No.5
2014/7/28

IPSJ SIG Technical Report

Fig. 7 read and write operation

server will try to transfer I/O data to buffer queue in I/O burst
buffer, if buffer queue in not full, I/O data will be sent to I/O burst
buffer via interconnection network and can be seen among com-
puting nodes in the same system after that. However if buffer
queue is full, I/O server will block user application and wait until
buffer queue is ready to receieve new I/O data, causing a low I/O
throughput.

Similarly when user issue a read request, there are two condi-
tions: required file is buffered in buffer queue in I/O burst buffer,
or file is stored only in storage in another system. In the first
cases, file can be transferred to computing nodes from buffer
queue directly, and can achieve a high throughput. If data is not
in buffer queue, then a read operation described below will be
executed, since data must be transferred from storage in another
system, in this case, throughput will depend on Internet condition
and it is hard to achieve a high throughput.

Fig. 6 shows a overall illustrate of I/O burst buffer architecture.

3.3 Read and Write
In this section we describe read and write operations when

cache miss happens. We propose two kinds of model: one-side
buffer and two-side buffer.
3.3.1 One-side Buffer

As Fig. 7 blue arrow shows, one-side buffer is a connection
between I/O buffer nodes in system 2 and storage in system 1
directly. When I/O nodes need to write data back to storage in
another system, since data is already spread among I/O nodes, a
parallel write can be used to fully utilize the Internet bandwidth.

Similarly, when I/O nodes need to read data from storage in
another system, several I/O nodes will be assigned equal size of
data, and then these nodes read assigned piece of data from the
storage concurrently.

There will be two problems in this solution:
• First storage should be opened to Internet, in order that I/O

nodes can read from or write to it. However storage system
in supercomputer store Petabyte of research data, open the
access of storage system means that put these research data
under risk of attack.

• As we mentioned before, throughput of one side communi-
cation is lower than two side communication, since we use
SSH protocol based File system for security reason. also
two side communication can achieve a higher throughput
with fewer nodes, according to pay-as-you-go policy, reduce
number of nodes can reduce cost.

3.3.2 Two-side Buffer
On the contrary, two-side buffer solution uses I/O buffer nodes

in both two systems as Fig. 7 orange arrows show. I/O data will be
split twice, transferred throughput two sides of I/O buffer nodes
and then reached the destination.

Consider I/O nodes in system 2 issue a write back operation,
also, data is already spread among I/O nodes in system 2, each
I/O node will find a pair among I/O nodes in system 1, then trans-
fer their piece of data to system 1 concurrently. After I/O node in
system 1 received data, they write data back to storage in system
1.

Compared with one-side buffer, two-side buffer require both
systems allocate I/O buffer nodes, if node usage is charge in both
system, total cost may be larger than one-side buffer.

However since two-side buffer does not read data from or write
data to storage directly, it means we can compress data before
transfer it, though it will take some time to compress and decom-
press data, when the Internet throughput is extremely low, com-
press and decompress time will be far smaller than transferring
time, and compress data can make more data buffered in buffer
queue. Also, unlike one-side buffer, two-side buffer do not re-
quire storage to be opened to Internet, only required several I/O
nodes have access to Internet.

For these reasons, in the following section, we use two-side
buffer model as our read from and write back model in I/O burst
buffer.

4. I/O Burst Buffer Model
Since the instance type choice, interconnection network con-

dition, Internet condition will affect the actual I/O throughput
between two system, we introduce a throughput-based model,
cost-based model and buffer queue write back model used to pre-
dict throughput, overall cost and in buffer rate when use I/O burst
buffer and direct I/O, and using these predict model to make de-
cision like which type of instance should use, and how many I/O
nodes is needed in a particular cases.

The throughput-based model compares throughput with and
without I/O burst buffer, cost-based model compare cost with and
without I/O burst buffer, and buffer queue write back model shows
the situation that I/O buffer queue will be full. We make defini-
tions shows in Table 2 in order to describe our model.

4.1 Throughput-based Model
First we consider direct I/O, computing nodes read from and

write back to storage in another system directly. In the case of
direct I/O, computing nodes connect to storage in another system
directly, there is only one data transfer, so both read and write
throughput will be:

thrdirect = D1(c2) (1)

When using I/O burst buffer, there will be three data transfers:
computation nodes to I/O buffer nodes in system 2, I/O buffer
nodes in system 2 to I/O buffer nodes in system 1, I/O buffer
nodes in system 1 to storage in system 1, for reading, if required
file is buffered in buffer queue, computing node can read data
from buffer queue directly, then throughput will be:E2(n2), sim-
ilarly, if buffer queue still have enough space for I/O data when
issue a write request, computing nodes can write data to buffer

c⃝ 2014 Information Processing Society of Japan 4

Vol.2014-HPC-145 No.5
2014/7/28

IPSJ SIG Technical Report

Table 2 Definition of parameters

c1, c2 Numbers of computing nodes in system 1 and
system 2

n1, n2 Numbers of I/O buffer nodes in system 1 and
system 2.

m1,m2 Available memory size for each I/O node in
system 1 and 2, also the maximum buffer size
will be n1 × m1 and n2 × m2

D1(n2),D2(n2) Throughput when n2(n1) I/O nodes in system
1 (system 2) connect to storage in the other
system directly, here we assume I/O nodes
and computing nodes in each system have the
same Internet connection speed.

I(n1, n2) Internet throughput using n1, n2 nodes respec-
tively, since overall Internet throughput is af-
fected by number of nodes involved in con-
nection.

E1(n1), E2(n2) Interconnection network throughput in sys-
tem 1 and 2, although interconnection
throughput is also affected by numbers of I/O
nodes and computing nodes, numbers of users
will running application on different number
of computing nodes.

M1(n1),M2(n2) Throughput of connection between storage
and n1 I/O nodes in system 1 and storage and
n2 I/O nodes in system 2.

Ci M(T) Cost for standard node in system i for T time
usage

CiHM(T) I/O nodes in system i for T time usage, since
I/O nodes may use a better network condi-
tion, we assume it will cost more than normal
nodes.

queue, and throughput also will be:E2(n2).
If required file is not buffered in buffer queue when issue a read

request, or when issue a write request buffer queue is full, the
throughput will be:min{M1(n1), I(n1, n2), E2(n2), since for read
request, file need to be read from storage in another system In-
ternet, and for write request, it need to wait until buffer buffer
write buffered file back the storage. throughput

thrI/O buffer =

E2(n2)

buffer queue available

min{M1(n1), I(n1, n2), E2(n2)}
buffer queue full or file miss

(2)

Although we have two cases for each read and write request (in
buffer or not in buffer), it is very difficult to predict the in buffer
rate, since it will be affected by I/O size, Internet throughput,
buffer queue size and so on.

4.2 Cost-based Model
Although we may use I/O burst buffer to achieve a high I/O

throughput and leading a decrease of execution time, and ac-
cording to public cloud pay for usage policy, the cost for com-
puting nodes may reduce, the relation between overall cost and
I/O throughput can not be such simple, since I/O nodes will still
charged for usage, and if we use a instance with high intercon-
nection network condition in order to get a higher throughput, we
may be charged for more money.

Here we provide a cost-based model in order to predict overall
cost for using I/O burst buffer and direct I/O. Like throughput-
based model, cost will be affected by in buffer rate, but it depends
on application and buffer queue size, and is very difficult to pre-
dict. According to 1,and 2 total time for transferring unit size of

Fig. 8 buffer queue

Fig. 9 throughput comparison with and without I/O burst buffer

data can be compute as:

T1 =

Data size
D1(c2) direct

T2 =
Data size

min{M1(n1),I(n1 ,n2),E2(n2)} buffer queue full or file miss

T3 =
Data size

E2(n2) buffer queue available
(3)

here we compute cost by using T1,T2,T3:

costdirect = c2 ×C2M(T1) + n2 ×C2HM(T1) (4)

c2 ×C2M(T2) + n1 ×C1HM(T2) + n2 ×C2HM(T2)

buffer queue available

c2 ×C2M(T3) + n1 ×C1HM(T3) + n2 ×C2HM(T3)

buffer queue full

(5)

4.3 Buffer Queue Write Back Model
If the buffer size is unlimited. then we can buffer all data

in the I/O buffer nodes, and achieve a high throughput in cloud
burstHowever buffer size can not be unlimited, we can not buffer
all data in the I/O buffer nodes, data in buffer nodes have to be
write back to storage in another system. The problem is which
data should be written back to storage, like cache in cpu, if we can
reduce cache miss in this situation, we can increase throughput.
According to data locality, we use a priority queue to determine
which data should be write back.

Consider Fig. 8, assume average incoming throughput is A
MB/s and average outgoing throughput is B MB/s, if A always
larger than B, after T time buffer queue will full.

T =
m2 × n2

A − B
(6)

After that, since buffer queue is full, I/O server can not send
more data to I/O buffer nodes, have to block any read and write
request since that.

5. Evaluation
To evaluate how much federated systems with I/O burst buffers

c⃝ 2014 Information Processing Society of Japan 5

Vol.2014-HPC-145 No.5
2014/7/28

IPSJ SIG Technical Report

Fig. 10 throughput comparison between each cache rate

Fig. 11 maximum avaliable throughput

Fig. 12 cost comparison

can improve I/O performance and the cost, we conduct several
simulations based on preliminary performance data taken from
several benchmarks on both our in-house cluster and Amazon
EC2 in a Tokyo region in Section 2.In the simulations, we as-
sume that computing nodes running on one system read or write
files on storage of the other system with the same I/O throughput
for both read and write operations. We also assume an instance
type of both the computing nodes and I/O burst buffer nodes is
m3.xlarge provided by Amazon EC2. We compare I/O through-
put and overall costs of a system using direct I/O with a system
using I/O burst buffer by scaling out up to 20 computing nodes
under different cahch hit rate. For read operations, the cache rate
means percentage of data, which is read from buffer queues, to
total read size. For write operations, the cache rate means per-
centage of data, which is written to buffer queues before queue
becomes full, to total write size. If read and write are completed
via caches on I/O burst buffers without accessing to remote stor-
age, read and write throughput become identical to throughput
between a compute node and I/O burst buffer nodes.

First we compare I/O throughput of direct connection with the
throughput of I/O burst buffer under different cache rates assum-
ing that TSUBAME is federated with Amazon EC2. In this sim-
ulation, the number of I/O buffer nodes is equal to the number

of computing nodes. This configuration can achieve a maximum
I/O throughput. In practice, an I/O buffer node may have higher
network throghput than computing nodes, and the throughput can
not fully utilized. But we assume there are many users running
their applications on large amount of computing nodes, which
concurrently read data from or write data to one I/O bust buffer
nodes, the network throughput to I/O buffer is fully utilized.

Fig. 9 and Fig. 10 shows the throughput comparisons between
systems with and without I/O burst buffers. For direct I/O, each
computing nodes read from and write data to storage directly and
concurrently. When the number of nodes is small, throughput in-
creases as the number of nodes increses. However, after through-
put reach the peak bandwidth between two systems, (120MB/s
when number of nodes equals to 10 in our case), the throughput
becomes flat.

In 0% cache rate cases, since all data should be read from or
write back to storage, the throughput show a similar trend.

The large difference is shown in cache 100%(Fig. 10). In the
100% cases, all reading files are buffered in buffer queue, also
buffer queue is not full for writes. Thus, computing nodes can
read from and write to buffer queue each time without accessing
to remote storage, and the throughput becomens identical to net-
work throughput between computing nodes and I/O buffer nodes.
As we mentioned, network throughput between two instances
within Amazon EC2 shows the scalablity even if we increase the
pairs of two instances. I/O throughput can finally achieve around
2700MB/s, which is about 20 times faster than one of direct I/O.

However, the 100% cache rate is an ideal condition, and is not
practical in real applications, so we also estimate the throughput
under 75%,50% and 25% cache rates in Fig. 10. If the cache rate
is low, most of reading and writing data need to be transferred via
a network between the two systems, i.e, TSUBAME and Ama-
zon EC2. If applications can use the cache for read or write, I/O
throughput can be improved depending on the cache rates. To
estimate the throughput under different cache rates, we use the
below model.

throughput(n) =
1

MAX{ cache rate
E2(n) ,

1−cache rate
I(n,n) + 1−cache rate

E2(n) }

we denote I(n, n) as two-side network throughput shown in
Fig. 4, E2(n) network throughput within Amazon EC2 shown in
Fig. 3.

As shown in Fig. 10, we can also see that I/O throughput in
75% cache rate are much lower than ones of 100% cache rate.
This is because of a larege gap between network throughput
within Amazon EC2 and between the two systems, applications
must wait until reading or writing data, which is not in caches,
are transferred from or to remote storage.

In this simulation we only consider one job use up to 20 com-
puting nodes, but in practice, a large number of computing nodes
issue read and write requests concurrently, Fig. 11 shows the
maximum throughput of different cache rates and direct I/O. We
can see that write can achieve an extremely high throughput using
caches on I/O burst buffer nodes while read can not achieve that
high throughput unless target files are in caches.

c⃝ 2014 Information Processing Society of Japan 6

Vol.2014-HPC-145 No.5
2014/7/28

IPSJ SIG Technical Report

Then we compare overall cost between systems with and with-
out I/O burst buffers. As we mentioned, the cost is determined by
both the number of nodes and the execution time. As we showed,
by using I/O burst buffers, we can achieve a high I/O through-
put, and reduce both the execution time and cost. However, I/O
buffer nodes also is charged, hence we use following formular to
evaluate the cost.

cost(n) =
Data size

throughput(n)
×C2HM × n

According to the Amazon pricing policy, m3.xlarge instance is
charged by $0.405 par hour in a Asia Pacific region (Tokyo). For
direct I/O, we denotes n as the total number of instances used at
Amazon EC2. Therefore, n becomes the total number of com-
pute nodes in a system with direct I/O, while n is equal to the
total number of both computing nodes and I/O buffer nodes in a
system with I/O nodes. Since we assume that the number of I/O
nodes is equal to the number of computing nodes, n for a systen
with I/O nodes becomes 2 times higher than n for a system with
direct I/O.

Fig. 12 shows cost comparison between each cache rate and di-
rect I/O, which read or write 100GB data. As shown in the figure,
we can see that cost grows as the number of nodes grows while
there is an exception for 100% cache, which throughput is pro-
portional to nodes number. As shown in Fig. 12, if cache rate is
higher than 50%, the overall cost using I/O burst buffers become
lower than direct I/O, however, if cache rate is lower than 50%,
using I/O burst buffer cost more.

From above simulations, we can see that if we can achieve a
high cache rate, we can achieve a high throughput up to 4-20
times faster than direct I/O as well as a low cost up to 2-12 times
lower than direct I/O for 20 client nodes. It is may be difficult
for read data cache rate to be higher than 50% (can be possible
according to data locality), but it is reasonable for write data can
be buffered in buffer queue, since public clouds usually provide
instance with large size of memory, and it is easy to achieve a
Tera size of buffer queue.

6. Related Work
Cloud computing is becoming a topic of much interest in recent

years, not only famous Internet companies like google, Amazon,
IBM, Oracle, Microsoft provide public cloud, many companies
start to build or have built private cloud for internal computa-
tion. Recently hybrid cloud, which is a composition of two or
more clouds (private or public) is becoming a hot topic since it
allows a business to take advantage of the scalability and cost-
effectiveness that a public cloud offers without exposing critical
application and data to third-party vulnerabilities, also by using
cloud bursting, a small private cloud can easily burst into a large
cloud to deal with temporarily request peak. Several research
works have been done on hybrid cloud and cloud bursting, Tekin
Bicer el at.[15] considered a software framework to enable data-
intensive computing with cloud bursting, which use a combina-
tion of compute resources from local cluster and a public cloud to
processing on a geographically distributed data set. Their frame-
work assume computation nodes allocated in both local cluster

and public cloud, and data set is geographically distributed, How-
ever in our study, data set is stored in local system and in order
to obtain a high communication throughput between computation
nodes, we assume that nodes used for the same job allocated in
the same system. Another cloud bursting application can be seen
in Tian Guoel at.[9], they introduced a system called Seagull, de-
signed to facilitate cloud bursting by determining which appli-
cations should be transitioned into the cloud and automating the
movement process at the proper time. Their work focused on de-
termine which applications should be moved to public cloud, and
our work focus on the methodology of filling the I/O throughput
in cloud bursting.

There are also several paper about data I/O throughput, trans-
ferring and data processing in hybrid cloud. Chiba Tatsuhiro el
at.[16] proposed two high performance multicast algorithms used
for transferring large amounts of data stored in Amazon S3 to
multiple Amazon EC2 nodes. Tekin Bicer el at.[17] also de-
scribed a middleware that allows the specification of data pro-
cessing using a high-level API in Amazon S3.

7. Conclusion
In this paper, we propose a I/O burst buffer architecture to

burst I/O throughput, provide throughput-based, cost-based and
queue write back model, and provide a simulation based on sev-
eral benchmarks on TSUBAME supercomputer and AMAZON
EC2 public cloud. we use several nodes in each system as a I/O
buffer nodes, and use data buffering to hide the low throughput
between two systems connected by Internet.

From simulation result, we showed that our I/O burst buffer
solution can burst I/O throughput about 4-20 times depends on
cache hit rate as well as reduce overall cost about 2-12 times when
Internet throughput is far smaller than interconnection through-
put.

For future work, we plan to implement this I/O burst buffer
architecture.

References
[1] Brown, D. L. and Messina, P.: Scientific Grand Challenges: Cross-

cutting Technologies for Computing at the Exascale, The Crosscutting
workshop (2010).

[2] Messina, P. and Bishop, A.: Scientific Grand Challenges in National
Security: the Role of Computing at the Extreme Scale, The National
Security workshop (2009).

[3] Patki, T., Lowenthal, D. K., Rountree, B., Schulz, M. and de Supinski,
B. R.: Exploring Hardware Overprovisioning in Power-constrained,
High Performance Computing, Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing,
ICS ’13, New York, NY, USA, ACM, pp. 173–182 (online), DOI:
10.1145/2464996.2465009 (2013).

[4] Toshio, E., Satoshi, M., Akira, N., Masamichi, N. and Tadayasu,
Y.: Operation of TSUBAME 2.0 Green Supercomputer dealing with
Power Crisis, IPSJ SIG Notes, Vol. 2011, No. 12, pp. 1–9 (online),
available from ⟨http://ci.nii.ac.jp/naid/110008713482/en/⟩ (2011).

[5] Kailasam, S., Gnanasambandam, N., Dharanipragada, J. and Sharma,
N.: Optimizing Service Level Agreements for Autonomic Cloud
Bursting Schedulers, Parallel Processing Workshops (ICPPW), 2010
39th International Conference on, pp. 285–294 (online), DOI:
10.1109/ICPPW.2010.54 (2010).

[6] Bicer, T., Chiu, D. and Agrawal, G.: A Framework for Data-Intensive
Computing with Cloud Bursting, Cluster Computing (CLUSTER),
2011 IEEE International Conference on, pp. 169–177 (online), DOI:
10.1109/CLUSTER.2011.21 (2011).

[7] : Eucalyptus, Eucalyptus (online), available from
⟨https://www.eucalyptus.com/⟩ (accessed 2014-05-10).

c⃝ 2014 Information Processing Society of Japan 7

Vol.2014-HPC-145 No.5
2014/7/28

IPSJ SIG Technical Report

[8] : Stratos, Apache (online), available from ⟨http://stratos.apache.org/⟩
(accessed 2014-05-10).

[9] Guo, T., Sharma, U., Shenoy, P., Wood, T. and Sahu, S.: Cost-
Aware Cloud Bursting for Enterprise Applications, ACM Trans. In-
ternet Technol., Vol. 13, No. 3, pp. 10:1–10:24 (online), DOI:
10.1145/2602571 (2014).

[10] : AMAZON AWS, AMAZON (online), available from
⟨http://aws.amazon.com/⟩ (accessed 2014-06-20).

[11] : Iperf, The Board of Trustees of the University of Illinois (online),
available from ⟨http://iperf.fr/⟩ (accessed 2014-06-20).

[12] rklundt: IOR HPC Benchmark, GNU (online), available from
⟨http://sourceforge.net/projects/ior-sio/⟩ (accessed 2014-06-20).

[13] Sato, K., Maruyama, N., Mohror, K., Moody, A., Gamblin, T.,
de Supinski, B. R. and Matsuoka, S.: Design and Modeling of
a Non-blocking Checkpointing System, Proceedings of the Inter-
national Conference on High Performance Computing, Network-
ing, Storage and Analysis, SC ’12, Los Alamitos, CA, USA, IEEE
Computer Society Press, pp. 19:1–19:10 (online), available from
⟨http://dl.acm.org/citation.cfm?id=2388996.2389022⟩ (2012).

[14] Szeredi, M.: SSH Filesystem, GNU (online), available from
⟨http://fuse.sourceforge.net/sshfs.html⟩ (accessed 2014-06-20).

[15] Bicer, T., Chiu, D. and Agrawal, G.: Time and Cost Sensitive Data-
Intensive Computing on Hybrid Clouds, Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (Ccgrid 2012), CCGRID ’12, Washington, DC, USA,
IEEE Computer Society, pp. 636–643 (online), DOI: 10.1109/CC-
Grid.2012.95 (2012).

[16] Chiba, T., den Burger, M., Kielmann, T. and Matsuoka, S.: Dynamic
Load-Balanced Multicast for Data-Intensive Applications on Clouds,
Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, CCGRID ’10, Washington, DC,
USA, IEEE Computer Society, pp. 5–14 (online), DOI: 10.1109/CC-
GRID.2010.63 (2010).

[17] Bicer, T., Chiu, D. and Agrawal, G.: MATE-EC2: A Middleware for
Processing Data with AWS, Proceedings of the 2011 ACM Interna-
tional Workshop on Many Task Computing on Grids and Supercom-
puters, MTAGS ’11, New York, NY, USA, ACM, pp. 59–68 (online),
DOI: 10.1145/2132876.2132889 (2011).

c⃝ 2014 Information Processing Society of Japan 8

Vol.2014-HPC-145 No.5
2014/7/28

