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Selecting Strategies in Particle Swarm Optimization
by Sampling-Based Landscape Modality Detection

Tetsuyuki Takahama1,a) Setsuko Sakai2,b)

Abstract: If the landscape of the objective function is unimodal, the efficiency of population-based optimization al-
gorithms (POAs) can be improved by selecting strategies for local search around a best solution. If the landscape is
multimodal, the robustness of the POAs can be improved by selecting strategies for global search in search space. We
have proposed a method that estimates the landscape modality by sampling the objective values along a line and count-
ing the number of changes in the objective values from increasing to decreasing and vice versa. In this study, in order to
improve the performance of particle swarm optimization (PSO), we propose to select a proper strategy according to the
landscape modality: The gbest model is selected in unimodal landscape and the lbest model is selected in multimodal
landscape. The advantage of the proposed method is shown by solving unimodal and multimodal problems and by
comparing it with standard PSOs.

1. Introduction
There exist many studies on solving optimization problems us-

ing population-based optimization algorithms (POAs) in which
a population or multiple search points are used to search for an
optimal solution. For example, swarm intelligence algorithms in-
spired by collective animal behavior have been studied such as
particle swarm optimization (PSO) [1, 2] and ant colony opti-
mization. Also, evolutionary algorithms inspired by biological
evolution have been studied such as genetic algorithm, evolu-
tion strategy and differential evolution [3, 4]. In general, POAs
are stochastic direct search methods, which only need function
values to be optimized, and are easy to implement. For this rea-
son, POAs have been successfully applied to various optimization
problems.

In this study, we paid attention to improve PSO. There are two
models or movement strategies in PSO: the gbest model where
each search point or a particle moves toward the best point in the
population and the lbest model where each search point moves to-
ward a best point in the neighbor points. It is known that the gbest
model can solve unimodal problems efficiently but the strategy
cannot solve multimodal problems stably and the search by the
strategy is sometimes trapped at a local optimal solution. In con-
trast, it is known that the lbest strategy is robust to multimodal
problems but the strategy cannot solve unimodal problems effi-
ciently. However, the landscape of a problem to be optimized is
often unknown and the landscape is changing dynamically while
the search process proceeds. Thus, it is difficult to select a proper
strategy.
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We have proposed a simple method that detects the modality
of landscape being searched: unimodal or not unimodal [5–7].
In the method, some points on the line connecting between the
centroid of search points and the best search point are sampled.
When the objective values of the sampled points are changed de-
creasingly and then increasingly, it is thought that one valley ex-
ists. If there exists only one valley or the landscape is unimodal,
the gbest strategy is adopted. In this case, it is expected that the
strategy can realize efficient search. If the number of valley is
greater than one, the lbest strategy is adopted. In this case, it is
expected that the strategy improves the divergence of the search
and prevents premature convergence. The effect of the proposed
method is shown by solving 13 benchmark problems including
unimodal problems and multimodal problems.

In Section 2, related works are briefly reviewed. Detecting
landscape modality is explained in Section 3. PSO with detecting
landscape modality is proposed in Section 4. In Section 5, experi-
mental results on some problems are shown. Finally, conclusions
are described in Section 6.

2. Related Works
Many studies on strategy selection and parameter tuning have

been done in order to improve the efficiency. The studies can
be classified into two main categories: observation-based and
success-based control [5–7].
( 1 ) observation-based control: The current search state is ob-

served, proper strategies or parameter values are inferred ac-
cording to the observation, and strategies and/or parameters
are dynamically controlled. FADE(Fuzzy Adaptive DE) [8]
observes the movement of search points and the change of
function values between successive generations, and con-
trols algorithm parameters. DESFC(DE with Speciation and
Fuzzy Clustering) [9] adopts fuzzy clustering, observes par-
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tition entropy of search points, and controls a parameter and
the mutation strategies between the rand and the species-best
strategy.

( 2 ) success-based control: It is recognized as a success case
when a better search point than the parent is generated. The
strategies and/or parameters are adjusted so that the values in
the success cases are frequently used. It is thought that the
self-adaptation, where strategies and/or parameters are con-
tained in individuals and are evolved by applying evolution-
ary operators to the parameters, is included in this category.
DESAP(Differential Evolution with Self-Adapting Popula-
tions) [10] controls algorithm parameters including popula-
tion size self-adaptively. SaDE(Self-adaptive DE) [11] con-
trols the selection probability of the mutation strategies ac-
cording to the success rates and controls the mean value of a
crossover rate for each strategy according to the mean value
in success case. JADE(adaptive DE with optional exter-
nal archive) [12] and MDE pBX(modified DE with p-best
crossover) [13] control the mean and power mean values
of two parameters according to the mean values in success
cases.

In the category (1), it is difficult to select proper type of ob-
servation which is independent of the optimization problem and
its scale. In the category (2), when a new good search point is
found near the parent, parameters are adjusted to the direction
of convergence. In problems with ridge landscape or multimodal
landscape, where good search points exist in small region, param-
eters are tuned for small success and big success will be missed.
Thus, search process would be trapped at a local optimal solution.

In this study, we propose a new observation-based control in
the category (1). As a problem independent observation, land-
scape modality is adopted and it is estimated whether the prob-
lem is unimodal or multimodal using sampling. It is thought that
a proper strategy or algorithm parameters can be selected if the
landscape modality can be identified.

3. Detecting Landscape Modality using Sam-
pling

Search points in a current population or a set of search points
P = {xi|i = 1, 2, · · · ,N} are used to detect landscape modality
using sampling [5, 6], where N is the number of search points
or population size. The range of search points is determined, a
line is drawn in the range, and equally spaced points are sampled
along the line.

The objective values are examined along the following line,
which connects the centroid of search points xg and the best
search point xb.

x = xg + λ(xb − xg) (1)

xg =
1
N

N∑
i=1

xi, xb = arg minxi∈P
f (xi) (2)

where λ is a parameter for deciding the position of a point on the
line. The range of the search points [xmin, xmax] can be given as
follows:

xmin
j = min

i
xi j, xmax

j = max
i

xi j (3)

The range of the λ, [λmin, λmax] satisfies the following condi-
tion:

xmin
j ≤ xgj + λ(xb

j − xgj ) ≤ xmax
j (4)

Thus, if (xb
j − xgj ) is positive, the range of the λ is given by:

λmin = max
j

xmin
j − xgj
xb

j − xgj
, λmax = min

j

xmax
j − xgj
xb

j − xgj
(5)

If (xb
j − xgj ) is negative, xmin

j and xmax
j in the equations are ex-

changed.
In order to decide M sampling points {xk |k = 1, 2, · · · ,M}, λk

is given as follows:

λk = λ
min +

λmax − λmin

M − 1
(k − 1) (6)

zk = xg + λk(xb − xg) (7)

In the obtained sequence { f (zk)|k = 1, 2, · · · ,M}, hill-valley
relation is examined. For each point, the function dir(·) is in-
troduced in order to judge whether the change is increasing or
decreasing:

dir(zk) =


1 ( f (zk+1) > f (zk))
−1 ( f (zk+1) < f (zk))

dir(zk−1) (otherwise)
(8)

The landscape modality is identified using the number of
changes in dir function. If the value of dir changed from -1 to
1 only once or there is no changes, it is thought that one valley
exists and the landscape is unimodal. Otherwise, the landscape is
not unimodal.

4. PSO and Proposed Method
4.1 Optimization Problems

In this study, the following optimization problem (P) with
lower bound and upper bound constraints will be discussed.

(P) minimize f (x)
subject to li ≤ xi ≤ ui, i = 1, . . . , n,

(9)

where x = (x1, x2, · · · , xn) is an n dimensional vector and f (x) is
an objective function. Values li and ui are the lower bound and
the upper bound of xi, respectively.

4.2 Particle Swarm Optimization
Swarm intelligence is defined as the collective actions of agents

that act autonomously and communicate each other. PSO [2]
is a swarm intelligence based optimization method which was
inspired by the movement of a bird flock. PSO imitates the
movement to solve optimization problems and is considered as
a population-based stochastic search method or POA.

Searching procedures by PSO can be described as follows: A
group of agents minimizes the objective function f . At any time
t, each agent i knows its current position xt

i and velocity uti. It also
remembers its personal best visited position until now x∗i and the
objective value pbesti.

x∗i = arg min
τ=0,1,···,t

f (xτi ), pbesti = f (x∗i ) (10)
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Two models, gbest model and lbest model have been proposed.
In the gbest model, every agent knows the best visited position
x∗G in all agents and its objective value gbest.

x∗G = arg min
i

f (x∗i ), gbest = f (x∗G) (11)

In the lbest model, each agent knows the best visited position x∗l
in the neighbors and its objective value lbesti, where l is the best
visited position in the neighborhood.

x∗l = arg min
k∈Ni

f (x∗k), lbesti = f (x∗l ) (12)

where Ni is the set of neighbor agents to i. The velocity of the
agent i at time t + 1 is defined as follows:

vt+1
i j = wv

t
i j + c1 rand1i j (x∗i j − xt

i j) + c2 rand2i j (x∗l j − xt
i j) (13)

where l = G in the gbest model, w is an inertia weight and randki j

is a uniform random number in [0, 1] which is generated in each
dimension. c1 is a cognitive parameter, c2 is a social parameter
which represent the weight of the movement to the personal best
and the group/neighbors best respectively.

The position of the agent i at time t + 1 is given as follows:

xt+1
i = xt

i + u
t+1
i (14)

4.3 Proposed Method
In general, if divergence of agents is kept to realize a global

search, it can be avoided to be trapped at a local solution but the
efficiency of the search will be reduced. If convergence of agents
is enforced to realize local search around the best agent, the effi-
ciency of the search is improved but the search will be trapped at
a local solution.

In PSO, the gbest model can realize the local search and the
lbest model can realize the global search. In the lbest model,
the neighborhood of agents is defined as a topology such as star
topology, ring topology, mesh topology, and so on. In this study,
the ring topology is adopted, where agents are connected in the
order of the agent numbers. The neighborhood size Nneighbor is
an important parameter in the lbest model. Small neighborhood
size strengthens the global search and large neighborhood size
strengthens the local search. When the size is same as the pop-
ulation size, the lbest model becomes the gbest model. In this
study, the gbest model is selected for unimodal landscape and the
lbest model with Nneighbor = 5 including the agent itself is selected
for multimodal landscape.

Figure 1 shows the proposed algorithm named LPSO(PSO with
detecting Landscape modality), where TL is the interval of itera-
tions when landscape modality is estimated, Nsmall is the neigh-
borhood size for the global search, and Nlarge is the neighborhood
size for the local search. Lines with ’+’ at the first column are the
modification to standard PSO.

If the number of direction changes from decreasing to increas-
ing and vice versa is 1 or zero, the landscape modality is es-
timated as unimodal. However, the estimation should be done
carefully because the sampling is done in a small region and the
number of sampling points is small. Thus, the number of succes-
sive unimodal estimations is counted and if the number is equal to
or greater than Nunimodal the landscape is identified as unimodal.

Initialize P;
Evaluate all x in P;
G=arg min{i|xi∈P} f (xi)
+unimodal=0;

for(t=1;t ≤ T;t++) {
+ if(t%TL==1) {
+ changed=landscape modality estimation in P;
+ if(changed==0 || changed==1) unimodal++;

+ else unimodal=0;

+ }
+ if(unimodal≥Nunimodal) Nneighbor=Nlarge;

+ else Nneighbor=Nsmall;

for(each agent i in P) {
l=best agent in i’s neighborhood of size Nneighbor;

for(each dimension j) {
vi j=wvi j+c1rand1i j(x∗i j-xi j)

+c2rand2i j(x∗l j-xi j);

if(vi j>Vmax j) vi j=Vmax j;

else if(vi j<−Vmax j) vi j=−Vmax j;

xi j=xi j+vi j;

}
Evaluate xi;

if( f (xi) < f (x∗i )) {
if( f (xi) < f (x∗G)) G=i;
x∗i =xi;

}
}

}
returns x∗G as the best solution;

Fig. 1 Algorithm of LPSO.

5. Solving Optimization Problems
5.1 Test Problems and Experimental Conditions

In this study, the 13 scalable benchmark functions [12] are
solved. All functions have an optimal value 0. Some charac-
teristics are briefly summarized as follows: Functions f1 to f4 are
continuous unimodal functions. The function f5 is Rosenbrock
function which is unimodal for 2- and 3-dimensions but may have
multiple minima in high dimension cases [14]. The function f6 is
a discontinuous step function, and f7 is a noisy quartic function.
Functions f8 to f13 are multimodal functions and the number of
their local minima increases exponentially with the problem di-
mension [15].

Independent 50 runs are performed for 13 problems. The di-
mension of problems is 30 (D=30). The maximum number of
evaluations FEmax is 200,000. The parameters of PSO are se-
lected according to [16]: Number of agents N = 30, w = 0.729,
c1 = c2 = 0.729 × 2.05 = 1.49455 and Vmax j = 0.5(u j − l j). The
parameters of LPSO are: The number of sampling points M = N,
TL = 200, Nunimodal = 5, Nsmall = 5 for the lbest model and
Nlarge = N for the gbest model.

5.2 Experimental Results
The performance of three algorithms, gbest model PSO, lbest

model PSO, and LPSO are compared. Table 1 shows the exper-
imental results. The mean value and standard deviation of best
objective values over 50 runs are shown for each function. The
number of success runs, where the algorithm can find the near op-
timal value less than 10−7, is also shown. The best results among
all algorithms are highlighted using bold face fonts.

The gbest model PSO attained the best results in unimodal
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Table 1 Experimental results on standard PSOs and the proposed method. Mean value ± standard devia-
tion and the number of success runs in 50 runs are shown.

gbest model PSO lbest model PSO LPSO
f1 7.650e-118 ± 2.779e-117 [50] 3.392e-46 ± 7.533e-46 [50] 3.562e-109 ± 2.449e-108 [50]
f2 1.306e-39 ± 9.139e-39 [50] 4.722e-29 ± 3.509e-29 [0] 1.378e-38 ± 7.001e-38 [50]
f3 1.451e-13 ± 2.707e-13 [50] 1.912e+03 ± 9.675e+02 [0] 7.385e-13 ± 1.811e-12 [50]
f4 1.058e-06 ± 2.506e-06 [11] 1.496e-01 ± 8.532e-02 [0] 1.476e-06 ± 2.992e-06 [11]
f5 1.139e+01 ± 1.731e+01 [0] 7.128e+01 ± 4.073e+01 [0] 3.450e+01 ± 3.424e+01 [0]
f6 2.900e+00 ± 6.275e+00 [19] 0.000e+00 ± 0.000e+00 [50] 0.000e+00 ± 0.000e+00 [50]
f7 5.543e-03 ± 2.994e-03 [0] 1.047e-02 ± 3.555e-03 [0] 4.201e-03 ± 1.557e-03 [0]
f8 3.043e+03 ± 6.714e+02 [0] 4.394e+03 ± 5.930e+02 [0] 4.313e+03 ± 5.978e+02 [0]
f9 7.245e+01 ± 1.612e+01 [0] 1.030e+02 ± 1.701e+01 [0] 7.466e+01 ± 1.933e+01 [0]
f10 1.626e+00 ± 1.053e+00 [10] 1.581e-14 ± 4.884e-15 [50] 1.105e-14 ± 5.012e-15 [50]
f11 2.472e-02 ± 3.357e-02 [19] 3.149e-03 ± 9.259e-03 [16] 6.191e-04 ± 1.844e-03 [39]
f12 1.826e-01 ± 3.576e-01 [28] 1.135e-21 ± 7.942e-21 [50] 4.147e-03 ± 2.031e-02 [48]
f13 8.743e-02 ± 3.750e-01 [36] 1.350e-32 ± 0.000e+00 [50] 1.352e-32 ± 1.726e-34 [50]

functions f1, f2, f3 and f4. Also, the gbest model attained the
best results in multimodal functions f5, f8 and f9. It is thought
that the gbest model is suitable not only to unimodal functions
but also to functions where search points need to move a fairly
long distance such as f5 and f8. The lbest model PSO attained
the best results in multimodal functions f12 and f13, and in the
step function f6.

It is thought that LPSO will show the intermediate performance
between the gbest model and the lbest model. Nevertheless,
LPSO attained the best results in multimodal functions f10 and
f11, the step function f6 and the noisy function f7. Thus, it is
shown that dynamic selection of the gbest model and the lbest
model can attain better result than pure gbest or lbest model.

LPSO got the first and second rank among three algorithms and
did not get the worst rank in all functions. The average ranks of
the gbest model, the lbest model and LPSO are 1.85, 2.42 and
1.73, respectively. LPSO attained the best performance as for the
average rank.

The average success runs over 13 functions in the gbest model,
the lbest model and LPSO are 21.00, 20.46 and 30.62, respec-
tively. LPSO attained the best performance as for the average
success runs.

Therefore, it is thought that LPSO showed the most stable per-
formance.

6. Conclusions
It is difficult to select a proper optimization strategy, because

the proper strategy depends on the optimization problem and also
on landscape currently being searched. In this study, in order to
select a proper strategy of PSO dynamically, a dynamic selec-
tion of strategies is proposed where the gbest model is selected
in unimodal landscape and the lbest model is selected in multi-
modal landscape. Various 13 functions are solved and the results
are compared with those of the gbest and lbest models of PSO.
It was shown that the proposed method sometimes outperformed
the pure models and attained the most stable performance.

In the future, we will apply the dynamic selection of strategies
to various algorithms. Also, we will apply the dynamic selection
of algorithms such as an algorithm in unimodal landscape and
another algorithm in multimodal landscape.

Acknowledgments This research is supported in
part by Grant-in-Aid for Scientific Research (C) (No.

22510166,24500177) of Japan society for the promotion of
science and Hiroshima City University Grant for Special
Academic Research (General Studies).

References
[1] Kennedy, J. and Eberhart, R. C.: Particle Swarm Optimization, Proc.

of IEEE International Conference on Neural Networks, Vol. IV, Perth,
Australia, pp. 1942–1948 (1995).

[2] Kennedy, J. and Eberhart, R. C.: Swarm Intelligence, Morgan Kauf-
mann, San Francisco (2001).

[3] Storn, R. and Price, K.: Minimizing the Real Functions of the
ICEC’96 Contest by Differential Evolution, Proc. of the International
Conference on Evolutionary Computation, pp. 842–844 (1996).

[4] Storn, R. and Price, K.: Differential Evolution – A Simple and Effi-
cient Heuristic for Global Optimization over Continuous Spaces, Jour-
nal of Global Optimization, Vol. 11, pp. 341–359 (1997).

[5] Takahama, T. and Sakai, S.: Differential Evolution with Dynamic
Strategy and Parameter Selection by Detecting Landscape Modality,
Proc. of the 2012 IEEE Congress on Evolutionary Computation, pp.
2114–2121 (2012).

[6] Takahama, T. and Sakai, S.: Large Scale Optimization by Differen-
tial Evolution with Landscape Modality Detection and a Diversity
Archive, Proc. of the 2012 IEEE Congress on Evolutionary Compu-
tation, pp. 2842–2849 (2012).

[7] Sakai, S. and Takahama, T.: Large Scale Optimization by Adaptive
Differential Evolution with Landscape Modality Detection and a Di-
versity Archive, Journal of Business Studies, Vol. 58, No. 3, pp. 55–77
(2012).

[8] Liu, J. and Lampinen, J.: A Fuzzy Adaptive Differential Evolution
Algorithm, Soft Comput., Vol. 9, No. 6, pp. 448–462 (2005).

[9] Takahama, T. and Sakai, S.: Fuzzy C-Means Clustering and Partition
Entropy for Species-Best Strategy and Search Mode Selection in Non-
linear Optimization by Differential Evolution, Proc. of the 2011 IEEE
International Conference on Fuzzy Systems, pp. 290–297 (2011).

[10] Teo, J.: Exploring Dynamic Self-Adaptive Populations in Differential
Evolution, Soft Comput., Vol. 10, No. 8, pp. 673–686 (2006).

[11] Qin, A., Huang, V. and Suganthan, P.: Differential Evolution Algo-
rithm With Strategy Adaptation for Global Numerical Optimization,
IEEE Transactions on Evolutionary Computation, Vol. 13, No. 2, pp.
398–417 (online), DOI: 10.1109/TEVC.2008.927706 (2009).

[12] Zhang, J. and Sanderson, A. C.: JADE: Adaptive Differential Evo-
lution With Optional External Archive, IEEE Transactions on Evolu-
tionary Computation, Vol. 13, No. 5, pp. 945–958 (2009).

[13] Islam, S. M., Das, S., Ghosh, S., Roy, S. and Suganthan, P. N.:
An Adaptive Differential Evolution Algorithm With Novel Mu-
tation and Crossover Strategies for Global Numerical Optimiza-
tion, IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, Vol. 42, No. 2, pp. 482–500 (online), DOI:
10.1109/TSMCB.2011.2167966 (2012).

[14] Shang, Y.-W. and Qiu, Y.-H.: A Note on the Extended Rosenbrock
Function, Evolutionary Computation, Vol. 14, No. 1, pp. 119–126
(2006).

[15] Yao, X., Liu, Y., and Lin, G.: Evolutionary Programming Made Faster,
IEEE Transactions on Evolutionary Computation, Vol. 3, pp. 82–102
(1999).

[16] Eberhart, R. and Shi, Y.: Particle swarm optimization: developments,
applications and resources, Proceedings of the 2001 Congress on Evo-
lutionary Computation, Vol. 1, pp. 81–86 (2001).

c© 2014 Information Processing Society of Japan 4

Vol.2014-MPS-99 No.8
2014/7/21


