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Optimal arrangement of multiple small search grids for
improving protein-ligand docking
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Abstract: Glide protein-ligand docking algorithm often fails to find a correct binding mode because the search easily
falls into local minima, when the search target area widely distributes on a protein surface and a large search grid is
used. In this research, we propose a novel method to improve search efficiency in the case by dividing a large search
grid into multiple small search grids. In addition, we propose a method to minimize the number of these grids by
converting the problem into a set cover problem.

1. Introduction
The technique of protein-ligand docking aims to predict the

binding mode of a protein and a small chemical compound (lig-
and) from their three-dimensional structures. This approach is
now used in many fields, such as drug discovery and molecu-
lar biology [1] [2]. To date, various research groups from both
commercial and academic organizations have developed protein-
ligand docking software, such as AutoDock [3], GOLD [4],
FlexX [5], and Glide[6]. In particular, Glide has demonstrated
good accuracy using various benchmarks, and is recognized as
one of the best docking software applications [7] [8] [9]. How-
ever, even Glide does not always return the correct binding mode.
Therefore, an improvement in the accuracy of protein-ligand
docking is highly desirable and would have a significant positive
impact in various fields. The low prediction accuracies given by
protein-ligand docking software are often caused by two substan-
tial problems. One is the estimation of the binding free energy,
and the other is the problem of searching the whole conforma-
tional space. The former problem is caused by the coarse model
resolution and simplified potential energy function, which are in-
tended to reduce the computational cost. The latter problem is a
result of the huge number of conformations to be searched. In
particular, this problem becomes more serious if the binding site
of a target protein is unknown. This is because only a narrow re-
gion need be searched if the binding site is well known; if this is
not the case, the entire protein surface must be searched. Thus,
the conformational space search requires more computational re-
sources, and this can become a serious problem.

To tackle this, several software packages, such as Pock-
etFinder [10] and SiteMap [11], have been developed to predict
the ligand binding sites. In the standard Glide docking protocol,
multiple binding sites are predicted from the tertiary structure of a
protein using SiteMap, and then a search grid is set to cover these
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predicted binding sites. Finally, only the region within the grid
is searched in the Glide docking simulation process. However,
even using this protocol, Glide sometimes fails to find the correct
binding mode. The search easily falls into local minima if the
predicted binding sites are widely distributed across the protein’s
surface and a large search grid is used. The search algorithm of
Glide tends to intensively search narrow regions near positions
that score highly in the initial search stage, and overlook good
conformations far from such regions. Therefore, the search accu-
racy of Glide often becomes lower if a large number of binding
sites are predicted over a widespread area.

In this study, we propose a method to improve the search ef-
ficiency of protein-ligand docking when many binding sites are
predicted and the search grid is large. To avoid the problem of
local minima, we use multiple small search grids instead of one
large grid. Additionally, to minimize the number of small search
grids, we translate this arrangement into a set cover problem, and
successfully reduce the number of grids.

2. The Glide conformation search algorithm
The Glide search algorithm [6] is a four-part process that deter-

mines the conformation with the lowest binding free energy. In
the first stage, the algorithm uses simple criteria to determine can-
didate positions on the protein that are likely to bind with a ligand.
In the second stage, the algorithm arranges ligands at these points,
and calculates their binding score using a rough score function.
In the third stage, to minimize the binding free energy, the al-
gorithm optimizes the structure of the ligand by dihedral angle
rotation and rigid body transformation. In the final stage, the al-
gorithm selects the best score conformation using a precise score
function named GlideScore [6]. In particular, the second stage
consists of two different processes. The first is the calculation
of a GreedyScore, and the other is a refinement process. In the
GreedyScore calculation process, ligands are arranged at the po-
sitions selected in the first stage, and the top 5000 conformations
are selected according to their ChemScore [12]. In the refinement
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Fig. 1 (A) A grid in the Glide standard protocol (B) Grids generated by the
proposed method

process, these 5000 conformations are refined by moving the cen-
ter of the compound within ± 1Å and the top 400 conformations
are finally selected.

The number of selected conformations is a fixed parameter, re-
gardless of the size of a search grid. As a result, the algorithm
often fails to find the correct conformation when the search tar-
get area is widely distributed over the protein surface and a large
search grid is used. Of course, the parameter can be changed
manually. However, the range is limited by the interface, and it is
difficult to determine an appropriate value empirically.

3. The proposed method
Using the default Glide protein-ligand docking, the conforma-

tional search sometimes fails because of insufficient sampling. To
solve this problem, we propose a method to improve the search
efficiency by dividing a large search grid into multiple small
search grids (Figure 1). For a search grid of optimal size, the
Glide conformation search algorithm works well, even with the
default settings, and we can generally obtain accurate conforma-
tions. Thus, in our proposed method, a large search grid is di-
vided into multiple small grids, and then a conformational search
is performed for each small grid. Finally, the output of all confor-
mational searches is collated, and the final prediction results are
selected according to the GlideScore.

Our proposed method has the clear disadvantage that the com-
putational cost increases in proportion to the number of search
grids, meaning that the cost of our method is larger than that of
a standard protocol. To reduce this harmful influence, we also
propose a grid arrangement method to minimize the number of
search grids. We convert this grid arrangement problem into a set
cover problem [13]. In the set cover problem, given a table set U
made of n elements, a subset group of U expressed as S={S 1,S 2,
... ,S l}, and a cost function c : S → Q+ (Q+ is a set of positive
rational numbers), we must identify the subset of S covering all
elements of U with the lowest cost. In our optimal grid arrange-
ment problem, we use the site-points obtained by SiteMap as the
table set, and the site-points included on a grid whose center is
one of the elements of the table set is the subset group. The cost
is the number of elements of the table set included in each grid.
In this way, we can convert the grid arrangement problem into
a set cover problem. We use an approximate algorithm to solve
this, because the set cover problem is known to be NP-hard [14].
The algorithm consists of seven steps: (i) Input the site-points
obtained by SiteMap and (ii) prepare the empty set C. Next, (iii)

Fig. 2 Algorithm of the proposed method

Fig. 3 Example 2D grid arrangement given by the proposed method

select the highest-cost grid G and (iv) add the center of grid G to
C. After that, (v) remove all of the site-points included in grid
G, and (vi) repeat (iii)–(v) until S is empty. Finally, (vii) use the
site-points in C as the centers of grids in the dispersion setting.
Figure 2 shows the pseudo-code of this algorithm. The computa-
tional complexity is O(n3), where n is the number of elements in
the table set.

Figure 3 shows the behavior of the algorithm on a two-
dimensional space. Both white and black dots represent site-
points, and are elements of the table set. The black dots are se-
lected as the center of a search grid by the proposed method, and
squares represent each search grid. All of the dots are included
in the union of these grids. In particular, the algorithm minimizes
the number of grids. In this case, the algorithm successfully cov-
ers 30 dots with only 11 grids.

We implemented the proposed method by altering the
XGlide.py python script in the Glide cross docking [15].

4. Evaluation experiment
In this experiment, we confirm that the proposed method has

better search efficiency than the Glide standard protocol under its
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default settings. We use the docking score and computation time
to evaluate the search efficiency. We also compare the efficiency
of the proposed method to that of the Glide standard protocol un-
der the “heavier” setting, which makes the conformation search
more onerous but more accurate. This is because a direct compar-
ison of the proposed method and standard protocol with default
settings is difficult, as the proposed method has a greater inherent
computational complexity.

4.1 Dataset
We used a protein-ligand complex dataset called CCDC/Astex

[16]. Because of limitations in computational power and the num-
ber of Glide software licenses, we randomly selected the follow-
ing 20 proteins that did not cause errors in the docking process:
1A4G, 1AJ7, 1B9V, 1DBB, 1EJN, 1FAX, 1FKG, 1HDC, 1IBG,
1MMQ, 1QBR, 1RNE, 1TPH, 1XKB, 2DBL, 2H4N, 2TMN,
2TPI, 3ERD, 7CPA (complex structures 1GPY, 1RT2, and 4CTS
were selected at first, but these were replaced by 1EJN, 1FAX,
and 2TMN because of such errors). Before applying the docking
calculation, the protein-ligand complexes were divided into a pro-
tein and a ligand using the Maestro software (Schrodinger, Inc.).
The protein structure was optimized by the “Protein Preparation
Wizard” within Maestro. This process includes five functions:
“Remove cofactors”, “Preprocess”, “Optimize”, “Remove wa-
ters”, and “Minimize”. The potential ligand conformations were
generated by the “LigPrep” and “Epik” functions of Maestro.

4.2 Protocol to generate conformation search grids
The conformation search area for the docking simulations is

determined based on the results of SiteMap. The SiteMap soft-
ware predicts potential binding sites based on the protein’s struc-
tural characteristics. In this experiment, we used SiteMap’s de-
fault parameters and settings, except for the number of max re-
ports, which was changed from 5 to 10 because the default value
is too small for larger proteins.

Search grids were generated by the “Glide Grid Generation”
function of Maestro. In the standard protocol, a search grid is lo-
cated on the centroid of the site-points obtained by SiteMap. The
edge size of the INNERBOX (the center of a ligand is restricted
to this box through the docking process) is given by the ligand
diameter, and the edge size of the OUTERBOX (all atoms of a
ligand are restricted to this box) is set to the INNERBOX edge
size + 16Å. In the proposed method, search grids are arranged
at each of the selected site-points by our grid arrangement algo-
rithm. The edge size of the INNERBOX and OUTERBOX are
fixed to 10Å and 26Å, respectively. Therefore, the search grids
generated by the proposed method are different from those in the
Glide standard protocol. However, both methods satisfy the con-
dition that all site-points given by SiteMap are included in any
grid.

4.3 Protein-ligand docking using Glide
The docking results are highly dependent on the initial pose of

the ligand. Thus, before the docking simulation, a sufficient num-
ber of initial ligand conformations were generated using “Lig-
Prep” with its default settings. The protein-ligand dockings were

performed using the “Ligand Docking” Glide function with de-
fault settings. Glide has two prediction modes, standard preci-
sion (SP) and extended precision (XP). Compared with SP mode,
XP is slower but more accurate. In consideration of the com-
putational cost, we used SP to predict the binding mode in this
experiment.

As mentioned above, a direct comparison of the efficiency of
the proposed method with that of the standard protocol under the
default settings is difficult. Thus, we used the “heavier” setting
in the standard protocol to enable a reasonable comparison. It
is possible to improve the conformation search by increasing the
number of searches, although this entails a heavier calculation.
Under the heavier setting, the standard protocol forms one grid,
as for the default setting. Therefore, we implemented the stan-
dard protocol with this heavier setting, and increased the number
of conformation searches to that of the proposed method.

4.4 Results of the evaluation experiment
Table 4.4 shows the docking scores, root mean square deviation

(RMSD), and execution time for the proposed method and stan-
dard protocol with the default and heavier settings. The docking
score is essentially the same as GlideScore, but is compensated by
Epik state penalties [19]. Conformation searches are performed
using GlideScore in the docking process, but the final output of
Glide is a docking score. Therefore, we used the docking score as
an evaluation metric in this experiment. This score represents the
binding energy between a protein and a ligand, and so smaller val-
ues are better. The “Score” column shows the value of the lowest
docking score. We also show the RMSD of all atoms superposed
by a protein between the conformation of the crystal structure
and the conformation of the complex with the best docking score.
RMSD is often used to evaluate the accuracy of dockings. How-
ever, we did not use RMSD to measure the conformational search
performance, because in many cases a better docking score has a
larger RMSD. This is because the RMSD is highly dependent
on the scoring function as well as the search performance. There-
fore, we only used the docking score to evaluate the conformation
search performance in this work.

From the results in Table 4.4, we can see that the proposed
method exhibits the best search performance of the three meth-
ods considered. In addition, the docking score of the proposed
method is better than that of the standard protocol with default
settings for 15/20 complexes, and outperforms the standard pro-
tocol with the heavier setting in 13/20 cases.

The execution time of each method is shown in the “Time”
column. This includes the time required by the proposed method
to determine the optimal grid arrangement, as this is trivial com-
pared with the overall execution time. From Table 4.4, we can see
that the execution time of the proposed method is approximately
twice that of the standard protocol with default settings. How-
ever, the proposed method is approximately 15% faster than the
standard protocol with the heavier setting.

5. Conclusion
In this study, we aimed to improve the conformation search of

protein-ligand docking by avoiding local minima in large search
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Table 1: Performance comparison of three methods
Standard (default) Proposed Standard (heavier)

PDB
Score

[kcal/mol]
RMSD

[Å]
time
[sec]

Score
[kcal/mol]

RMSD
[Å]

time
[sec]

Score
[kcal/mol]

RMSD
[Å]

time
[sec]

1A4G -7.34 23.9 5783 -8.08 23.5 9527 -7.34 23.6 25426
1AJ7 -7.33 1.8 1413 -8.02 2.3 2856 -7.71 2.2 1734
1B9V -6.16 22.9 721 -7.15 23.6 1626 -5.43 23.7 997
1DBB -8.74 0.5 1244 -9.13 0.5 2671 -8.73 0.5 1418
1EJN -6.77 12.3 502 -8.84 1.0 712 -7.60 1.1 632
1FAX -8.47 8.7 727 -8.78 11.1 1117 -9.16 4.4 1521
1FKG -7.76 1.6 128 -6.81 5.1 120 -7.76 1.6 130
1HDC -8.07 6.1 956 -7.96 6.1 2443 -8.05 6.1 1550
1IBG -8.66 2.3 6705 -8.84 1.2 15601 -8.66 2.3 27230
1MMQ -8.15 9.5 185 -7.58 9.7 310 -8.24 1.5 233
1QBR -8.39 10.5 1108 -8.39 11.6 1427 -11.23 1.8 1278
1RNE -13.64 1.5 43850 -15.57 0.6 75126 -13.64 1.5 68986
1TPH -6.48 1.1 315 -6.26 1.2 460 -6.48 1.1 363
1XKB -7.78 9.0 923 -11.52 2.1 1621 -11.51 2.0 1528
2DBL -8.67 1.1 2082 -9.02 1.1 4682 -8.67 1.1 5865
2H4N -5.02 6.3 526 -5.32 15.7 728 -5.03 6.3 809
2TMN -5.23 2.6 469 -5.66 3.1 636 -5.97 4.2 664
2YPI -8.16 0.8 513 -7.90 3.7 1083 -7.99 1.0 632
3ERD -9.87 0.5 541 -9.95 0.6 804 -9.87 0.5 630
7CPA -8.21 4.5 953 -9.21 4.5 1698 -8.71 4.2 1691
Average -7.95 6.4 3482 -8.50 6.4 6262 -8.39 4.5 7166

areas. Thus, we proposed a method to improve the search ef-
ficiency by dividing one large search gird into multiple small
search grids. In addition, we developed a technique that mini-
mizes the number of such grids by converting the problem into a
set cover problem. The results of an evaluation experiment show
that the proposed method improves the docking score relative to
the standard protocol. Unfortunately, however, statistical tests did
not show a clear improvement over the standard protocol with the
heavier setting. The computational cost of the proposed method
was lower than that of the standard protocol with the heavier set-
ting, which indicates that our method has better search efficiency
than the standard protocol. In this research, the standard proto-
col with the heavier setting predicts the binding mode of a crystal
structure better than the proposed method. We think this is due
to the inaccuracy of the docking score. Thus, in future work, we
will investigate the relationship between the docking score and
the RMSD, and refine the score function to improve conforma-
tional searches.
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