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Abstract: This paper proposes a parallel algorithm to extract all connected subgraphs, each of which shares a com-
mon itemset whose size is not less than a given threshold, from a given graph in which each vertex is associated to an
itemset. We also propose implementations of this algorithm using the task-parallel language Tascell. This kind of graph
mining can be applied to analysis of social or biological networks. We have already proposed an efficient sequential
search algorithm called COPINE for this problem. COPINE reduces the search space of a dynamically growing tree
structure by pruning its branches corresponding to the following subgraphs; already visited, having itemsets smaller
than the threshold, and having already-visited supergraphs with identical itemsets. For the third pruning, we use a table
associating already-visited subgraphs and their itemsets. To avoid excess pruning in a parallel search where a unique
set of subtrees (tasks) is assigned to each worker, we should put a certain restriction on a worker when it is referring to
a table entry registered by another worker. We designed a parallel algorithm as an extension of COPINE by introducing
this restriction. A problem of the implementation is how workers efficiently share the table entries so that a worker
can safely use as many entries registered by other workers as possible. We implemented two sharing methods: (1) a
victim worker makes a copy of its own table and passes it to a thief worker when the victim spawns a task by dividing
its task and assigns it to the thief, and (2) a single table controlled by locks is shared among workers. We evaluated
these implementations using a real protein network. As a result, the single table implementation achieved a speedup
of approximately a factor four with 16 workers.

Keywords: graph mining, dynamic load balancing, task-parallel language

1. Introduction

The amount of created and stored information is increas-
ing explosively owing to recent advances in information-
communication technology and information systems. The size
of data generated in this phenomenon called “infoplosion” is too
large to make effective use of as it is. Therefore, data mining,
i.e., discovering useful knowledge from such large amount of
data, is attracting significant attention. In particular, data min-
ing for graphs, i.e., graph mining, has become an active research
area since data analyzed for academic and commercial purposes
such as network communications, biology, and marketing are of-
ten represented by graphs [1].

In most cases, a graph is not analyzed only with its inherent
components, i.e., vertices and edges, but together with external
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data associated with its vertices and/or edges. For example, in
a social networking service (SNS), users and friendships among
them can be represented as vertices and edges of a graph. User in-
terests can be represented as an itemset associated with a vertex.
We can obtain more useful knowledge by analyzing the graph and
the itemsets together than by analyzing each of them separately.
This paper deals with graph mining that extracts connected sub-
graphs with common itemsets (Common Itemset connected sub-
Graph, CIG) from data composed of a graph and itemsets associ-
ated with vertices of the graph. Here, a common itemset means
the product of all itemsets with which vertices of a connected
subgraph are associated.

We can obtain a variety of useful knowledge from CIGs. Ap-
parently, they are useful in SNS. Another example is a biological
network where each vertex represents a gene and is associated
with a set of drugs that react to that gene. A CIG in such a graph
denotes a gene combination that reacts to some combination of
drugs. Such a knowledge is expected to be helpful for drug dis-
covery.

As the size of a graph increases, the computation time required
for extracting CIGs using a naı̈ve algorithm increases exponen-
tially. Thus, it is clearly unrealistic to analyze Facebook, the
world’s largest SNS with 500 million users [2], using such an ex-
ponential time algorithm. One possible approach to extract CIGs
from a large-scale graph within a practical time is to employ an
efficient sequential algorithm and parallelize it to reduce the com-
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putation time.
We have already proposed an efficient sequential backtrack

search algorithm called COmmon Pattern Itemset NEtwork min-
ing (COPINE) [3], [4]. However, due to the pruning employed
in this algorithm, it cannot be parallelized straightforwardly. In
order to reduce the search space of a dynamically growing tree
structure, COPINE prunes its branches corresponding to the fol-
lowing subgraphs; (1) already visited, (2) having itemsets smaller
than a given threshold, and (3) having already-visited supergraphs
with identical itemsets. For the third pruning, a table called item-
set table is used to record visited subgraphs and their itemsets. In
a parallel search where a unique set of subtrees (tasks) is assigned
to each worker, a worker could excessively prune the branches in
its subtrees if it blindly consulted table entries registered by an-
other worker. To avoid such excessive pruning, we should put a
certain restriction on a worker when it is referring to table entries
registered by another worker. We designed a parallel algorithm
as an extension of COPINE by introducing this restriction.

Since a search tree in COPINE has an irregular structure, it is
effective to apply dynamic load balancing in parallelized imple-
mentations. Applications having these properties are often im-
plemented by task-parallel languages, by which we can dynami-
cally spawn tasks to be automatically assigned to workers being
parallel threads and/or processes. We implemented the parallel
COPINE algorithm using the task-parallel language Tascell [5]
appreciating the high performance it has been accomplishing for
various backtrack search algorithms.

In addition to the load balancing, there is another important im-
plementation issue regarding sharing information in the itemset
table. This sharing requires consideration of a trade-off between
the increasing opportunity of sharing useful information among
workers and reducing the cost to do that safely. We implemented
the following three sharing methods and evaluated them using a
real protein network:
non-sharing method where each worker has its own table and

never sees the tables of others.
replicating method where each worker still has its own table

but its contents are imported from the table of the victim
worker when the thief worker steals a task from the victim.

fully-sharing method where a single table is shared among all
workers with a lock for each subgraph entry.

The remainder of this paper is organized as follows. We define
the problem targeted in this research in Section 2. In Section 3,
we describe a sequential COPINE algorithm and propose a par-
allel algorithm designed to extend it. Then, we provide a par-
allelized implementation of COPINE using Tascell in Section 4,
and show the performance evaluations in Section 5. We introduce
related work in Section 6, and describe future work in Section 7.
Finally, we conclude this paper in Section 8.

2. Definition of CCIG Enumeration Problem

In this section, we define the Closed CIG (CCIG) enumera-

tion problem, which is targeted for parallelization in this research.
This problem is defined for a graph whose vertices are associated
with itemsets, and the itemset of a connected subgraph, i.e., the
product of all the itemsets associated to its vertices. A CCIG with

Fig. 1 Example of a graph associated with itemsets.

respect to an itemset I is a maximal subgraph among CIG that
have I as a common itemset, or a CIG such that, when any ad-
jacent vertex is added to the CIG, the resulting subgraph is not
a CIG with respect to I. The CCIG enumeration problem is the
problem to enumerate all the CCIGs whose common itemset size
is not less than a given threshold. More formal definitions of the
connected subgraph, CIG, CCIG, and CCIG enumeration prob-
lem are given as follows.
Definition 1 (Connected Subgraph) For a given graph G =

(V, E), we call G′ = (V ′, E′) a connected subgraph *1 of G iff
all of the following criteria hold.
(1) V ′ ⊆ V

(2) E′ = {(u, v) | u, v ∈ V ′} ∩ E

(3) ∀u, v ∈ V ′ : ∃{(u1, v1), · · · , (un, vn)} is the path between u and
v where u1 = u, vn = v, (ui, vi) ∈ E′, ui = vi−1 (1 < i ≤ n)

Note that E′ is uniquely defined by V ′, and thus, we may denote
E′ as E(V ′).

The CCIG enumeration problem is defined as follows.
Definition 2 (CCIG Enumeration Problem) Given a graph G

= (V, E), a set of items I, items associated with each vertex v be-
ing I(v) ⊆ I (v ∈ V), and a threshold θ, the problem of extracting
all connected subgraphs G′ = (V ′, E′) that satisfy the two condi-
tions below is the CCIG enumeration problem.

(i)

∣∣∣∣∣∣∣
⋂

v∈V ′
I(v)

∣∣∣∣∣∣∣ ≥ θ

(ii)

∣∣∣∣∣∣∣∣

⋂

v∈V ′∪{v′}
I(v)

∣∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣
⋂

v∈V ′
I(v)

∣∣∣∣∣∣∣ for any v′ connected to G′, i.e.,

v′ ∈ V − V ′ such that ∃v ∈ V ′ : (v, v′) ∈ E.
A connected subgraph G′ that satisfies (i) above is called a

CIG. A connected subgraph G′ that satisfies both (i) and (ii) is
called a CCIG. It is closed with respect to the itemset I(G′) =⋂
v∈V ′ I(v).
An example of an input graph associated with itemsets is

shown in Fig. 1. Table 1 contains the outputs when this graph
and θ = 2 are given as inputs. Note that G′′ = (V ′′, E(V ′′)) where
V ′′ = {v1, v4, v5} is not included in the outputs, because it satis-
fies (i) since I(G′′) = {i1, i3} but not (ii) since I(G′3) = I(G′′) and
V ′3 ⊃ V ′′.

3. COPINE Algorithm

In this section, we introduce a parallel algorithm that solves the
CCIG enumeration problem. First, in Section 3.1, we present the
sequential COPINE algorithm proposed in Refs. [3] and [4]. Sec-

*1 To be exact, this is a connected and induced subgraph due to condition
(ii). In this paper, however, we call it a connected subgraph for simplic-
ity.
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Table 1 CCIGs obtained from the graph in Fig. 1 with θ = 2.

connected subgraph: G′i vertex set : V ′i common itemset: I(G′i )

G′1 {v1, v3, v4} {i1, i2}
G′2 {v1, v3} {i1, i2, i4}
G′3 {v1, v4, v5, v6} {i1, i3}
G′4 {v1, v4} {i1, i2, i3}
G′5 {v1} {i1, i2, i3, i4}
G′6 {v2} {i1, i5}
G′7 {v4, v6} {i1, i3, i5}
G′8 {v4} {i1, i2, i3, i5}
G′9 {v5} {i1, i3, i4}

Fig. 2 Search tree for the graph in Fig. 1 (θ = 2).

ond, we prove the correctness of the algorithm and discuss how
we can parallelize it in Section 3.2. Based on these discussions,
we propose the parallel COPINE algorithm in Section 3.3.

3.1 Sequential COPINE Algorithm
As shown in Fig. 2, the COPINE algorithm applies a depth-first

search to a search tree consisting of the following components: a
pseudo root corresponding to an empty graph, nodes correspond-
ing to graph vertices, and edges corresponding to graph edges.
Note that a path from the root to a node represents a connected
subgraph, and adding a child node means adding an adjacent ver-
tex to the connected subgraph. The fact that generally there are
two or more vertices which can be added to a connected subgraph
corresponds to the fact that a node in the search tree can have mul-
tiple child nodes. Therefore, after searching all subgraphs derived
from a child node, the COPINE algorithm backtracks to the child
node, chooses the next child node, and starts searching from the
child node. The COPINE algorithm can search all the subgraphs
derived from the parent node by repeating this process for all the
child nodes.

Since the search tree represents all the subgraphs of an input
graph G, we can enumerate all the CCIGs by traversing the tree
completely. However, this is in general unrealistic. Therefore in
order to reduce the search space, COPINE employs the pruning of
the tree edges from which the following three types of subgraphs
are derived:
Pruning 1 subgraph we have already visited,
Pruning 2 subgraph whose itemset is smaller than the thresh-

old θ, and
Pruning 3 subgraph not being closed since one of its super-

graphs has already been visited and their itemsets are identi-
cal.

The first pruning avoids duplicate enumeration by using a tech-
nique called gSpan proposed in Ref. [6]. First, we define an ar-
bitrary ordering v1 ≺ v2 ≺ · · · ≺ vn of all the vertices in the

vertex set V . In a straightforward depth-first search to enumer-
ate the connected subgraphs, all the vertices adjacent to a con-
nected subgraph that is represented by a path from the root to a
node becomes candidates for the vertex added in the next step.
COPINE achieves the first pruning by enumerating all the con-
nected subgraphs according to their total (lexicographical) order
derived from the order of vertices. A search tree for the graph in
Fig. 1 to which this pruning is applied is shown in Fig. 2. Each
label and itemset of a node represents the last added vertex and
the common itemset respectively. While 〈v1, v3, v4〉 is traversed in
Fig. 2, 〈v1, v4, v3〉 = 〈v1, v3, v4〉 is not traversed because it precedes
〈v1, v4〉 in the lexicographic order.

The second pruning is achieved by exploiting that the size of
the common itemset does not increase when an adjacent vertex
is added to a connected subgraph, i.e., the itemset size is mono-
tonically non-increasing from the root to the leaf in a search tree.
Therefore, when the size of the common itemset is lower than a
threshold θ during a search, no CIG among the descendants has a
common itemset size larger than or equal to the threshold. There-
fore, the search of the descendants can be skipped. The nodes
represented by dashed frames in Fig. 2 are eliminated by this sec-
ond pruning.

Focusing on the two subtrees surrounded by red frames in
Fig. 2 we find that the right subtree is identical to the tail of the
left one, including the itemset labels on their nodes. In this case,
no descendants of n2 are needed to be visited since the subgraphs
represented by them have supergraphs represented by the left sub-
tree whose itemsets are identical to those of the subgraphs. That
is, the subgraphs represented by the right subtree are not closed.
To avoid such a duplicate search, we introduce the third pruning
as follows.

We prepare an itemset table with entries corresponding to the
vertices of a graph. When adding a vertex to a current subgraph
during a search, the common itemset of the resulting subgraph
is added to the entry corresponding to the added vertex. On this
occasion, if the table entry contains a super-itemset of the itemset
being added, the search of the descendants of the current search
tree node can be skipped. For example, the shaded nodes in Fig. 2
are eliminated by this kind of pruning. The itemset {i1, i2, i4} is
added to the table entry corresponding to v3 when n1 is visited.
When n2 is visited, {i1, i2, i4} is to be added to the same table entry
again. At this time, since this itemset has been already registered;
i.e., a super-itemset (in a broad sense) has been already registered,
the search in the direction from n2 to the leaf is skipped.

On the other hand, if a proper subset of the itemset being added
has been registered, it is removed from the entry *2. An itemset
in the entry that has no inclusive relation with the itemset being
added remains stored. For example, the itemset {i1, i2} is added
to the table entry corresponding to v4 when 〈v1, v3, v4〉 is visited.
Then, {i1, i2} is removed from this entry when 〈v1, v4〉 is visited
and the itemset {i1, i2, i3}, which contains {i1, i2}, is added to the
entry.

*2 Though this removal does not affect the correctness of the algorithm, it
prevents an itemset table from bloating.
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3.2 Correctness and Application to Parallel Search of Prun-
ing

In this section, we describe the COPINE algorithm more for-
mally and prove its correctness. Then we discuss its paralleliza-
tion. Specifically, we present the correctness of the sequential
search using the pruning methods explained in Section 3.1, and
show that we cannot blindly apply Pruning 3 in a parallel search.
Next, we show that a correct parallel search is obtained by a par-
tial application of Pruning 3, putting a restriction on a worker
when referring to a table entry registered by another worker. Note
that by correct pruning we mean that the completeness of the
search is preserved when the pruning is applied, i.e., all the sub-
graphs that satisfy the required conditions are enumerated. On the
other hand, our parallel algorithm does not preserve soundness; it
can enumerate subgraphs that do not satisfy the conditions. We
discuss the soundness in more detail in Section 3.2.4.
3.2.1 Correctness of Pruning 1

In this section, we provide a more formal definition of Prun-
ing 1 and prove its correctness. First, we define a sequence called
a Canonical Spanning Tree (CST).
Definition 3 (Spanning Tree) For a connected subgraph G′ =

(U, E(U)) of G = (V, E), a sequence 〈u1, · · · , un〉 such that
{u1, · · · , un} = U is called a spanning tree of G′ iff all of the
following conditions hold.
(1) 1 ≤ ∀i � ∀ j ≤ n : ui � u j

(2) 1 < ∀ j ≤ n : 1 ≤ ∃i < j such that (ui, u j) ∈ E(U)
Note that there can be two or more spanning trees for a subgraph
G′.
Definition 4 (Canonical Spanning Tree) A spanning tree
T (U) = 〈u1, · · · , un〉 of the connected subgraph G′ = (U, E(U))
such that U = {u1, · · · , un} is called canonical iff u1 = min[≺](U)
and ui = min[Ui−1↽ ] (N(Ui−1) − Ui−1) for all i such that 1 < i ≤ n,
where U j, N(U j), and

U j
↽ are defined as follows.

(1) U j = {u1, · · · , u j}

(2) N(U j) =
j⋃

k=1

{u | (uk, u) ∈ E(U)}

(3) (Depth First Ordering)
prev(u,U j) = arg max

k
{uk | (uk, u) ∈ E(U), 1 ≤ k ≤ j}

u
U j
↽ v ⇔ u, v ∈ N(U j) − U j ∧ (prev(u,U j) > prev(v,U j) ∨

(prev(u,U j) = prev(v,U j) ∧ u ≺ v))
Note that, for T (U) = 〈u1, · · · , un〉, its ancestor 〈u1, · · · , um〉
(m < n) is canonical by definition. On the other hand, it is not
always true that there exists a u ∈ V such that T (U) · 〈u〉, i.e., a
direct descendant of T (U), is canonical. We can form the CST of
U by the algorithm in Fig. 3.

Second, we define the lexicographic order of connected sub-
graphs as follows.
Definition 5 (Lexicographical Order of Subgraphs) For a
pair of two connected subgraphs G1 = (U1, E(U1)) and G2 =

(U2, E(U2)) of G = (V, E) such that G1 � G2, we denote
G1 ≺ G2 iff the following holds for T (U1) = 〈u1

1, · · · , u
1
m〉 and

T (U2) = 〈u2
1, · · · , u

2
n〉;

k = m < n ∨ (k < min(m, n) ∧ u1
k+1

U1,2
k ∗↽ u2

k+1)

where k = arg maxi{u1
i | ∀ j ≤ i : u1

j = u2
j } =

Fig. 3 Algorithm to form the CST of a connected subgraph.

|prefix(T (U1), T (U2))|, U1,2
k = {u1

1, · · · , u
1
k} = {u

2
1, · · · , u

2
k}, and

u Ui∗↽ v is defined as follows for a CST T (Ui) = 〈u1, · · · , ui〉.

(1) N∗(Ui) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V i = 0
i⋃

j=1

{u | (u j, u) ∈ E} i > 0

(2) (Depth First Ordering)

prev∗(u,Ui) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 i = 0

arg max
j
{u j | (u j, u) ∈ E, 1 ≤ j ≤ i} i > 1

u Ui∗↽ v⇔ u, v ∈ N∗(Ui) − Ui ∧ (prev∗(u,Ui) > prev∗(v,Ui) ∨
(prev∗(u,Ui) = prev∗(v,Ui) ∧ u ≺ v))

Theorem 1 (Direct Successor of a Subgraph) Let {G1, · · · ,
GN} be the set of all connected subgraphs of G such that
G1 ≺ · · · ≺ GN . For Gi = (Vi, E(Vi)) (1 ≤ i < N) where T (Vi) =
〈u1, · · · , un〉, T (Vi+1) is given by:

T (Vi+1) = 〈u1, · · · , uk〉 ·
〈
min
[
Uk∗↽
]

(Ck)
〉

where k and Ck are defined by:
(1) Pi = {v | v Ui−1∗↽ ui} ∪ {ui}

(2) Di =

i⋃

j=1

{N∗(U j−1) ∩ Pj}

(3) Ci = N∗(Ui) ∩

⎛⎜⎜⎜⎜⎜⎜⎜⎝V −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Di+1 i < n

Dn i = n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(4) k = arg max
j
{C j | C j � ∅, 0 ≤ j ≤ n}

Proof: See Appendix A.1.
According to Theorem 1, we can enumerate the CSTs of all

the connected subgraphs of a graph G = (V, E) (in the lexico-
graphic order of the corresponding connected subgraphs) by the
algorithm in Fig. 4. Since each connected subgraph has just one
CST, we can enumerate all connected subgraphs of G with no du-
plications using this algorithm. This means that, by traversing a
search tree derived from this algorithm, we can correctly achieve
the purpose of Pruning 1, i.e., avoid visiting a subgraph that has
been visited already.
3.2.2 Correctness of Pruning 2

The correctness of Pruning 2 is proved by Theorem 2 as fol-
lows.
Theorem 2 (Monotonicity of Common Itemset) Let G1 =

(U1, E(U1)) and G2 = (U2, E(U2)) be connected subgraphs of
a graph G = (V, E). If T (U2) = T (U1) · T ′, or in other words G1

and G2 form an ancestor-descendant pair respectively, all of the
following conditions hold.
(1) I(G1) ⊇ I(G2)
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Fig. 4 Algorithm to enumerate connected subgraphs.

(2)
∣∣∣I(G1)

∣∣∣ ≥
∣∣∣I(G2)

∣∣∣
(3)
∣∣∣I(G1)

∣∣∣ < θ →
∣∣∣I(G2)

∣∣∣ < θ
Proof:

(1) It is obvious that U1 ⊂ U2. Therefore I(G1) =
⋂
v∈U1 I(v) ⊇⋂

v∈U2 I(v) = I(G2). �
(2) Trivial by (1). �
(3) Trivial by (2). �

According to Theorem 2, when the size of a current common
itemset is less than a threshold during a search, there is no con-
nected subgraph whose common itemset size is not less than the
threshold among the descendants. Therefore, Pruning 2 is correct.
3.2.3 Correctness and Application to Parallel Search of

Pruning 3
Theorem 3 (Lexicographical Order of CCIG) Let G1 = (U1,

E(U1)) and G2 = (U2, E(U2)) be connected subgraphs of a graph
G = (V, E) being G1 ≺ G2. If the tails of T (U1) = 〈u1

1, · · · , u
1
m〉

and T (U2) = 〈u2
1, · · · , u

2
n〉 are common, i.e., tail(U1) = u1

m =

tail(U2) = u2
n, and I(G1) ⊇ I(G2), all of the following criteria

hold.
(1) G2 is not closed with respect to I(G2).
(2) Any descendant G′ = (U′, E(U′)) of G2 is not closed with

respect to I(G′).
Proof: See Appendix A.2.

Theorem 3 proves the correctness of Pruning 3 in a sequential
search. Let us look at the search-tree nodes n1 and n2 in Fig. 1.
We can see that n2 is searched later than n2 (G1 ≺ G2), their tails
are the same (tail(U1) = tail(U2)), and the common itemset at n2

is a subset of the common itemset at n1 (I(G1) ⊇ I(G2)). Note
that we can recognize that the third condition is satisfied from the
table entry corresponding to the vertex u1

m = u2
n when we visit n2.

Since the prerequisites of Theorem 3 are satisfied, n2 and any de-
scendant of n2 are not CCIGs. Therefore, we can skip searching
them.

On the other hand, from Theorem 3 we see that we cannot
apply Pruning 3 to a parallel search straightforwardly. The pre-

Fig. 5 Example of excessive pruning (θ = 2).

requisite of Theorem 3 means that a worker can refer to itemsets

for Pruning 3 only if it had been registered earlier in a sequen-

tial search with Pruning 1. Following this restriction, we can
correctly apply Pruning 3 in a parallel search.

In Fig. 5 we show an example of losing completeness in the
absence of this restriction. We suppose that worker 0, travers-
ing the left subtree, and worker 1, traversing the right subtree,
have visited 〈v1, v2〉 and 〈v3, v4, v6〉 respectively. At this time, the
itemset table of worker 1 is shown at the bottom of Fig. 5. After
that, worker 0 will visit 〈v1, v3〉. If worker 0 refers to {i1, i2, i4}
in the itemset table of worker 1, worker 0 will skip the search
from 〈v1, v3〉 to the leaf nodes because worker 0 recognizes that
the conditions for Pruning 3 are satisfied. As a result, {v1, v3}
and subgraphs including {v1, v3} are excluded from the search re-
sult. For example, {v1, v3, v4} is not enumerated erroneously when
θ = 2.
3.2.4 Soundness of Search

We discuss the soundness of the search in this section.
Theorem 4 (CCIG) A connected subgraph G′ = (U, E(U)) of
a graph G = (V, E) is closed with respect to I(G′) iff all of the
followings hold.
(1) For any direct descendant Gd = (Ud, E(Ud)) of G′, it holds

that I(G′) � I(Gd).
(2) For any connected subgraph Gp = (U p, E(U p)) of G such

that Gp ≺ G′ and tail(U p) = tail(U′), it holds that I(Gp) �
I(G′).

Proof: See Appendix A.3.
Theorem 4 guarantees that, when Prunings 1–3 are completely

applied, we can enumerate all the CCIGs without any redundant
outputs, i.e., soundly and completely, by asserting a visiting sub-
graph G′ to be closed if either of the following is satisfied for any
direct descendent G′′ of G′; G′′ is pruned by one of Prunings 1–3
or |I(G′)| > |I(G′′)|. Thus, using the sequential search algorithm
in Fig. 6, we can completely enumerate all the CCIGs of a graph
G = (V, E) whose common itemset size is not less than θ. In
this algorithm, Pruning 1 corresponds to the fact that connected
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Fig. 6 Sequential algorithm to enumerate all CCIGs of graph.

subgraphs are scanned in the same way as in Fig. 4, managing V ,
N, and C. Pruning 2 is performed by detecting the inferiority of
the itemset cardinality to the threshold θ at lines 6 and 22. Prun-
ing 3 is achieved by adding an itemset to the itemset table entry
at line 15 and detecting an inclusive relation between itemsets at
line 23.

In a parallel search, on the other hand, a search tree node vis-
ited by a worker may have some precedent nodes left unvisited
by other workers though they should have been visited in the se-
quential search. Therefore, it is virtually impossible to perform
Pruning 3 perfectly and thus the parallel version of the algorithm
in Fig. 6 will assert a CIG to be closed though in reality it is not.
In order to obtain a sound set of CCIGs, we need to eliminate
CIGs that do not satisfy condition (ii) of Definition 2 after the
search. Note that although the elimination can be done by con-
structing the complete itemset table from the set of imperfect ones
and examining the itemset of the tail vertex of each candidate CIG
against the table, the elapsed time for this process is not consid-
ered in the performance evaluation in Section 5.

3.3 Parallel Algorithm
We parallelized the algorithm in Fig. 6 by dividing a search tree

and assign a unique set of subtrees to each worker. This can be
implemented by dividing the two while loops in Fig. 6 (lines 4–9
and 18–26) into appropriate units and executing them in parallel.

Each worker traverses assigned subtrees almost in the same
way as in the sequential search. Prunings 1 and 2 can directly be
applied to the parallel algorithm. On the other hand, we need to

apply the restriction described in Section 3.2.3 to Pruning 3. In
Fig. 6, a worker refers to u.I (a set of itemsets registered when
the vertex u is added to a subgraph) to check whether it can apply
Pruning 3. In our parallel algorithm, however, it refers to each
element (itemset) in u.I only if the element had been registered
earlier in a sequential search.

In order to check whether the element had been registered ear-
lier in a sequential search, we must devise an efficient way to
let each itemset have some sequential ordering information of its
registration. From a performance perspective, it is also impor-
tant to consider how to divide a search tree and assign subtrees to
workers, and how to share information in the itemset table among
workers. We discuss these issues in Section 4.

4. Parallel Implementation

In order to parallelize the COPINE algorithm, we divide a
search tree growing in the COPINE execution process and as-
sign a set of subtrees to each worker running in parallel. One of
the most important issues in a parallel search is to balance load
among workers. However, before the search, we cannot evaluate
the size of each subtree whose root is a search tree node. There-
fore, it is too difficult to assign subtrees to balance load among
workers in advance. For example, it is clear that the static load
balancing that divides the node sets consisting of the children of
the root into the same number of subsets and assign them to the
workers should cause a significant load imbalance due to the di-
vergent sizes of the subtrees.

In this research, we use the dynamic load balancing strategy
called “work-stealing,” where an idle worker steals a part of an-
other worker’s task. While it is difficult to implement this strategy
using a programming framework that is oriented to static load bal-
ancing such as OpenMP, it is known that a task-parallel language,
such as Cilk [7] or Tascell [5], drastically eases the implementa-
tion difficulty. In most of these languages, programmers need to
describe: (1) a series of operations, part of which can be assigned
to another worker as a task, e.g., a loop to be parallelized, and
(2) information passing along a task assignment to a worker, e.g.,
data referred to or updated by the worker. During the execution of
the program, a runtime creates tasks and assigns them to workers
automatically. Thus, we can implement a parallel COPINE that
treats each subtree as a parallelization unit and uses dynamic load
balancing, by parallelizing the two while loops in Fig. 6.

Among the several task-parallel languages, we chose Tascell,
which can achieve a higher performance, especially in parallel
backtrack search. In the remainder of Section 4, we present the
mechanism of our parallel version of COPINE implemented in
Tascell.

4.1 Dynamic Load Balancing in Tascell
A Tascell worker executes its own task sequentially and does

not spawn a task until it receives a work-stealing request (task
request) from another worker. That is, when the worker reaches
a statement where a task can be spawned (e.g., a parallel loop),
it just remembers the possibility at this point, and then executes
the statement as if it chose a completely sequential execution. For
example, in a parallelized implementation of the CCIG enumer-
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Fig. 7 Spawning a task lazily in the backtrack search of COPINE.

Table 2 Workspaces managed by each worker in CCIG enumeration.

Variable Name
Content

in ExploreCCIG( )

T CST of the visiting subgraph
C set of vertices adjacent to T
V set of candidates for the vertex added in the next step

ation based on the algorithm in Fig. 6, each worker has its own
workspace that holds data as shown in Table 2, and it performs
the search, updating the data at each step. In addition, in order to
achieve Pruning 3, workers maintain their own itemset tables or
a single shared one apart from the workspace in Table 2. Here,
whether making tables private to workers or sharing a single table
among workers depends on the sharing methods shown in Sec-
tion 4.3.

When a worker (victim) receives a task request from another
worker (thief), it backtracks to the oldest point among the par-
allelizable (task-spawnable) points, that is, the point where the
largest task can be spawned, and then spawns a task as if it

changed the choice of execution to parallel from sequential made

past. Then it allocates and initializes a new workspace for the
task by making a copy of the victim’s workspace in the state af-
ter the backtracking (the connected subgraph, the adjacent vertex,
etc.).

Figure 7 illustrates how a task is spawned lazily, that is, a task
is spawned only after a worker receives a task request. Suppose
that n0 is the oldest task-spawnable point of worker 0. When
worker 0 receives a task request from worker 1,
(1) it backtracks to n0 performing undo operations to restore the

state of its workspace at n0, and then
(2) spawns a task to traverse the right subtree.

Note that worker 0 creates a part of unexecuted iterations of a
parallel for loop at n0 as a task and the number of iterations left
to worker 0 considerably affects the performance of our imple-
mentation. We discuss this in Section 4.4.

After sending the task to the thief worker (worker 1),
(3) worker 0 returns from the backtracking while performing

redo operations to restore the state of its workspace before
backtracking, and then

(4) it resumes its own task.
In contrast to Tascell, there is another task creation technique

called Lazy Task Creation (LTC) [8], which is employed in “mul-
tithreaded languages” such as Cilk. In LTC, parallel execution
units called “logical threads” *3 are created and tasks are assigned
to them at the beginning of a series of operations, part of which
can be spawned as a parallel task, such as a parallelizable loop.
When a thief worker requires a task, the oldest logical thread of
a victim worker is selected and assigned to the thief. Since a
worker in LTC can steal a task only by selecting and taking out
one of logical threads that have been already created, the cost of
a stealing operation in LTC is smaller than that of Tascell, which
involves backtracking. On the other hand, the overhead in a se-
quential execution in LTC in the absence of task requests is larger
than that in Tascell, since, in LTC, a logical thread that may not be
assigned to another worker can be created as a task at each begin-
ning of any task-spawnable operation. Although there is a trade-
off between the cost of a steal operation and the serial overhead,
Tascell is better in many search problems since the number of cre-
ated tasks is much smaller than the number of potential tasks [5].
As shown later in Section 5, while the number of potential tasks
(the number of visits to vertices during the search) ranges from
millions to tens of millions, the number of created tasks ranges
from thousands to tens of thousands at the most. Therefore, it is
clear that Tascell has an advantage over LTC.

In Section 6.1, we perform a detailed comparison of Tascell
with multithreaded languages from other viewpoints.

4.2 Challenges in Parallelized Implementation
As stated in Section 3.3, Prunings 1 and 2 can directly be

applied to the parallel search. On the other hand, in order to
achieve Pruning 3 efficiently, a worker needs to refer to itemset
table entries registered by another worker under the restriction de-
scribed in Section 3.2.3. Therefore, besides the implementation
issue about efficient sharing of the information in the table among
workers, we need to devise a method to let each worker know
whether a table entry registered by another worker is safely re-
ferred to according to the location of the registration in the search

*3 It is called this since it is executed under management of a language sys-
tem and differs from a “physical thread,” which is executed under OS
management and corresponds to a worker to which actual execution of
tasks is assigned.
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tree.
The effectiveness of Pruning 3 is also deeply affected by the

task creation strategy of deciding which portion of subtrees, or
in other words unscanned iterations of a parallel loop, is cho-
sen for a task to be created. According to the idea of the oldest-
first task creation strategy by which a worker intends to create
as large a task as possible, it is reasonable to make victim’s and
thief’s unscanned node sets equal-size, i.e., divide victim’s un-
scanned node set in half. However, from the viewpoint of the
effect of Pruning 3, i.e., for greater use of itemsets registered by
other workers, each search tree node should be visited after as
many nodes preceding it in the sequential search have been vis-
ited as possible. The half-and-half strategy deprives the chance
of a thief worker to use information in table entries registered
by a victim worker since many unscanned nodes are left for the
victim worker, making the pruning less effective. Thus, the fol-
lowing strategies are expected to improve the effectiveness of the
pruning; (1) assigning all the unscanned nodes in a parallel loop
to the thief worker to give it all the pruning information except
that corresponding to the subgraph being traversed by the victim
worker, or (2) introducing a certain sequentiality into the higher
layer of the search tree to ensure that the itemset table entries
registered by a set of parallel tasks are passed to the serially suc-
ceeding set without loss of information. However, both of them
could lead to an increase in the number of work-steals and reduce
the traversing speed since the former causes the size of victim’s
task to be reduced while the latter causes the entire size of each
sequential task-set to be reduced. We need to develop an efficient
task creation strategy in consideration of the trade-off between
the effectiveness of the pruning and the traversing speed.

4.3 Itemset Table Sharing
Considering the restriction described in Section 3.2.3 and the

implementation issues discussed in Section 4.2, we developed the
following sharing methods of the itemset table to examine the
performance effect of the sharing.
4.3.1 Sharing Method 0: Non-registering Method

No worker registers any itemsets during a search, that is, Prun-
ing 3 is not applied. With this method, the size of search space
remains huge. We implemented this method just to evaluate the
effect of Pruning 3 and the performance of Tascell for a search
algorithm that does not have any sequential dependencies. Since
the management cost of itemset tables is completely eliminated,
this is a good method for a graph for which Pruning 3 does not
work.
4.3.2 Sharing Method 1: Non-sharing Method

Each task manages its own itemset table, and no table infor-
mation is shared among tasks. After a thief worker steals a task,
it starts the sub-search corresponding to the task with an empty
itemset table. Since each worker refers to and updates only its
own table at every search step, there is no cost for sharing table
information. However, the effect of Pruning 3 is limited since a
worker cannot use any itemsets registered in other tasks (includ-
ing another task that was executed by the worker itself).
4.3.3 Sharing Method 2: Replicating Method

Just as in the non-sharing method, each task manages its own

Fig. 8 Limitation of references to the itemset table in the fully-sharing
method.

itemset table. The difference from the non-sharing method is that,
when a thief worker steals a task from a victim worker, the vic-
tim makes a copy of its own table and passes it to the thief. In
the work-stealing mechanism of Tascell, the search range of a
task spawned by a victim always corresponds to the subsequent
search from a certain future point of the victim’s search. There-
fore, the thief worker executing the spawned task safely refers to
itemsets in the table preserving the completeness of the search.

In addition to the costs of the non-sharing method, this method
adds the cost of making a copy of the itemset table on each steal.
A worker can use parts of table information registered by other
workers.
4.3.4 Sharing Method 3: Fully-sharing Method

All the workers share a single itemset table with a lock for each
table entry for mutual exclusion. In order to satisfy the restriction
described in Section 3.2.3, we associate a task ID to each task
and add the ID to each itemset registered in an itemset table entry
to denote where in a search tree the itemset is registered. That
is, the later the itemset is registered in a sequential search, the
greater the ID is associated with the itemset. A worker can use
an itemset in the itemset table only if the task ID of the itemset is
not greater than that of the task being executed. For example, in
Fig. 8, worker 0 and worker 1 are traversing the left and the right
sub-search tree respectively in parallel. Here, worker 1 can use
itemsets registered by worker 0, but, worker 0 cannot use itemsets
registered by worker 1.

Although this method adds cost for locks and is difficult to im-
plement in distributed memory environments, a worker can use
itemsets registered by other workers immediately.

Since there are too many search tree nodes to associate a unique
ID with each node, we manage task IDs as follows.
• We associate a pair of two 64-bit unsigned integers, minID

and maxID (minID ≤ maxID), with each task as its task ID.
– We associate minID = 0 and maxID = 264 − 1 (the maxi-

mum number that can be represented by a 64-bit unsigned
integer) with the root task, which is at first assigned to a
certain worker at the beginning of a search.

– When a task division occurs by a task request, we divide
the range [minID,maxID) by an appropriate integer i within
the range [minID,maxID) (in our current implementation,
i = �(minID + maxID)/2�), updating maxID of the task of
the victim worker to i, and setting i and the value of maxID
of the victim’s task before the update to minID and maxID
of the spawned task, respectively. An example of such a
division is shown in Fig. 9.

• When a worker registers an itemset I to the itemset table, the
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Fig. 9 Division of a task ID range on spawning a task.

value of the running task’s minID is added to I. At this time,
if a proper subset I′ of I has been registered and the minID
of I′ is greater than the running task’s minID, I′ is removed
from the entry. The others are kept registered.

• When a worker refers to an itemset I in the itemset table for
Pruning 3, it compares the minID of I with the minID of the
running task. The worker use I for Pruning 3 iff the minID
of I is not greater than that of the task.

In this management technique, the order of tasks can be de-
fined by the order of their minIDs. Since this order of tasks is
equivalent to the visiting order of corresponding subtrees in the
sequential search, we can apply Pruning 3 without loss of the
completeness using this technique.

The range [minID,maxID) is divided recursively and minID
may become equal to maxID after a certain number of divisions.
Since we cannot divide such a range any more, a worker executes
a task with such a range sequentially. Though such a sequential
task might cause a load imbalance if its size were large, our im-
plementation with 64-bit unsigned integers makes the root task
divided up to 64 times recursively so that the resulting sequen-
tial tasks are sufficiently small. In fact, we confirmed that the
execution time of a sequential task is about 23 ms at maximum
in Section 5. Thus this management technique does not cause a
considerable load imbalance.

4.4 Task Creation Strategy
As explained in Section 4.1, a Tascell worker backtracks to the

oldest task-spawnable point and spawn a task when it receives a
task request from another worker. In our Tascell program, there
are parallel for loops corresponding to the two while loops *4

in Fig. 6. The search function corresponding to ExploreCCIG( )
is called recursively in each loop. Therefore, the victim worker
chooses the oldest loop *5 from parallel for loops that have un-
executed iterations, and then spawns a part of the iterations (un-
scanned nodes set) as a new task. The ratio of iterations left for
the victim and given to the thief was fixed to half-and-half by Tas-
cell’s implementation, disabling us to change it in our program.

In many parallel backtrack search algorithms, this task creation

*4 Each of the while loops can be implemented as a for loop whose num-
ber of iterations is fixed at the beginning of the loop.

*5 This means the outermost loop in nested loops when we consider a re-
cursive call as a dynamic creation of a loop in the nest.

Table 3 Evaluation environment.

Appro GreenBlade 8000 (1 node)

CPU Intel Xeon E5 2.6 GHz 8-core × 2 (1 thread per core)
Memory DDR3-1600 64 GB
OS Red Hat Enterprise Linux Server release 6.2 (Santiago)
Compiler GCC 4.4.6 with -O3 optimizer
Worker Created by pthread create with PTHREAD SCOPE SYSTEM
Lock A pthread mutex t lock is attached to each entry

(for Sharing Method 3: Fully-Sharing Method)

Table 4 Characteristics of the graph used in the evaluation.

Parameter Value

|V | 15,425
|E| 239,063
|I| 158
Average degree 29.2
Diameter of G 12
# of vertices in the largest weak connected component 15,061
# of vertices in the smallest weak connected component 1
Average number of items in each vertex 9.42

strategy works reasonably well to increase the size of each task
and thus to reduce the number of steals. As discussed in Sec-
tion 4.2, however, this may not be the best strategy for our parallel
COPINE algorithm since, in order to make Pruning 3 effective,
vertices that are visited early in the sequential search should be
visited as early as possible also in the parallel search.

Therefore, we developed a new task creation strategy in which
the number of iterations left for a victim worker is less than half
of the unexecuted iterations. The more iterations are stolen, the
earlier spawned task can traverse a subtree that is traversed ear-
lier in the sequential search. However, when the division ratio is
set to an extremely small value, the tasks of the victim and the
thief are imbalanced, and the number of steals will increase. In
order to enable a programmer to change the division ratio at the
program level, we enhanced the parallel-for construct of Tascell.

5. Performance Evaluation

5.1 Evaluation Method
To evaluate the implementations described in Sections 4.3 and

4.4, we measured their performance on a single node of Appro
GreenBlade 8000, the supercomputer of ACCMS, Kyoto Univer-
sity. The evaluation environment is summarized in Table 3. We
used a real protein network as the input. Table 4 shows the char-
acteristics of this graph. The threshold of the common itemset θ
was set to θ = 5 except in the non-registering method (sharing
method 0). With the non-registering method, since the search did
not finish within a realistic time when θ = 5, we set θ to 13. We
also compared the performance of each implementation with that
of the sequential COPINE implementation written in C.

Note that we executed a program three times for each measure-
ment of elapsed time and employed the arithmetic mean of the
measured results to be shown in the tables and the charts in this
section. There was no great variability among the three samples
in each evaluation.

5.2 Performance with Standard Task Creation Strategy
We measured the performance of each sharing method with

the standard task creation strategy of Tascell, that is, the num-
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Table 5 Results of performance evaluation with the standard task creation strategy.

impl. θ n exec. time [s]
speedup speedup # of visits to vertices # of visits to vertices/s # of task task creation

lock rate [%]
(vs. C) (vs. 1 worker) (total amt. of all workers) (avg. among workers) creations time [s]

C 5 1 41.3 1 — 659,689,891 15,973,121 — — —

method 1 5 1 48.4 0.854 1 659,689,891 13,636,611 0 0 —
method 1 5 2 74.0 0.558 0.653 2,007,586,879 13,557,887 31 0.0616 —
method 1 5 4 105 0.392 0.459 5,772,863,716 13,683,207 294 0.355 —
method 1 5 8 66.0 0.625 0.733 7,179,640,913 13,589,994 1,213 2.00 —
method 1 5 16 70.0 0.725 0.849 11,770,801,051 12,905,555 3,962 5.81 —

method 2 5 1 48.4 0.854 1 659,689,891 13,636,611 0 0 —
method 2 5 2 47.2 0.875 1.03 1,293,331,815 13,705,380 27 0.103 —
method 2 5 4 41.4 0.997 1.17 2,275,527,823 13,733,201 109 0.414 —
method 2 5 8 34.3 1.20 1.41 3,660,133,631 13,327,540 433 2.04 —
method 2 5 16 28.6 1.44 1.69 5,739,857,890 12,532,215 1,177 5.71 —

method 3 5 1 50.3 0.821 1 659,689,891 13,118,018 0 0 0
method 3 5 2 59.0 0.700 0.853 1,273,282,195 10,797,569 33 5.44 × 10−4 0.0172
method 3 5 4 42.0 0.984 1.12 1,962,681,152 11,688,358 435 0.00431 0.0908
method 3 5 8 29.2 1.42 1.72 2,483,872,565 10,644,751 675 0.00960 0.281
method 3 5 16 21.1 1.96 2.38 2,753,644,092 8,150,603 2,113 0.00440 0.811

C 13 1 0.00593 1 — 85,165 14,361,720 — — —
method 0 13 1 139 4.27 × 10−5 1 417,311,281 3,006,393 0 0 —
method 0 13 2 72.0 8.24 × 10−5 1.93 417,311,281 2,898,815 47 4.35 × 10−4 —
method 0 13 4 36.4 1.63 × 10−4 3.81 417,311,281 2,863,362 589 0.00609 —
method 0 13 8 18.3 3.24 × 10−4 7.59 417,311,281 2,779,165 3,937 0.0364 —
method 0 13 16 9.28 6.39 × 10−4 15.0 417,311,281 2,809,745 8,346 0.113 —

Fig. 10 Speedup and the number of node visits with the standard task creation strategy.

ber of iterations left for a victim when dividing a parallel loop
is half of the unexecuted iterations. We evaluated each of the
four sharing methods; the non-registering, non-sharing, replicat-
ing, and fully-sharing methods with 1, 2, 4, 8, and 16 workers.

The evaluation results are shown in Table 5. Figure 10 shows
the speedup relative to one-worker execution and the number of
visits to vertices for each execution with a worker population.
Note that, in Table 5, methods 0–3 denote the non-registering,
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non-sharing, replicating, and fully-sharing methods respectively.
θ denotes the threshold of the common itemset, and n denotes
the number of workers. “Task creation time” means the accumu-
lated total time required for initializing task objects and copying
workspaces. “Lock rate” is the percentage of lock contentions in
all acquisitions.
5.2.1 Result of Non-registering Method

Since Pruning 3 is not applied, the search space of the parallel
search with multiple workers is identical to that of the sequen-
tial search. Therefore, the speedups relative to one worker are
almost ideal and we confirm that the overhead caused by the Tas-
cell mechanism is sufficiently small. However, the size of the
search space (the number of visits to vertices) is approximately
5,000 times as large as that of the sequential COPINE implemen-
tation in C which uses Pruning 3. As a result, the execution time
with one worker is more than 20,000 times as long as that of the
sequential implementation, and it is clear that this method is def-
initely inapplicable to the graph used in this evaluation.
5.2.2 Result of Non-sharing Method

The execution time with one worker is approximately 17.2%
worse (higher by 7.1 s) than that of the sequential implementa-
tion in C. This is mainly due to the cost of the Tascell mecha-
nisms such as polling. Since itemset tables are not shared among
workers, the effect of Pruning 3 is limited and the total number
of visits to vertices in multiple worker executions is still much
larger than that of one worker. Therefore, we could not obtain the
performance improvement.

In Table 5, we can see that the per-task creation time in the
non-sharing method (method 1) is longer than that in the non-
registering method (method 0). This is due to the cost of initial-
izing a new itemset table at each task creation in the non-sharing
method. Since the number of task creations in the non-sharing
method is large, the total time required for task creation in this
method is close to that of the replicating method, which requires
making a copy of an itemset table at each task creation.
5.2.3 Result of Replicating Method

In the replicating method, a victim worker makes a copy of its
own table at each task creation so that a thief worker can use a
part of table information registered by other workers. Therefore,
the number of visits to vertices in multiple worker executions is
smaller than that in the non-sharing method, and we achieved a
1.69 times speedup with 16 workers (1.44 times speedup relative
to C).

The accumulated total time required for task creation with 16
workers is 5.71 s, that is, the average time per worker is 0.357 s,
being insignificant in the execution time of 21.1 s.
5.2.4 Result of Fully-sharing Method

The performance of this method is better than for the replicat-
ing method (method 2). However, we could not obtain a sufficient
performance improvement in parallel executions. Although the
accumulated total time required for task creation is quite short
since it is not necessary to make a copy of an itemset table at
each task creation, the traversing speed (the number of visits to
vertices per second) in multiple worker executions is lower than
that in the non-sharing method (method 1), the replicating method
(method 2), and this method with one worker. This is due to the

cost of acquiring a lock at each search step.
The total number of visits to vertices with 16 workers is 4.17

times as large as that with one worker. To reduce this, we need
to improve the task creation strategy in consideration of the effect
of Pruning 3.

5.3 Effect of Dividing Ratio of Task
We evaluated the effect of the number of iterations left for a

victim worker to the effectiveness of Pruning 3. We measured
the performance of the replicating method (method 2) and the
fully-sharing method (method 3) since a worker can use table in-
formation registered by other workers in these methods. We set
the number of iterations left for a victim worker from unexecuted
iterations as follows:
setting by the number of iterations 1 *6, and 10–200 in units

of 10, and
setting by the ratio k/2, k/4, k/8, k/16, k/32, k/64, and k/128

for the number of unexecuted iterations k.
When the number of unexecuted iterations is less than the spec-

ified number of iterations, a parallel loop is divided using the
standard creation strategy. We measured the performance of both
sharing methods only with 16 workers. In addition, with the set-
ting with only one iteration left for the victim worker (the set-
ting expected to bring the highest effectiveness of Pruning 3), our
evaluation was carried out with 1, 2, 4, and 8 workers.

Figure 11 (replicating method) and Fig. 12 (fully-sharing
method) show the execution time and number of visits to ver-
tices for each setting of the number of iterations (a) and the ratio
left for a victim worker (b). The results with the setting in which
one iteration is left for a victim are shown in Table 6 and Fig. 13.
5.3.1 Result of Replicating Method

Comparing the results of the replicating method in Tables 5 and
6, it is found that the total number of visits to vertices is reduced
by leaving only one iteration for a victim worker. In contrast,
the traversing speed considerably decreases due to increase in the
number of task creations. Since a victim worker makes a copy of
its own table at each task creation in the replicating method, the
cost of task creation is higher than for the other sharing methods.
It thus has a negative and serious impact on the overall perfor-
mance. For example, the total task creation time in method 2
with 16 workers in Table 6 (54.7 s) is 9.58 times as long as that
in Table 5 (5.81 s), resulting in a protraction of the overall exe-
cution time by 20 second or about 70%. This tendency, that the
reduction of the iterations worsens the overall performance while
it shrinks the search space, is also visible in Fig. 11.
5.3.2 Result of Fully-sharing Method

The comparison of the results of the fully-sharing method
in Tables 5 and 6 gives us an observation different from Sec-
tion 5.3.1. That is, by leaving only one iteration for a vic-
tim worker, we successfully reduce both the search space size
and the overall execution time to have the highest 4.07-fold 16-
worker speedup among our experiments. This is partly because
the traversing speed degradation compared to the half-and-half is

*6 This means that only the iteration being executed by a victim worker
is left. That is, “unexecuted iterations” here include an iteration being
executed.
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Fig. 11 Execution time and the number of visits to vertices versus the number/ratio of iterations left for a
victim worker (replicating method with 16 workers).

Fig. 12 Execution time and the number of visits to vertices versus the number/ratio of iterations left for a
victim worker (fully-sharing method with 16 workers).

Table 6 Results of performance evaluation with the setting that leaves one iteration for a victim worker
on task creation.

impl. θ n exec. time [s]
speedup speedup # of visits to vertices # of visits to vertices/s # of task task creation

lock rate [%]
(vs. C) (vs. 1 worker) (total amt. of all workers) (avg. among workers) creations time [s]

C 5 1 41.3 1 — 659,689,891 15,973,121 — — —

method 2 5 1 48.4 0.854 1 659,689,891 13,636,611 0 0 —
method 2 5 2 56.4 0.732 0.858 1,226,497,028 10,871,687 4,140 12.8 —
method 2 5 4 43.4 0.946 1.11 1,936,382,708 11,087,120 2,506 8.04 —
method 2 5 8 53.4 0.773 0.906 2,549,093,537 5,966,202 10,085 32.0 —
method 2 5 16 48.2 0.856 1.00 3,693,889,961 4,787,149 14,575 54.7 —

method 3 5 1 50.3 0.821 1 659,689,891 13,118,018 0 0 0
method 3 5 2 28.1 1.47 1.79 683,238,709 12,177,129 52 0.00353 0.0155
method 3 5 4 19.6 2.11 2.57 830,420,056 10,611,666 185 0.0144 0.0568
method 3 5 8 15.8 2.61 3.18 1,076,032,858 8,511,302 1,137 0.0973 0.216
method 3 5 16 12.4 3.34 4.07 1,209,697,021 6,121,471 7,201 0.198 0.528

less significant in this method than in the replication method, ow-
ing to the fact that a victim worker is free from copying its item-
set table, which the replication method requires for every task
creation.

The good speedup is also confirmed by the comparison of the
search space size and traversing speed of 1-worker and 16-worker
executions with the half-and-half and this only-one strategies.
That is, the rates of search space expansion and of traversing
speed degradation from 1-worker to 16-worker are 1.83 and 2.14

with the only-one strategy, making the product of them smaller
(better) than that of the half-and-half to improve the 16-worker
speedup greatly. In addition, Fig. 12 confirms that the only-one
strategy is most appropriate for the fully-sharing method. Both of
two graphs in the figure clearly show that the smaller the number
of iterations are left for a victim, the more the execution time is
shortened.
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Fig. 13 Speedup and the number of visits to vertices with the setting that leaves one iteration for the
victim worker on task creation.

Fig. 14 Execution time and speedup with 16 workers versus vertex ordering
(sorted by execution time with 16 workers).

5.4 Effect of Vertex Ordering
The shape of a search tree in the COPINE algorithm depends

on the order of vertices which we introduced in Section 3.1 for
Pruning 1. Since the elimination of a branch by Pruning 3 in our
parallel search depends on the shape of the tree to be traversed,
the parallel performance may also depend on the shape and thus
on the vertex ordering. To evaluate this effect, we generated 100
random orders of the vertices of the graph used in this evaluation,
and measured the search time for each ordering.

The evaluations are done under the condition for which we ob-
tained the best performance among the previous evaluations, that
is, the fully-sharing method with the setting that leaves one itera-
tion for a victim when dividing a parallel loop. We executed the
Tascell program with 1 and 16 workers and the sequential C pro-
gram for each ordering. We determined each order by generating
uniform random numbers in the range [1, |V |] by the Mersenne
Twister [9] assigning a unique number to each vertex.

The execution times are shown in Fig. 14. As shown in the
graph, the times of the 1-worker execution and sequential one are
almost stable because the search space size is virtually indepen-
dent of the tree shape. On the other hand, 16-worker execution
times show a slightly larger deviation but, in 95 cases out of 100,
still in the range from 11.1 s to 16.4 s resulting in a 3.10- to 4.52-
fold speedup, sufficiently close to the results shown in Table 6.

Therefore, we may conclude that our parallel implementation sta-
bly exerts a good parallel performance regardless of the vertex
ordering for the graph used in our evaluation.

6. Related Work

6.1 Lazy Task Creation
For implementing our parallel search, Tascell is not the sole

language but there are other LTC-based multithreaded candidates
such as Clik [7] and Intel Cilk Plus [10]. The advantages of Tas-
cell over these candidates, however, should justify our choice as
follows.
1) As mentioned in Section 4.1, since Tascell does not create

any logical threads at an execution point where a parallel
task can be spawned (e.g., at a parallel loop statement), the
cost of managing them is eliminated.

2) In a multithreaded language, each (logical) thread requires
its own workspace; in our COPINE implementations, a
workspace for a current connected subgraph, a set of adja-
cent vertices, a set of candidate vertices to be visited in the
next step, and an itemset table (in the non-sharing and repli-
cating methods) are required. In contrast, a Tascell worker
can reuse a single workspace while it performs a sequential
computation to improve the locality of reference.

3) When we implement a backtrack search algorithm in a mul-
tithreaded language, each thread often needs its own copy of
its parent thread’s workspace. In contrast, Tascell’s tempo-
rary backtracking mechanism allows a worker to delay the
copy operation until it becomes really necessary.

4) Tascell enables us to realize dynamic load balancing among
computing nodes in distributed memory environments more
easily. Note that, as for this research, future work is needed
to implement a parallel solver supporting distributed mem-
ory environments.

5) The replicating method explained in Section 4.3.3 is easily
and efficiently implemented by letting a victim worker sus-
pend its task execution and make a copy of its itemset ta-
ble up-to-date at the time it receives a task request from a
thief worker. On the other hand, it is difficult to implement
the same mechanism in an LTC language, because a worker
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steals a task from the task queue of a victim worker, while
the victim that created the task does not have any concern
with the steal operation. In a straightforward implementa-
tion of the replicating method in an LTC language, a worker
would make a copy of its itemset table when creating a log-
ical thread rather than when the task is stolen. This imple-
mentation reduces the effect of pruning since information of
the itemset table registered between the thread creation and
the task stealing is not passed to the thief.

6) In the fully-sharing method explained in Section 4.3.3, a vic-
tim worker divides the ID range of a task being executed
when it receives a task request from another worker. Since
this division is done only when part of the task is actually
stolen by another worker, we can keep the number of divi-
sions much smaller than the number of operations that po-
tentially create tasks (e.g., parallel loops). In an LTC lan-
guage, it is difficult to make a victim worker divide an ID
range when a task stealing occurs, for the same reason as in
5). In a straightforward implementation of the fully-sharing
method in an LTC language, a worker would divide an ID
range when creating a logical thread rather than when hav-
ing a task stolen, thus exhausting the task IDs rapidly, facing
the consequence that minID becomes equal to maxID.

Note that Tascell’s advantages 1)–4) were listed in Ref. [5],
while 5) and 6) were discovered through our research.

As shown in Section 5, the fully-sharing method is superior to
the replicating method in terms of performance. However, imple-
menting a parallel COPINE in distributed memory environments,
using advantage 4), it is unrealistic for computing nodes that do
not share memory to share a single itemset table controlled by
locks. Therefore, we need a mechanism that is based on the repli-
cating method and updates table information in each node at ap-
propriate intervals.

6.2 Scheduling and Task Creation
Tascell and Cilk share the oldest-first task scheduling policy to

let a worker steal a task as close to the search tree root as possible,
thus reducing the task stealing frequency.

In contrast, the task given to a thief can be found at the node
closest to the leaf of the subtree that a victim is traversing, as done
in the Parallel Depth First (PDF) scheduling [11] for left- and
depth-first search. In PDF scheduling, the leftmost unassigned
branch of such a node is the task for a thief, achieving good uti-
lization of on-chip cache of chip multiprocessors and better per-
formance than the oldest-first for some applications [12], [13].

This paper presented a variation of the oldest-first strategy in
which a stolen task consists of the leftmost and subsequent unas-
signed branches, and demonstrated the advantage of this variation
over the conventional half-and-half splitting in terms of the effec-
tiveness of sequentially dependent pruning.

6.3 Sharing of Pruning Information among Workers
There has been a number of studies regarding the paralleliza-

tion of Satisfiability Problem (SAT) as a major application of the
backtrack search with pruning [14], [15].

In these works, sharing the information about pruning is re-

garded as an important issue [16], but, unlike our problem, the
pruning information can be freely referred to by any workers
regardless of the locations of the registration and reference in
the search space. MiraXT [17], PaSAT [18], and ySAT [19] are
proposed as implementations of SAT in shared memory environ-
ments. For sharing table information, MiraXT employs a strategy
similar to our fully-sharing method. In PaSAT and ySAT, each
worker has its own table and exchanges its contents with other
workers periodically to make the table up-to-date.

In SAT there is another implementation issue to find an appro-
priate shared portion of an enormous number of conflict clauses,
especially for distributed memory implementations. This is-
sue is less significant in COPINE, since the size of a table is
O(|V | exp(maxv ∈ V |I(v)|)) at the worst, since the number of item-
sets registered in an entry corresponding to a vertex v is at most
2|I(v)|, or more precisely |I(v)|C|I(v)|/2.

6.4 Frequent Itemset Mining
With a given itemset I = {i1, i2, . . . , in}, a set of transac-

tions T = {t1, t2, . . . , tm}, itemsets associated with each trans-
action I(t) ⊆ I (t ∈ T ), and a threshold θ, the problem ex-
tracting all itemsets whose members are commonly contained
by θ or more transactions is called Frequent Itemset Mining
(FIM) [20], [21]. There are many implementations of FIM solvers
proposed [22]. Among them, Linear time Closed itemset Miner
(LCM) [23], [24], [25] realizes efficient enumeration of closed
itemsets *7 by defining and utilizing parental relation among item-
sets.

The CCIG enumeration can be considered a tougher variation
of FIM since the connections (edges) among transactions (ver-
tices) are imposed as additional requirements.

7. Future Work

In order to improve the performance of our parallel solver, it
is necessary to reduce redundant visits to vertices more aggres-
sively. One possible approach to achieve this is to abort the exe-
cution of a worker traversing a subtree pruned by another worker.

For example, in a parallel search using the fully-sharing
method explained in Section 4.3.4, a worker w executing a task
t can let another worker w′ executing a task t′ abort its search
by sending a signal when w registers an itemset S to the entry
corresponding to a vertex v in the itemset table, if the following
conditions are satisfied: (1) a subset S ′ of S is already registered
in the entry, (2) minID of the task t′ attached to S ′ is greater than
minID of t, and (3) the worker w′ executing t′ is traversing the
subtree whose root is v.

The condition (3) can be recognized by setting a flag indicat-
ing “searching” to each entry of the itemset table. For exam-
ple, suppose worker 1 is traversing the subtree whose root is v5
for which the common itemset {i1, i3, i4} was registered, as illus-
trated in Fig. 15. Then, worker 0 can abort worker 1’s traversal
of the subtree by sending a signal when worker 0 finds the com-
mon itemset {i1, i3, i4} associated with v5 when it visits the vertex

*7 Let I(S ) =
⋂

t∈S I(t) for a set of transactions S ⊆ T , and T (H) =
{t ∈ T |H ⊆ I(t)} for an itemset H ⊆ I. H is called closed iff
I(T (H)) = H [23].
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Fig. 15 Example of aborting a redundant search. MinID0 and minID1

are the task IDs being executed by worker 0 and 1, respectively
(minID0 < minID1).

with the itemset. We can describe such an aborting operation
in a language that supports exceptions, though Tascell does not.
Therefore, we will add an exception support to Tascell, and then
implement and evaluate this new sharing method.

Our future work also includes implementing our parallel search
for distributed memory environments. For Pruning 3, we have to
devise a new method of itemset table sharing among workers on
computing nodes without shared memory, substituting the fully-
sharing method which is feasible only inside a shared-memory
computing node. It is expected that we can obtain minimal prun-
ing effect by using the replicating method to share information
among workers in different nodes. Furthermore, we should im-
prove the pruning effect by exchanging table information among
nodes at intervals. It requires finding optimal intervals and tim-
ings to have good scalability in an environment with certain com-
munication costs.

In addition, we will evaluate our implementations using other
various graphs including artificial ones. This further evaluation is
necessary to prove the efficiency of our implementation since its
performance may depend strongly on the characteristics of input
graphs, especially in terms of the effectiveness of Pruning 3.

8. Conclusion

In this paper, we proposed a parallel algorithm and implemen-
tations for graph mining that extracts all connected subgraphs,
each of which shares a common itemset whose size is not less
than a given threshold.

We had already proposed an efficient sequential algorithm
called COPINE, but its straightforward parallelization results in
excessive pruning. We proved that we can avoid such excessive
pruning by the restriction that a worker can refer to an itemset reg-
istered by another worker only if the registration-reference flow
conforms to the sequential search order, and we designed a paral-
lel extension of COPINE introducing this restriction.

We implemented the parallel COPINE algorithm using the
task-parallel language Tascell. In order to prune a branch cor-
responding to a subgraph having an already-visited supergraph
with identical itemset, workers need to share table information
efficiently in such a manner that a worker can use as many item-
sets registered by other workers as possible under the restric-
tion. We implemented two sharing methods: (1) the replicating
method, in which a victim worker makes a copy of its own table
and passes it to a thief worker when a steal occurs, and (2) the

fully-sharing method, in which a single table controlled by locks
is shared among workers. In addition, we implemented a task
creation strategy optimized for table sharing, as a substitution of
the standard strategy of Tascell. As a result, by using the im-
plementation with the fully-sharing method and the task creation
strategy where the number of iterations left for a victim worker is
minimized when dividing a parallel loop, we achieved an approx-
imately four-fold speedup with 16 workers when analyzing a real
protein network.

As stated in Section 7, we will improve our implementation by
introducing the abortion of redundant search and for distributed
memory environments, and evaluate the current and new imple-
mentations with various graphs. In addition, we will implement
our parallel algorithm also in Cilk and compare it to the Tascell
version in terms of performance and productivity.
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Appendix

A.1 Proof of Theorem 1

First, we state the following Lemma 1 for the proof.
Lemma 1 For a connected subgraph G′ = (U, E(U)) and its
CST T (U) = 〈u1, · · · , un〉, all of the following hold for all i, j,
and k such that 1 ≤ i, j, k,≤ n.
(1) ui ∈ N∗(U j)→ ui ∈ N(U j)
(2) ui ∈ N∗(U j) − U j → ui ∈ N(U j) − U j

(3) prev∗(ui,U j) = prev(ui,U j)
(4) ui

Uk∗↽ u j → ui
Uk↽ u j

Proof:

(1) Since ui ∈ N∗(U j), there must exist uk such that (uk, ui) ∈ E

and k ≤ j by Definition 5 (1). Since uk, ui ∈ U, (uk, ui) ∈
E(U) and thus ui ∈ E(U j) by Definition 4 (2). �

(2) Since ui ∈ N∗(U j)−U j, ui ∈ N∗(U j) and ui � U j. Therefore,
ui ∈ N(U j) by (1) and thus ui ∈ N(U j) − U j. �

(3) Since ui ∈ U, {uk | (uk, ui) ∈ E, 1 ≤ k ≤ j} = {uk | (uk, ui) ∈
E(U), 1 ≤ k ≤ j}. Therefore;

prev∗(ui,U j) = arg max
k
{uk | (uk, u) ∈ E, 1 ≤ k ≤ j}

(Definition 5 (2))

= arg max
k
{uk | (uk, u) ∈ E(U), 1 ≤ k ≤ j}

= prev(ui,U j) (Definition 4 (3))

�

(4) ui
Uk∗↽ u j → ui, u j ∈ N∗(Uk) − Uk∧(

prev∗(ui,Uk) > prev∗(u j,Uk)∨
(
prev∗(ui,Uk) = prev∗(u j,Uk) ∧ ui ≺ u j

))

(Definition 5 (2))

→ ui, u j ∈ N(Uk) − Uk∧ ((2))

(
prev(ui,Uk) > prev(u j,Uk)∨
(
prev(ui,Uk) = prev(u j,Uk) ∧ ui ≺ u j

))

((3))

→ ui
Uk↽ u j (Definition 4 (3))

�

With the help of Lemma 1, we can prove Theorem 1 as follows.
Proof of Theorem 1: Let u = min[Uk∗↽](Ck) and Vi+1 = U′ =

{u′1, · · · , u
′
k+1} where u′j = u j for all j such that 1 ≤ j ≤ k and

u′k+1 = u.
(1) T (Vi+1) is canonical because of the following.

(a) If k = 0, T (Vi+1) = 〈u〉 is canonical by definition. For
the case of k > 0 we have:

(b) Since T (Vi) is canonical, so is T (Uk), u′1 = u1 =

min [≺]( Uk) = min[≺](U′k) holds. Since P1 = {v | v U0∗↽

u1}∪{u1} = {v | v ≺ u1}∪{u1} = {v | v � u1}, it holds that
D1 = N∗(U0) ∩ P1 = V ∩ P1 = {v | v � u1}. Therefore,
Dk ⊇ {v | v � u1} and thus Ck ∩ {v | v � u1} = ∅, to
mean u′k+1 � {v | v � u1} since u′k+1 = u ∈ Ck and thus
u′1 = u1 ≺ u′k+1 to hold u′1 = u1 = min[≺](U′) satisfying
the canonicity requirement for u′1.

(c) Since T (Vi) is canonical, it holds that for all j such
that 1 ≤ j ≤ k that u j ∈ N(U j−1) − U j−1 by Defini-
tion 4 (3) to mean u j ∈ N∗(U j−1) since N(U j−1)−U j−1 ⊆
N(U j−1) ⊆ N∗(U j−1), and u j ∈ Pj by definition. There-
fore, u j ∈ N∗(U j−1) ∩ Pj ⊆ Dj. Since u ∈ Ck to mean
u � Dk, it holds for all j such that 1 ≤ j ≤ k that u � u j

and thus u � U j = U′j.
(d) Since u ∈ Ck ⊆ N∗(Uk), there must be l such that

1 ≤ l ≤ k, u ∈ N∗(U j) = N∗(U′j) for all j such that
l ≤ j ≤ k, and u � N∗(U j) = N∗(U′j) for all j such that
1 ≤ j < l.

(e) For j < l, u � N∗(U′j) means u � N(U′j) and
thus N(U′j) = N(U j), and u � N(U′j) − U′j, because
N(U′j) − U′j ⊆ N(U′j) ⊆ N∗(U′j). Since T (Vi) is canon-

ical, u′j+1 = u j+1 = min[
U j
↽](N(U j) − U j) = min[

U′j
↽]

(N(U′j) − U′j) to satisfy the canonicity requirement for
u′j+1.

(f) For j such that l ≤ j < k, u ∈ N∗(U′j) means u ∈
N(U′j) since u ∈ U′ by Lemma 1 (1). Since u ∈ Ck

and thus u � Dj+1 but u ∈ N∗(U′j) = N∗(U j), then

u � Pj+1, u j+1
(U j=U′j)∗
↽ u must be true and thus u′j+1

U′j
↽ u

by Lemma 1 (4). Therefore, u′j+1 = u j+1 = min[
U j
↽]

(N(U j)∪{u}−U j) = min[
U′j
↽](N(U′j)−U′j) to satisfy the

canonicity requirement for u′j+1.
(g) Since u ∈ N∗(U′k) and u ∈ U′, then u ∈ N(U′k) must be

true by Lemma 1 (1), and thus N(U′k) = U′k∪{u}. There-

fore, min[
U′k↽](N(U′k) − U′k) = min[

U′k↽]({u}) = u = u′k+1

to satisfy the canonicity requirement for u′k+1.
(2) T (Vi) ≺ T (Vi+1). It is obvious that k = |prefix(T (Vi),

T (Vi+1))|.
(a) If k = n = |T (Vi)|, it holds that |T (Vi+1)| = k + 1 =

n + 1 > n and thus T (Vi) ≺ T (Vi+1).
(b) If k < n, u ∈ Ck and thus u � Dk+1 to mean that u � Pk+1
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since u ∈ N∗(Uk). Therefore, uk+1
Uk∗↽ u = u′k+1 proving

the proposition T (Vi) ≺ T (Vi+1).
(3) Any spanning tree t such that T (Vi) ≺ t ≺ T (Vi+1) is not

canonical. Such t should satisfy |t| > k and |prefix(T (Vi), t)| =
k′ ≥ k since |prefix(T (Vi),T (Vi+1))| = k. Let t = 〈u′′1 , · · · , u

′′
|t|〉

and U′′ = {u′′1 , · · · , u
′′
|t|} where u′′j = u j for all j such that

1 ≤ j ≤ k′, and let w = u′′k′+1.

(a) If k′ = k, it must be w Uk∗↽ u because t ≺ T (Vi+1).
Since u = min[Uk∗↽](Ck), however, w � Ck but definitely
w ∈ N∗(Uk) to mean that there exists l such that w ∈ Dl

and l ≤ k + 1 if n > k or l ≤ k if n = k.
(b) If k′ > k, Ck′ = ∅ because of the maximality of k for

Ck � ∅, but definitely w ∈ N∗(Uk′ ) to mean that there
exists l such that w ∈ Dl and l ≤ k′ +1 if n > k′ or l ≤ k′

if n = k′.
(c) Existence of l above means the existence of m such that
w ∈ N∗(Um−1) ∩ Pm, to mean w Um−1∗↽ um, and m ≤ l. If
m = l = k′ + 1, we have w Uk′ ∗↽ uk′+1 but it contradicts
uk′+1

Uk′ ∗↽ w which should be derived from T (Vi) ≺ t.
Therefore, m ≤ k′ must be true.

(d) Since m ≤ k′, w Um−1∗↽ um means that w
U′′m−1∗↽ u′′m. If

m = 1, this means that w
U′′0 ∗↽ u′′1 and thus w ≺ u′′1

violating u′′1 = min[≺](U′′) to be satisfied if t is canoni-

cal. If m > 1, w
U′′m−1∗↽ u′′m means that w

U′′m−1↽ u′′m since

w ∈ U′′ by Lemma 1 (4), violating u′′m = min[
U′′m−1↽ ]

(N(Um−1)−Um−1) to be satisfied if t is canonical. There-
fore, t is not canonical.

�

A.2 Proof of Theorem 3

First, we state Lemmas 2 and 3 for the proof.
Lemma 2 (Lexicographical Order of Super-Subgraph) Let
G1 = (U1, E(U1)) and G2 = (U2, E(U2)) be connected subgraphs
of G = (V, E). If G1 ⊂ G2, either of the followings holds.
(1) ∃T ′ : T (U2) = T (U1) · T ′

(2) G2 ≺ G1

Proof: It is obvious that G1 ⊂ G2 if (1) holds, and if so
G1 ≺ G2. Therefore, we prove if G2 is not a descendant of G1,
(2) must hold, i.e., G2 ≺ G1. Let m = |T (U1)|, n = |T (U2)|,
k = |prefix(T (U1), T (U2))|. Since G2 is not a descendant of G1, it
must be k < n. Since G1 ⊂ G2 and thus G1 cannot be a descen-
dant of G2, it must be k < m as well. Let us suppose G1 ≺ G2 and
let u = u1

k+1 and w = u2
k+1. Since G1 ≺ G2, u ≺ w must be true.

However, since G1 ⊂ G2, u ∈ N(U2
k ) − U2

k must be true and thus

w � min[
U2

k↽](N(U2
k ) − U2

k ) contradicting the premise that T (U2)
is canonical. Therefore, our supposition G1 ≺ G2 leads us to a
contradiction and thus G2 ≺ G1. �
Lemma 3 (Lexicographical Order of Union of Subgraphs)
Let G1 = (U1, E(U1)) and G2 = (U2, E(U2)) be connected sub-
graphs of G = (V, E) with G1 ≺ G2, and let T (U1) = 〈u1

1, · · · , u1
m〉

and T (U2) = 〈u2
1, · · · , u

2
n〉. If their tails are common, i.e.,

tail(U1) = u1
m = tail(U2) = u2

n, all of the following hold.
(1) G1 ∪G2 ≺ G2

(2) For any connected subgraph G′ of G such that G′ ⊃ G1∪G2,
it holds that G′ ≺ G2.

Proof: It is obvious that G1 ∪ G2 = G∪ = (U∪, E(U∪))
is a connected subgraph of G since G1 and G2 has a com-
mon vertex tail(U1) = tail(U2). Since G1 ≺ G2 means that
G1 � G2 and their tails are common, they cannot be descen-
dants of each other, or have two or more occurrences of a ver-
tex in T (U1) or T (U2) contradicting their canonicity. Therefore,
k = |prefix(T (U1), T (U2))| < |T (U1)|, |T (U2)|. Since G1 ≺ G2

and G2 is not a descendant of G1, it holds that G1 � G2 by
Lemma 2 and thus G2 ⊂ G∪ ⊂ G′.
(1) G2 ⊂ G∪ means G∪ ≺ G2 unless G∪ is a descendant of G2 by

Lemma 2. Let us suppose that G∪ is a descendant of G2 and
thus |prefix(T (U1), T (U∪))| = |prefix(T (U1),T (U2))| = k.
Let T (U1) = 〈u1

1, · · · 〉, T (U2) = 〈u2
1, · · · 〉, and T (U∪) =

〈u∪1 , · · · 〉. Since G1 ≺ G2 and G∪ is a descendant of G2,
it holds that u = u1

k+1 ≺ u2
k+1 = u∪k+1 = w. However, since

G1 ⊆ G∪, it must be u ∈ N(U∪k ) −U∪k . Therefore, u ≺ w vio-

lates w = min[
U∪k↽](N(U∪k ) −U∪k ) for the canonicity of T (U∪)

leading us to a contradiction. Therefore, G∪ cannot be a de-
scendant of G2 and thus G∪ ≺ G2.

(2) Replacing G∪ with G′ in the proof (1) gives us a valid proof
for G′ ≺ G2.

�
With Lemmas 2 and 3, we can now prove Theorem 3.

Proof of Theorem 3:

(1) Let G∪ = G1 ∪ G2 being a connected subgraph of G. Since
I(G1) ⊇ I(G2), it holds that I(G∪) = I(G1) ∩ I(G2) = I(G2).
Since G∪ ⊃ G2, the subgraph G2 is not closed with respect
to I(G2).

(2) Let T (U′) = T (U2) · 〈w1, · · · , wn〉, I =
⋂n

i=1 I(wi), and G+ =

G1∪G′. Since I(G+) = I(G1)∩ I(G2)∩ I ⊇ I(G2)∩ I = I(G′),
the subgraph G′ is not closed with respect to I(G′) unless
G′ = G+. However, since G+ ≺ G2 by Lemma 3 and def-
initely G2 ≺ G′ since G′ is a descendant of G2, we have
G+ ≺ G′ and thus G′ � G+. Therefore, G′ is not closed with
respect to I(G′).

�

A.3 Proof of Theorem 4

Necessity: Obviously (1) is a necessary condition of the close-
ness of G′ with respect to I(G′), and (2) is as well by Theo-
rem 3.

Sufficiency: By Lemma 2, any connected subgraph Gs =

(Us, E(Us)) of G such that Gs ⊃ G′ must be either a descen-
dant of G′ or a predecessor Gs ≺ G′. If Gs is a descendant
of G′, there must be a direct descendant Gd of G′ such that
Gd = Gs or Gs is a descendent of Gd. Since I(G′) � I(Gd)
but clearly I(G′) ⊇ I(Gd) ⊇ I(Gs), it must hold that I(G′) ⊃
I(Gd) and thus I(G′) ⊃ I(Gs). If Gs ≺ G′ on the other hand,
T (Us) = T (U p) · T ′ with some Gp (possibly Gs itself) such
that Gp ≺ G′ and tail(U p) = tail(U′) because Gs ⊃ G′

and thus tail(U′) ∈ Us. Since I(Gp) � I(G′), we have
I(Gs) ⊂ I(G′) because I(Gs) ⊆ I(Gp) and I(Gs) ⊆ I(G′).
Therefore, I(Gs) ⊃ I(G′) for any Gs such that Gs ⊃ G′, and
thus the subgraph G′ is closed with respect to I(G′) by defi-
nition, proving that (1) and (2) are sufficient conditions.

�
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