
Combining the Phoenix Flash Code with the Binary Index Flash
Code for Low Write Deficiency

G. N. Corneby1, L. K. Sanchez1, P. Fernandez1, M. J. Tan2, and K. Kaji2
1Department of Information Systems and Computer Science, Ateneo de Manila University, Philippines

2Graduate School of Information Science, Nara Institute of Science and Technology, Japan

Abstract— In the framework of floating codes, a block of
flash cells stores data in the form of binary numbers. The
fundamental approach in constructing a coding scheme is by
assigning cells to bits. However, the way to assign cells to
bits is not simple, as the frequency of changes of the value
of the bits is not known. This makes it difficult to partition
the cells in a block in proportion to the frequency of the
changes of bit value where the most updated bit has the
most number of cells assigned to it. In this study, we discuss
a novel coding scheme to dynamically assign cells to bits. At
the beginning, there is a pre-determined assignment of cells
to bits, but the coding scheme allows reassignment of cells if
needed. The proposed coding scheme gives a very low write
deficiency. A novel idea is discussed in this manuscript.

Keywords: flash code, flash memory, phoenix flash code, binary-
indexed, absorb, revive

1. Introduction
Flash memory devices are currently constrained by the

write asymmetry property. It is easy to increase the charge
in one flash cell, i.e., perform a cell write, but decreasing
a charge in a cell is not possible except by emptying the
charges simultaneously in all cells of a block. This operation
is referred to as a block erasure.

A block erasure is not only time-consuming but also
causes some damage to the device. It has been estimated
that a block of cells can only accommodate about 104

to 105 block erasures before it becomes unreliable [5]. It
is therefore desirable to delay block erasures as much as
possible, by designing good coding schemes, in order to
extend the lifespan of flash memory devices.

A flash code is used for decoding and encoding digital
information in a flash memory. The performance of a flash
code is normally evaluated by measuring its write deficiency.
This is computed by taking the difference between the
maximum possible and the actual number of cell writes. A
lower write deficiency is clearly preferred.

One of the most popular flash codes in literature is the
Index-less Indexed Flash Code (ILIFC). This flash code
partitions a block of cells into sub-blocks, called slices. Each
ILIFC slice has exactly k cells, where k is the number of
bits of the data represented by a block. Encoding is designed
so that it is possible to infer both the bit index (that a slice

represents) and the bit-value by just reading the cell-values
within the given slice [4]. Binary Index Flash Code (BIFC)
introduced the partitioning of a flash code into smaller slices.
Unlike ILIFC which uses k cells per slice, BIFC uses slices
of size s = O(log k). The drawback in BIFC is that there
is an overhead write deficiency of s − 2 for every slice.
Generally, however, the BIFC flash code has a better write
deficiency than the ILIFC when k is sufficiently large [8].

More recently, the Dual Mode Flash Code (DMFC) was
introduced, combining the BIFC with a Simple Segmentation
coding scheme. Experimental results using DMFC show that
it has a significantly lower write deficiency than any of the
previously designed flash codes in the average case [10].

In this study, we improve the DMFC further by using
Phoenix Flash Code (PFC), a recently developed coding
scheme that allows reassignment of cells to bits.[1] In the
original version of PFC, the reassignment of cells contains
a slight overhead cost which contribute to O(n) to the write
deficiency. We introduce a modification to the method to
remove such overhead. The detailed discussion of PFC is in
Sect. 3. Afterwards, we discuss combining PFC with BIFC
in Sect. 4. Computer simulations show that this flash code
is superior, even when compared to the DMFC and this is
shown in Sect. 5.

2. Preliminaries
A block of flash memory is a sequence of n cells. Each

cell stores an integer value from Aq = {0, . . . , q − 1}, and
this value is referred to as the cell-level. A cell has three
type states. A cell with a value of 0 or q − 1 is said to
be empty or full, respectively. If a cell is neither empty nor
full, then that cell is said to be active. All cells within a
block are ordered. The value of the i-th cell is denoted by ci
where 0 ≤ i < n. A tuple (c0, . . . , cn−1) ∈ An

q represents a
possible state of a block. For two states C = (c0, . . . , cn−1)
and C ′ = (c′0, . . . , c

′
n−1), we write C � C ′ if ci � c′i for

all 0 ≤ i < n, and C ≺ C ′ if C � C ′ and C 6= C ′. A
state can transit from C to C ′ if and only if C ≺ C ′, as
state transition is accomplished through cell writes. Similar
to individual cells, a block has three type of states. A block
is empty if all cells within the block are empty. A block is
full if all the cells within a block are full. Otherwise, the
block is active. The notion of “states”, “≺” and “type of

1ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-MPS-99 No.11
2014/7/21



states” are extended to subsets of cells in a natural manner
[2], [9]. A block of flash memory cells stores a k-bit data
D = (d0, . . . , dk−1). The data D is updated through a write
operation which flips the value of a single bit in D.

A flash code F = (E ,D) contains two functions which are
used to update and retrieve the data stored within a block.
The decode function D : An

q → (d0, . . . , dk−1) retrieves the
value of the data stored in the block of flash memory cells.
The encode function E : {0, . . . , k − 1} ×An

q → An
q ∪ {E}

is applied to the block for every write operation. The encode
function first attempts to accommodate the write operation
by applying cell writes to the block following a pre-specified
procedure. If successful, this operation produces a new block
state C ′ = E(i, C) where D(C) and D(C ′) only differ in
the i-th bit. Otherwise, the encode function returns a block
erasure E.

Since a block has n cells and each cell has a maximum
of q − 1 levels, then in the ideal case a flash code can
accommodate each write operation with one cell write.
Hence, the maximum number of write operations by the ideal
flash code is n(q − 1). This expression is used in a metric
for the performance of flash codes. Specifically, the write
deficiency of a flash code F, denoted by δ(F ), is computed
using the formula δ(F ) = n(q−1)− t, where t is the actual
number of write operations accommodated by the flash code
F . A write deficiency of zero is the ideal case.

3. Phoenix Flash Code
Phoenix Flash Code (PFC) is a very recently developed

flash code. Its encoding process is somewhat similar to
stacked segment encoding (SS encoding)[10]. This is es-
pecially true when there is an equal distribution of write
operations among the k bits of data. PFC starts with dividing
the block into smaller groups called segments. A segment
Si = (ci,0, . . . , ci,k−1) where ci,j = cik+j , 0 ≤ i < n

k .
Each segment has k cells and is cyclic in the context of
the cell adjacency. This implies that the left adjacent cell
of ci,0 is ci,k−1 and the reverse also holds true. For each
active segment Si, cell ci,j is initially assigned to dj where
0 ≤ j < k. The bit-value of dj is computed using the parity
of the cell assigned to it. An example is shown in Fig. 1
using segment S1.

Following the encoding process of the SS encoding, it
can be observed that the assigning of cells to bits is not
flexible enough to accommodate non-uniform distribution of
write operations. PFC solves this problem by incorporating
two operations, called absorption and revival. These two
operations are used only when one cell is about to become
full in the current write operation. In all the other scenarios,
PFC acts similar to SS encoding.

The first operation, absorption, is used to allow a cell
to take over the adjacent cell within a segment. Originally,
cell ci,j in segment Si is assigned to dj . If the absorption
operation is applied to ci,j , then the right-adjacent cell ci,j′ ,

Fig. 1: Mapping a PFC segment to data bit-values.

where j′ = (j + 1) mod k, is reassigned from dj′ to dj .
We can view the result of the operation as dj′ has either
been reassigned to a cell in the nearest available segment
Si+x(x is some positive integer) or has become unassigned.
Both are acceptable if we assume that an unassigned bit has
a value of 0. Consider the segment in Fig. 1. Observe that
in the next write operation for d4, the encoding process will
increase the cell-value of c1,4 which makes the cell full. This
will invoke the absorption operation and reassign c1,5 to d4
as shown in Fig. 2.

The absorption operation is incomplete on its own. Al-
though we cannot observe any error in the previous example,
this is only because cell ci,5, referred to as the adsorbate,
has an even cell-value. This causes no problem because
absorbing a cell with even parity does not affect the value
of the bit assigned to the absorber. However, this is not
true when the adsorbate has an odd parity. To remedy this
conundrum, we invoke the revival operation to preserve
data integrity by applying a cell write to “revive” the bit
previously assigned to the adsorbate.

We will discuss two approaches for the revival operation.
We will follow the same symbols and notation as used in the
discussion of the absorption operation. The first is a simple
and does not require any change to the absorption operation.
This operation simply increases the cell-value of ci,j′ and
ci+x,j′ by 1 each. Take note that cell ci+x,j′ of segment Si+x

is the cell to which dj′ is newly assigned. This approach is
the same as the one discussed in [1]. An example can be
seen in Fig. 3.

A segment that is one cell write shy from being full
has all its cells assigned to one bit. Furthermore, the bit
assigned to a full segment has a bit-value of 0, assuming k
is even. This implies we can ignore full segments as they
have zero significance to the value of the data. The same
goes for empty segments. Thus, we will only focus on active

2ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-MPS-99 No.11
2014/7/21



Fig. 2: Updating d4 causes the (even parity) d5 to be
absorbed.

Fig. 3: Applying the first approach of the revival operation
to d2.

segments. A bit can only be assigned in one segment at
a time. The core of the decoding function is to determine
which cells are absorbed and which are not. This will enable
us to know the assingment of cells to bits. We can state that
a cell is independent, i.e. not absorbed, if its left adjacent
cell is not full. Once assignment of cells to bits is known,
computing the bit-value is simply done by computing the
parity of the appropriate cell-values.

There are three factors to the write deficiency. The first is
the unused cells that were not enough to form one segment
which is at most k − 1 cells. The second factor is the extra
two cell writes used for each revival operation. In a segment,
we can apply at most k − 1 revival operations. Overall,
this contributes to at most O(n) to the write deficiency.
The third factor is from the active segments left upon block
erasure. There can be at most k−1 active segments. A loose
upper bound to its contribution to write deficiency is O(k2q).
Hence the total write deficiency is at most O(n+k2q+kq) =
O(n+ k2q).

As stated before, the first approach for the revival oper-
ation comes with an overhead cost that is at most O(n),
which occurs when the adsorbate cell, i.e., ci,j′ as stated
in the previous discussion, has an odd parity. The second
approach remedy this problem by delaying the cell write
to ci,j , the absorber cell, that would have rendered it full.
Instead, it directly applies a cell write to ci+x,j′ . In doing so,
it transfers the data information of dj′ from ci,j′ to ci+x,j′

and causes ci,j′ to be implicitly absorbed by ci,j . This saves
PFC from applying the extra two cell writes as stated in
the first approach. Hence removing the overhead cost. The
second approach of the revival operation is illustrated in Fig.

Fig. 4: Applying the second approach of the revival operation
to d2.

4.
The second approach of the revival operation requires

modification in determining absorbed and independent cells.
Let the set T = {Sa1

, . . . , Sar
} be the set of active segments

in state of the block C. We first process the rightmost
segment Sar

using the same rule to determine between
absorbed and independent cells as the one in the first
approach. Afterwards, starting from Sar−1 to Sa1 , we follow
a slightly modified rule to determine between absorbed and
independent cells. For every active cell cai,j in segment
Sai

that is labelled as independent by the previous rule,
the modified rule dictates that if dj is already assigned to
a segment Sax , x > i, then cai,j is labelled as absorbed.
Afterwards, we can proceed similarly as the decoding pro-
cedure in the first approach and compute of the bit-value
of each bit of the data. By removing the overhead cost of
using the revival operation, we are able to reduce the upper
bound write deficiency of PFC from O(n+k2q) to O(k2q).
This performance is comparable to the first phase encoding
of ILIFC [4].

4. Combining PFC and BIFC
In the previous section, the implementation of the second

approach removed one of the factors of write deficiency of
PFC. In this section, we will discuss a method to diminish
the effect of the first factor, the cells that was never used as a
segment, to the write deficiency. In our modified flash code
we combine PFC and BIFC [10], and refer to this as the
Phoenix Flash Code with BIFC (PFCB). We first divide the
block into two major partitions. In the left partition, we fit as
many PFC segments as possible, i.e., m = bn/kc segments.
The (possibly empty) right partition is then allocated for the
BIFC slices. See Fig. 5 for this. This implies that BIFC only
uses the cells which are not enough to form a segment, thus
addressing the write deficiency due to the n mod k cells
in the original Phoenix Flash Code. Note that if there are
further remainder cells that cannot form a BIFC slice, these
cells are incorporated in the PFC partition.

Whenever it is possible to update some i-th bit using the
PFC partition, the appropriate PFC segment(s) is updated.
Otherwise an appropriate BIFC slice is updated. Only when
both options are not possible does a block erasure occur.

3ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-MPS-99 No.11
2014/7/21



��� ����

Fig. 5: Visual representation of PFCB and BIFC partitions.

�

����

����

����

����

�����

�����

� ��� ��� ��� ��� ����

����

����

����

�
��
��
��
�
��
	�
�


	�

��	


Fig. 6: Simulation results using uniform distribution.

When n is significantly larger than k, the portion for
BIFC may seem insignificant in relation to the entire block.
However, there are still more than enough cells to form many
slices to continue the encoding process than it would have
been without the BIFC partition.

5. Results
We simulated the performance of different flash codes and

compared the resulting write deficiencies. In the simulations,
the block size was fixed at 2048 cells and the maximum
charge of a cell was set to 7. The bit size k was varied, and
for each k value, 30 experiments were run, and the average
write deficiencies were reported.

We tested the performance of the flash codes in two
different distributions. In the uniform distribution, each bit
has an equal probability of 1/k of being updated. We first
investigate the improvements brought about by modifying
the revival operation of the original PFC to incorporate the
second approach and also the improvements brought about
by incorporating the BIFC partition. Fig. 6 and 7 clearly
illustrates the superiority of PFCB compared to the other
coding scheme, even against the previous best DMFC. As
a side note, the write deficiency graphs of ILIFC and BIFC
each shows a sharp increase at some k value. This occurs
when a block has not enough cells to accommodated one
slice for each bit of the data. We also test the performance
of the PFCB against other flash codes in a non-uniform
distribution. Here 1 bit has 50% probability of being updated,
while the rest of the other bits have a uniform 0.5/(k − 1)
probability of being updated which is illustrated in Fig. 8.

6. Conclusion
In this study, we propose a new flash code that combines

the Phoenix Flash Code (PFC) and the Binary Indexed

Fig. 7: Simulation results using uniform distribution.

Fig. 8: Simulation results using one bit dominating 50% of
the updates.

Flash Code (BIFC). Simulation results indicate that it has a
significantly better write deficiency than existing flash codes
in literature. Generally, a better write deficiency leads to a
longer lifespan for flash memory devices.

It would be interesting to investigate other techniques for
lowering the write deficiency of flash codes, by perhaps
developing new operations. Future studies can also explore
other ways of combining two or more flash codes, and
evaluating the resulting performance.

References
[1] G. Corneby, L. Sanchez, M. J. Tan, P. Fernandez, and Y. Kaji,

“Phoenix flash code: introducing the absorption and revival operations
for reducing flash memory write deficiency,” in Proc. (NCITE 2013),
2013, pp. 209–215.

[2] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint infor-
mation storage in flash memories,” IEEE Transactions on Information
Theory, vol. 56, pp.5300–5313, Oct. 2010.

[3] Y. Kaji, “The expected write deficiency of index-less flash codes
and their improvement,” IEICE Trans. on Fundamentals, vol. E95-A,
no. 12, pp. 2130–2138, Dec. 2012.

[4] H. Mahdavifar, P. Siegel, A. Vardy, J. Wolf, and E. Yaakobi, “A nearly
optimal construction of flash codes,” in Proc. ISIT’09, 2009, pp. 1239–
1243.

[5] A. Olson, and D. Langlois, “Solid state drives data reliability and
lifetime,” In Imation Corporation White Pater, 2008.

[6] R. Suzuki, and T. Wadayama. “Layered index-less indexed flash codes
for improving average performance,” in Proc. ISIT’11, 2011, pp. 2138–
2142.

[7] M. J. Tan, and Y. Kaji, “Uniform-compartment flash code and binary-
indexed flash code,” in IEICE Technical Report, 2012, pp. 25–30.

[8] M. J. Tan, and Y. Kaji, “Flash code utilizing binary-indexed slice encod-
ing and resizable-clusters,” IEICE Trans. on Fundamentals, vol. E96-A,
no. 12, pp. 2360–2367, Dec. 2013.

[9] M. J. Tan, P. Fernandez, N. Salazar, J. Ty, and Y. Kaji, “Flash code
with dual modes of encoding,”. in Pre-Proc. WCTP’13, 2013.

4ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-MPS-99 No.11
2014/7/21


