
IPSJ SIG Technical Report

A CIL Virtual Machine for Wireless Sensor Network
Applications

Yutaka Yanagisawa1 Yasue Kishino1 Takayuki Suyama2 Tsutomu Terada†1

Masahiko Tsukamoto†1 Futoshi Naya1

Abstract: This paper describes CILIX, a compact and powerful implementation of a CIL virtual machine working on
resource-poor wireless sensor nodes. CILIX can process CIL programs on a device that has such limited computational
resources as an 8-bit/16-bit CPU, 32-KB program memory, and 4-KB RAM. It provides many useful functions for a
sensor node, including an I/O manager with UDP, FAT 32, thread control, and dynamic program replacement. For
developing software on sensor nodes using CILIX, developers can chose programming languages from C#, C++/CLI,
Visual Basic, J++, F#, and the many other languages supported by the .NET Framework.

1. Introduction
A process virtual machine, which enables portability by ab-

stracting each device and operating system, also presents a stan-
dard programming interface across a range of target platforms [8].
This mechanism reduces the cost of developing a program that
works on various sensor devices with different platforms. Cur-
rently, Java Virtual Machine (JVM) and Virtual Execution Sys-
tem (VES) for Common Intermediate Language (CIL) are the two
most popular process virtual machines used on personal comput-
ers. In this paper, we denote an implementation of VES as CIL-
VM. Several JVMs have been implemented on resource-poor sen-
sor devices. For example, SimpleRTJ [14] and Darjeeling [2]
provide the execution environment for Java code on small sensor
devices that have an 8-bit/16-bit CPU, 2- to 4-KB RAM, and 32-
to 128-KB program memory. Due to these existing JVMs, we can
develop software for small sensor nodes in the powerful Java de-
velopment environment. JVM only supports Java, so developers
cannot choose any other programming languages.

On the other hand, CIL-VM can execute programs developed
in various programming languages, for instance, J++, C#, Vi-
sual Basic, and C++/CLI, F#. In other words, a developer can
choose her favorite language in which to develop software on a
device with CIL-VM. Two implementations of CIL-VM are avail-
able to execute programs on small computer devices. The more
popular one is Common Language Runtime (CLR) by Microsoft,
which provides CLR as a runtime system of CIL included in the
.NET Micro Framework (NMF/SPOT) for such small computer
devices as mobile phones, smartphones, and industrial embedded
computers that have a 32-bit CPU and 64-KB RAM. The other
is presented in the Mono open source project. Mono’s CIL-VM
works on various small computer devices that have Linux, a 32-
1 NTT Communication Science laboratories, NTT Corporation
2 Cognitive Mechanisms Laboratories, Advanced Telecommunications

Research Institute International
†1 Presently with Guraduate School of Engineering, Kobe University

bit CPU, large RAM, and large program memory. Each imple-
mentation requires a 32-bit CPU and over 64-KB RAM to work;
however, most sensor devices have only an 8- to 16-bit CPU, 2- to
4-KB RAM, and 32- to 64-KB program memory. It is important
to reduce the RAM size for sensor devices because it increases
both the cost to implement hardware devices and their physical
size.

Thus, to provide an executable CIL system for small sensor
devices, we designed CILIX, which requires only an 8- to 16-bit
CPU, 4-KB RAM, and 32-KB program memory. In this paper,
we describe the detailed technical issues for designing and im-
plementing such small devices.

In the design of CILIX architecture, we focus on the following
three requirements:
( 1 ) Compatibility: CILIX must have high compatibility with

the existing implementations of CLR and Mono virtual ma-
chines.

( 2 ) Functionality: CILIX must provide the necessary functions
for wireless sensor devices.

( 3 ) Memory-Saving: For porting on small memory devices,
CILIX’s program size should be much smaller than existing
CIL-VMs. Moreover, we introduce a mechanism to reduce
the size of the CIL program stored in the memory.

In general, strong compatibility and functionality increase the
program size of the runtime system. Our main challenge is to de-
velop techniques to reduce the required program memory without
any deterioration of compatibility and functionality.

The fully compatible CIL-VM described in ECMA 335 [4] has
many functions not used in CLR, which is included in the .NET
Framework.*1 For example, sleeping functions increase the pro-
gram size. In our first approach to reducing program memory, we
omit them in our designed VM after we investigate the necessity

*1 These functions may be supported in the future or perhaps Microsoft just
added as many functions as possible.

c© 2014 Information Processing Society of Japan 1

Vol.2014-MPS-99 No.12
2014/7/21



IPSJ SIG Technical Report

of every function described in ECMA 355. In the second ap-
proach, we identify the functions that require large program size,
but that are used only for limited purposes. It is impossible for
small resource-poor devices to provide all the functions of the full
version CIL-VM described in ECMA 355 [4] because the full ver-
sion of CIL-VM is designed for rich computer devices that have
a 32-bit CPU, large RAM, program memory, and various I/O de-
vices. To develop a CIL-VM with reasonable compatibility, we
checked all the functions in CIL-VM presented by ECMA 355
and the number of program codes generated by both the compiler
csc.exe in the .NET Framework and the gmcs command pro-
vided by the Mono project. We carefully chose functions that are
not implemented on CILIX from the viewpoint that they are very
rarely used for small sensor devices. For example, functions to
execute unmanaged code are available for using existing native
libraries such as Win32API.dll, but small sensor devices have
no such libraries. Therefore, we do not support any functions that
execute unmanaged code on a sensor device. The details and the
reasons for our choices of functions are described in Section 2.4.
Section 3 presents information to implement a CIL-VM that has
substantial compatibility to the existing CIL-VMs.

We also introduce a mechanism called a Metadata Pre-
Processor (MPP) to reduce the size of the CIL program to be
executed on a sensor derive. The large CIL program also con-
sumes memory space on a device, because the CIL program code
must be stored on the program memory. The PE (.exe) file that
includes the CIL program code has some redundant and unused
data in the runtime. Our implemented MPP removes such unused
data and compresses the redundant data.

We implemented CILIX on ATMega128L (8-bit CPU, 4-KB
RAM, 128-KB program memory), MSP430, (16-bit CPU, 4-KB
RAM, 32-KB program memory), and TWE-001 (32-bit CPU,
128-KB RAM, 128-KB program memory). To check both the
size of the program memory and the compression ratio of the
program code by MPP, we developed several programs for en-
coding, data compression, numerical treatment, sorting, and so
on. Moreover, we compared the processing time and the size of
the used memory on our implemented CILIX with existing vir-
tual machines in CLR and Mono. As a result of these experi-
ments, we show that CILIX can execute CIL program code for
practical usage on several small sensor devices that have limited
computational resources.

2. Requirements and Design
As mentioned in Section 1, we designed CILIX to meet three

requirements: having high compatibility with existing CIL-VM;
providing available functions to work on a wireless sensor device;
and reducing both the size of CILIX and the CIL program stored
on ROM or flash memory. In this section, we show the CILIX
architecture after explaining our three requirements.

2.1 Compatibility
The virtual machine brings a standardization of environments

to develop software by abstracting the diverse platforms of sen-
sor devices. In other words, compatibility with existing virtual
machines is one of the most important requirements in porting

Fig. 1 CILIX Architecture

a virtual machine to a new platform. Therefore, we designed
CILIX as a highly compatible VM that can execute a CIL pro-
gram (.exe file) compiled by existing compilers, such as csc.exe
provided by Microsoft and gmcs provided in the Mono project.
Even though CILIX has high compatibility with existing VMs, it
is difficult to implement a fully compatible VM on a small sensor
device that has only limited computational resources. To achieve
both high compatibility and porting onto a resource-poor device,
we carefully removed the unsuitable functions that are too expen-
sive to implement on a sensor device.

2.2 Functionality
The CIL-VM defined in ECMA 335 is designed as a simple

virtual 32-bit stack-based processing unit, similar to JVM. The
CIL-VM only has such essential functions as number calcula-
tion, transferring data on the memory, and controlling the exe-
cuted program. In general, to support practical functions, for ex-
ample, I/O management, threading, and file systems, developers
implement these functions as a class library. To archive both the
reduction of the size of CILIX and to provide useful functions for
developing program code on a sensor device, we implemented the
following three significant functions as an embedded class library
in CILIX:
( 1 ) Dynamic program relocator
( 2 ) Interfaces for typical I/O devices (sensors and wireless com-

munication devices)
( 3 ) Multi-threading controller

These functions are supported by most existing middleware for
small sensor devices. We implemented them as a class library that
has compatibility with the .NET Framework class library. For ex-
ample, we implemented the embedded Thread class to support
the multi-threading mechanism. Our implemented Thread class
also has methods run(), stop(), wait(), and so on.

Each method provides the same function as the method im-
plemented in the Thread class, which is included in the .NET
Framework class library.

2.3 Memory-Saving
Reducing memory is the most significant technical issue to in-

troduce virtual machines into limited-resource devices. Increas-
ing the size of the logical memory, such as EEPROM, flash mem-
ory, and RAM, increases the physical size of the device and its

c© 2014 Information Processing Society of Japan 2

Vol.2014-MPS-99 No.12
2014/7/21



IPSJ SIG Technical Report

price. In other words, we can use a small, low-price sensor de-
vice to reduce the program size.

We determined the minimum hardware requirements for the
device, which has 4-KB RAM and 32-KB program memory
(EEPROM and/or flash memory). As mentioned in Section 1, our
required minimum hardware is smaller than most existing sensor
devices. The price of the minimum 8-16-bit device, which has 4-
KB RAM and 32-KB program memory, is lower than $5. Richer
8-/16-bit devices than our minimum requirements provide little
price advantage for 32-bit devices. Therefore, we chose the above
minimum hardware requirements.

2.4 CILIX Architecture
The CLI specifications are defined in ECMA-335 [4][11].*2

ECMA-335 has four partitions, I–IV, each of which has indepen-
dent page numbers. In this paper, the following notation, “ECMA
P-X Y P,” means page Y in partition X of ECMA-335. For exam-
ple, ECMA P-II 183 P means page 183 in partition II, and ECMA
P-X S.Y means section Y in partition X.

The CILIX runtime system has the following four runtime
modules:
• Executer: loads and executes CIL program data from EEP-

ROM or flash memory.
• Process Manager: controls the start-up and the stopping of

the virtual module and also has a function to dynamically
replace the program data on the memory.

• Platform-independent I/O Manager: provides a method to
access I/O devices and only includes program code that is
independent from device architecture, such as processing
string data, conversion of data types, and so on.

• Platform-dependent I/O Manager: provides a method to ac-
cess physical I/O devices and includes device-dependent
program code.

Figure 1 shows the runtime system architecture of our designed
CILIX. CILIX is composed by runtime modules and a Metadata
Pre-Processor (MPP), which compresses the size of the CIL pro-
gram data (exe* file) MPP is an independent module from the
runtime system that can reduce the total size of the CIL program
data by removing unused program code from a exe*

3. Implementation
This section describes the implementation of CILIX. We show

the information for the implementation of CIL-VM, which has
substantial compatibility with existing runtime systems, before
we explain the non-CLI modules to provide convenient functions
for wireless sensor devices. For the I/O control module, we only
describe the essential ideas to implement it.

3.1 Substantial Subset of CLI
As mentioned in the previous section, ECMA defines the CLI

specifications, but existing compilers csc.exe and gmcs do not
generate all the CIL operations, the metadata tables, and the sig-
natures described in ECMA. To reduce the program size of the

*2 We recommend referring to The Common Language Infrastructure An-
notated Standard[11] as a technical document for CIL-VM. It has many
helpful annotations to the original ECMA-335.

Fig. 2 Environmental monitoring system deployed in greenhouses

runtime system, we implemented CILIX as a substantially com-
patible CIL virtual machine without functions for supporting such
unused data. We extracted the minimum indispensable informa-
tion from ECMA to implement CILIX, which can execute any
CIL program code generated by csc.exe and gmcs without un-
supported functions, as explained in the previous section. To ob-
tain information, we investigated a number of .exe files gener-
ated by existing compilers for C#, C++/CLI, and Visual Basic.

In the rest of this subsection, we describe the information to
implement CILIX.This information is available for developers
who want to implement another CIL virtual machine.

3.2 Process Management Module
This module, which has several important functions for con-

trolling a process on a sensor device like a small embedded op-
erating system, provides these functions: process initialization,
multi-thread control, dynamic program relocation, and restoring
from an exception. For the initializing process, the module al-
locates memory for the program and loads the data used in the
program onto the runtime memory from the program memory.
Next we describe the other functions.
3.2.1 Dynamic Program Relocator

CILIX provides a function to change a CIL program to execute
by relocating the program code on the program memory. The
Program Relocator can read program code from a MicroSD card
or a remote server by wireless communication to put the read data
into the program memory (flash memory).

The relocation process is very simple. When we use the wire-
less communication method for relocation, we must send a spe-
cial packet to inform the next packet including the new program
code. If the I/O manager of the wireless device finds the spa-
tial packet, the manager informs the Process Manager who stops
the program’s execution before the Relocator starts to work. The
program code is transferred as a set of UDP packets next to the
special packet. We describe UDP-based communication in the
next subsection. After the Relocator retrieves the program code
from the buffer in the I/O manager, the Relocator puts the pro-
gram code into the program memory. Finally, the Process Man-
ager initializes and starts the new program.

For MicroSD cards, we put them into a MicroSD card slot.
When the I/O Manager of the SD Card (SPI) finds a new Mi-
croSD card, the Manager checks a file named /program.hex

based on the FAT32 format. If the Manager finds the program,
it informs the Process Manager who performs the same processes
as for using a wireless device.
3.2.2 Thread Controller

A typical process on a sensor node is a combination of a pro-

c© 2014 Information Processing Society of Japan 3

Vol.2014-MPS-99 No.12
2014/7/21



IPSJ SIG Technical Report

gram to read a value from a sensor in an interval and a program
to send a set of read values to the server. In this case, we want
to concurrently execute two programs on a sensor device. CILIX
supports a multi-thread control mechanism, which is available for
such uses. The Thread Controller of CILIX provides simple con-
current processing in a sensor device. Each thread has an inde-
pendent heap area and a buffer to back up the data in the managed
area. CILIX has a memory space for the managed area of the cur-
rent thread. This memory space stores the global variables used
in the runtime.

To exchange the current thread with a suspended thread, CILIX
moves all the data in the managed area into the current thread’s
buffer after CILIX stops to execute the current thread. Next,
it moves all the data in the buffer in the suspended thread and
switches to the heap area. Finally, it executes a new current thread
with the heap area and manages all the thread’s data.

The context switching interval can be given by the developer.
As a default setting parameter, CILIX switches the thread every
160 opcodes.*3 In our implementation, CILIX can manage any
number of threads as long as the device has memory space.

To maintain compatibility with the .NET Framework, we im-
plement three embedded classes: System.Threading.Monitor,
System.Threading.Thread, and System.Threading.ThreadStat.
3.2.3 Restoring from Exception

When an exception occurs and no try/catch block catches
it, CILIX must process the restoring from the exception. If the
device has a process management system such as an operating
system, the system recovers the uncaught exception. On small
devices without such a recovery system, CILIX recovers the ex-
ception. CILIX provides two alternative methods; the runtime
system restarts the program in the first method, and the runtime
system halts the process and waits for the program code sent from
the server.

3.3 I/O Control Module
A small sensor device has various types of I/O devices, for ex-

ample, thermometers, acceleration sensors, UART, SD cards, and
radio frequency devices for wireless communication, LEDs, and
LCDs. In general, developers must write specific program code
for each individual device. To abstract I/O devices, we introduce
a UDP-based interface in the design of an I/O control module.
CILIX allows us to access each I/O device with UDP packets.

Our design offers the following three benefits:
( 1 ) Selecting a device with a port number: to change the device

to the access mode, a developer only changes the port num-
ber related to the device.

( 2 ) Emulation of a device as a UDP program on a PC: we can
build an I/O device as a program with a UDP port on a PC
for debugging.

( 3 ) Concentration of device-dependent code in send and recv:
any CIL program can only access an I/O device through the
send and recv methods. In other words, all the program
code, which depends on each I/O device, is gathered into
these methods.

*3 Note that we only give this value through our experiments to execute a
number of practical programs on sensor devices.

CILIX supports reading the /program.hex file from FAT32
sectors on SPI devices. We only suppose the usage of SPI de-
vices to transfer a CIL program file from a PC to a small device.
CILIX does not currently support reading other files or writing
data onto an SPI device because we must add too much code to
support those functions. For reading a program file, CILIX does
not use UDP packets to improve the time to load program code
in the memory. The runtime system automatically checks the SPI
device to determine whether it has a program file to load during
the runtime system’s initial process.

4. Conclusions
This paper presented the design and implementation of CILIX,

which can work on an 8-/16-bit CPU, 4-KB RAM, and 32-KB
program memory with reasonable compatibility to existing CIL-
VMs. We implemented CILIX on three devices, ATmega128L,
MSP430, and TWE-001, and experimentally evaluated the per-
formance of our implemented CILIX with them. We showed that
CILIX can execute CIL program code with practical processing
times on each device with limited resources.

References
[1] M. Beigl and H. Gellersen. Smart-its: An embedded platform for

smart objects. In In Proc. Smart Objects Conference (SOC 2003, pages
15–17, 2003.

[2] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich
vm for the resource poor. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’09, pages 169–182,
New York, NY, USA, 2009. ACM.

[3] M. Corporation. .net micro framework. http://www.microsoft.com/en-
us/netmf/default.aspx.

[4] ECMA. Standard ecma-335: Common language infrastructure (cli).
http://www.ecma-international.org/publications/standards/Ecma-
335.htm.

[5] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-rk: An energy-aware
resource-centric rtos for sensor networks. Real-Time Systems Sympo-
sium, IEEE International, 0:256–265, 2005.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. Sys-
tem architecture directions for networked sensors. SIGPLAN Not.,
35:93–104, November 2000.

[7] J. Koshy and R. Pandey. Vmstar: synthesizing scalable runtime en-
vironments for sensor networks. In Proceedings of the 3rd interna-
tional conference on Embedded networked sensor systems, SenSys
’05, pages 243–254, New York, NY, USA, 2005. ACM.

[8] M. Kuorilehto, M. Hännikäinen, and T. D. Hämäläinen. A survey
of application distribution in wireless sensor networks. EURASIP J.
Wirel. Commun. Netw., 2005:774–788, October 2005.

[9] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor net-
works. SIGPLAN Not., 37:85–95, October 2002.

[10] P. Levis, D. Gay, and D. Culler. Active sensor networks. In Proceed-
ings of the 2nd conference on Symposium on Networked Systems De-
sign & Implementation - Volume 2, NSDI’05, pages 343–356, Berke-
ley, CA, USA, 2005. USENIX Association.

[11] J. S. Miller. The Common Language Infrastructure Annotated Stan-
dard. Addison-Wesley Professional, 2003.

[12] Oracle. Sun spot. http://jp.sun.com/products/software/sunspot/.
[13] B. Project. Btnodes - a distributed environment for prototyping ad hoc

networks. http://www.btnode.ethz.ch/.
[14] RTJ-Computing. The Simple Real Time JAVA.

http://www.rtjcom.com/.
[15] S. Saruwatari, T. Kashima, M. Minami, H. Morikawa, and T. Aoyama.

Pavenet: A hardware and software framework for wireless sensor net-
works. Transaction of the Society of Instrument and Control Engi-
neers, E-S-1(1):74–84, 2005.

[16] T. Terada, M. Tsukamoto, K. Hayakawa, T. Yoshihisa, Y. Kishino,
A. Kashitani, and S. Nishio. Ubiquitous chip: A rule-based i/o con-
trol device for ubiquitous computing. In A. Ferscha and F. Mattern,
editors, Pervasive Computing, volume 3001 of Lecture Notes in Com-
puter Science, pages 238–253. Springer Berlin / Heidelberg, 2004.

c© 2014 Information Processing Society of Japan 4

Vol.2014-MPS-99 No.12
2014/7/21


