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Speech enhancement and recognition for reverberant speech:
overview of the NTT REVERB challenge system

1. Introduction

Recently, automatic speech recognition (ASR) technolo-

gies are being deployed more and more in actual products.

However, current applications still require the use of close-

talking microphones to achieve reasonable speech recog-

nition performance. To further expand the usage of ASR,

there is a need to make systems work reliably in hands-free

situations. In such scenarios, speech captured at a distant

microphone is degraded by noise and reverberation.

The problem of noise robustness has attracted much

attention and has been evaluated through several bench-

marks [1], [2], [3], [4]. In contrast, robustness to rever-

beration has remained a challenging problem [5] and no

evaluation benchmark was available until recently. The

REVERB challenge 2014 [6], [7] was organized to resolve

this situation by proposing a common reverberant speech

database to evaluate recent progress in the field of rever-

berant speech enhancement and recognition.

In this paper, we briefly review the system we proposed

for reverberant speech recognition that combines linear
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prediction based dereverberation, beamforming, model-

based noise reduction and deep neural network (DNN)

based ASR [8]. We then present summary results for the

REVERB challenge task that attest the efficiency of the

proposed recognition system. In this paper, we focus on

the system and results obtained for the ASR task of the

REVERB challenge, but our system also performed well

on the speech enhancement task [8], [9].

2. Proposed system

Here we briefly describe the main parts of the system we

developed for the REVERB challenge, details about the

system can be found in [8]. Figure 1 shows a schematic

diagram of the proposed system.

It consists of the following elements:

• Dereverberation: We use the weighted prediction

error (WPE) dereverberation algorithm [16]. WPE

modifies long-term linear prediction based derever-

beration by introducing two main modifications, i.e.

the introduction of a delay in the calculation of the

linear prediction filter coefficients, and the modeling

of speech with a short term Gaussian distribution

with time varying variance. WPE can be derived for

single and multi-channel cases. In the latter case,
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1 Schematic diagram of the proposed system for recognition of reverberant speech.

Note that for the 1ch system we do not perform noise reduction before ASR.

WPE was shown to preserve spatial information in

the output signals [17] and can thus be effectively in-

terconnected with multi-channel speech enhancement

processing such as beamformer. WPE is well suited

for the REVERB challenge task because it has been

shown perform well even in presence of noise. More-

over, the algorithm can be derived in the STFT do-

main, which allows a fast implementation.

• Noise reduction: The REVERB challenge data

contains a non negligible amount of background

noise. We reduce the noise using a conventional mini-

mum variance distortionless response (MVDR) beam-

former [18] followed by model-based noise reduction

approaches [19], [20].

• Speech recognition: Recognition is performed us-

ing a DNN-HMM based recognizer, which was trained

with multi-condition training data. We also employed

recurrent neural network based language model with

fast on-the-fly rescoring [21]. Finally, we performed

unsupervised environmental adaptation of the acous-

tic model, by retraining the first layer of the DNN-

HMM with a small learning rate, using labels ob-

tained from a first recognition pass [8], [22]. This pro-

cess is performed in full batch processing, i.e. using a

set of test utterances from a same acoustic condition

but from different speakers.

3. Experiments

In this section, we introduce the REVERB challenge

task and present the experimental results obtained for the

1ch/8ch recognition tasks of the RealData set of the chal-

lenge.

3.1 REVERB challenge task

The REVERB challenge consists of speech enhancement

and speech recognition tasks. Both tasks rely on the same

database. The challenge data consists of the following

data sets that are all based on the WSJ/WSJCAM0 text

prompts [10], [11].

• The Development set (Dev) consists of reverber-

ant speech data recorded in 4 different rooms. The

reverberant speech signals for the first 3 rooms were

generated through simulations (SimData) using clean

speech test data obtained from the WSJCAM0 cor-

pus, and room impulse responses and noise measured

in actual rooms. The reverberation time (RT60)

varies from 0.25 to 0.7 sec. All utterances include

stationary noise at SNR of about 20 dBs. For the

fourth room, speech consists of real recordings (Real-

Data) in a meeting room with RT60 of about 0.7 sec

obtained from the MC-WSJ corpus [12].

• The Evaluation set (Eval) consists of the same

acoustic environments than the Dev set, but with dif-

ferent speakers and different speaker positions in the

rooms.

• The Training set (Train) consists of the clean

training data set of WSJCAM0 and several room im-

pulse responses and noise signals measured in real

rooms. A script to generate multi-condition training

data is also available [13].

For all data sets, 1 microphone (1ch), 2 microphones (2ch)

and 8 microphones (8ch) versions are available. All data

sets are available through LDC [14], [15] and the REVERB

challenge webpage [13]. In addition to the above data sets,

the challenge webpage also provides evaluation scripts [13]

and description of the challenge regulation.

3.2 Settings

The 1ch speech enhancement front-end consists only of

dereverberation (no noise reduction was performed). The

8ch speech enhancement front-end includes both derever-

beration and denoising as shown in Fig. 1. Our DNN-
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2 Results for the evaluation set (RealData).

HMM recognizer was trained using a conventional proce-

dure [23], i.e. RBM pre-training followed with SGD fine

tuning. The input features of the DNN acoustic model

consists of 40 log mel filterbank coefficients with delta and

delta-delta, augmented by 5 left and right context window.

The DNN acoustic model consists of 7 hidden layers, each

with 2048 units. The output layer corresponds to 3129

HMM states. We used about 85 hours of multi-condition

training data to train our recognition system. Please refer

to [8] for further details about the experimental settings.

3.3 Results

Figure 2 plots the word error rate (WER) for the Re-

alData set for the challenge baseline system, our DNN-

based recognizer without and with speech enhancement

pre-processing for 1ch and 8ch, and the results obtained

by recognizing speech recorded with a headset microphone

with our DNN-based recognizer.

Figure 2 shows a large performance improvement

brought by our DNN-based recognizer over the challenge

baseline. We observe significant additional performance

improvement on top of this strong baseline by using 1ch

and 8ch speech enhancement front-end. With 8ch, the

performance becomes close to that obtained with a head-

set microphone. This was the lowest WER achieved on

this task.

Note that detailed results and comparison with the sys-

tems from the other participants can be found in [9].

Other techniques that achieved high performance on the

task includes i-vector based speaker compensation [24],

[25] and system combination [25], [26], [27]. Such ap-

proaches could be included into our system to further im-

prove performance.

4. Conclusion

In this paper, we described the system we proposed
for the REVERB challenge task. The proposed sys-
tem demonstrated high recognition performance even for

speech recorded in severe reverberant conditions. When
using 8 microphones, WER close to that obtained with
a headset microphone could be achieved. However, for
the single microphone case, there remains much room for
improvement. Moreover, future work will include testing
the proposed system in more severe conditions, with more
noise and spontaneous speech.
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