
IPSJ SIG Technical Report

 1

A Tool for Suggesting Similar Program

Element Modifications

YUJIANG YANG
†1 KAZUNORI SAKAMOTO

†2

HIRONORI WASHIZAKI
†1 YOSHIAKI FUKAZAWA

†1

Many programming tasks require programmers to modify similar program elements continuously. It will take some time to find

out the next element to be modified without missing the necessary modifications, and it is too much hassle to select the text to

change each similar element. To improve these problems, we extracted all possible matched elements by using the similarity

patterns from recently modified elements. The sub syntax tree comparison is employed to extract similarity patterns. As a tool,

SimilarHighlight can give programmers some suggests that program elements are similar to the last selected elements and might

be modified at the next modifications. The elements will be highlighted and the text of the next element can be selected immedi-

ately for modify by shortcut keys. In addition, the tool supports C#, Java, C, JavaScript and other languages in future.

1. Introduction

 As we know, programming is a challenging job that often

requires programmers to write a lot of code by keyboard typing.

As the minimal keystrokes are used to measure the minimal

number of key presses the user has to make in order to accom-

plish a specific typing task [1], a programming task has minimal

keystrokes when programmer has a clear goal. A user study

found 30% reduction in time usage and 41% reduction of key-

strokes over conventional code completion [2]. The program-

ming effort will be reduced if we decrease the minimal key-

strokes, therefore, the programming productivity should in-

crease.

Programmers are often faced with programming tasks that

they have to do many similar operations continuously. For ex-

ample, ten local variables need to be initialized in the method, or

an array must be initialized by explicitly setting ten elements,

which is more representative when in a switch block that each

case block call a logical method and an output method, but the

parameters are different like List 1, etc. For these specific tasks,

some programmers will type all of the code by hand, but the

others maybe accomplish these tasks by using the Copy-Paste

method [3] like the following: 1) Type a representative part of

all code. 2) Copy the part code, and paste them to reach the

amount of code. 3) Modify the elements as expected to accom-

plish the task.

Similar code is generally considered as one of factors that

make software maintenance more difficult [4, 5]. If developers

modify one of similar code fragments, they have to determine

whether or not to apply the same modification to the others.

Furthermore, similar code fragments sometimes involve similar

defects caused by the same mistake [6].

Similar code is also called code clone. Software analysis,

maintenance and reengineering could often benefit from per-

forming clone detection [7, 8]. Several tools address the prob-

lem of identifying software clones that come from copy-paste

modifications [9] and some approaches support developers in

modification tasks that affect different source code locations by

automatically eliciting past changes [10]. However, there is no

 †1 Waseda University

 †2 National Institute of Informatics

tool to help developers reduce their minimal keystrokes in the

modifications of similar code.

To increase the programming productivity, we propose an ap-

proach to extract the similarity pattern from recently modified

elements, and to extract all possible matched elements as modi-

fication suggestions for programmers. As syntax highlighting

also helps programmers find errors in their program. The

matched elements are highlighted and the next element can be

selected by shortcut keys. Finally, a visual studio extension is

developed to evaluate the approach and implement it to help

programmers increase their programming productivity.

switch (intSelector)

{
 case 111: // Pattern 2

 this.GetMultiply(local_int_1, strNum[intSelector]);

 Console.WriteLine("The first case."); // Pattern 1
 break;

 case 222:
 this.GetMultiply(local_int_2, strNum[intSelector]);

 Console.WriteLine("The second case.");

 break;
 case 333:

 this.GetMultiply(local_int_3, strNum[intSelector]);

 Console.WriteLine("The third case.");
 break;

}

 List 1. An example of the switch block in C#

The contributions of this paper are as follows:

 Proposal of an approach to extract the similar elements by

analyzing recently modified elements.

 SimilarHighlight, a tool for suggesting program elements

might be modified at the next modifications.

 An evaluation of SimilarHighlight to show that our tool

can help programmers increase their programming produc-

tivity.

SimilarHighlight is released as open source software on

https://github.com/youfbi008/SimilarHighlight/. And the tool

has been published on Visual Studio Gallery

http://goo.gl/KqtTvY.

The remainder of this paper is organized as follows. First, we

provide a motivating example to explain our work in Section 2.

In Section 3, we describe our proposed approach and tool, Sim-

ⓒ 2014 Information Processing Society of Japan

Vol.2014-SE-185 No.20
2014/7/11

IPSJ SIG Technical Report

 2

ilarHighlight. And the functions of the tool are described more

detail in Section 4. Then we discuss our evaluation in Section 5

and discuss related work in Section 6. Finally, we provide a

conclusion and future works in Section 7.

2. Motivating example

In this section, some examples are taken to demonstrate our

approach and tool. The example of List 1 is very appropriate to

demonstrate them in practice, which shows a switch block and

at least three case blocks. And each case block consist of two

methods: a member method with two parameters and a system

output method.

The Copy-Paste method as mentioned above are generally

used to accomplish this programming task. That is need to type

the code of the first case, and copy the first case and pastes it

multiple times. Then, the elements just need to be modified,

which should be modified namely the numbers behind of the

case keywords, the first parameters of the GetMultiply methods,

and the parameters of the Console.WriteLine methods. They are

not complicated for programmers, as good keyboard operators

to use the Copy-Paste method. The more similar operations will

be done, the higher efficiency will be obtained by the

Copy-Paste method.

In this study, the third step of the Copy-Paste method will be

paid attention to, and it is similar to some modification tasks

that often occur in software maintenance and reengineering in

practice. It is generally known that the element could be a local

variable, a parameter to a method and even an expression or a

program block consisting of multiple elements, etc. The pro-

gram elements have similar positions in similar code fragments

are defined as similar program elements.

 The representative patterns of similar program elements are as

follows: 1) parameters of methods and 2) case values of a switch,

which can be found in List 1. In addition, the example in List 2

shows the other representative patterns such as 3) array elements,

4) local variable names or values, 5) method names. To modify

the similar elements continuously, programmers generally have

to select the whole text of each element and type the new text

sequentially. Next, the select operations will be discussed in

detail [11].

void function_A(int a, int b)
{

 string[] strNum = new string[] {

 "one", "two", "three", "four", "five", "six", "seven", "eight",
"nine",

 }; // Pattern 3

}

void function_B() // Pattern 5

{
 int local_int_C = 111; // Pattern 4

 string local_String_D = "Hello world";

}

 List 2. An example of modification patterns in C#

A mouse person who usually selects something by using

mouse in programming often has two methods to select text:

double-click and click-and-drag. However, the double-click

method can’t select the whole parameter text, because it just can

select a word. So programmers have to click and drag the mouse

over the whole text to accomplish the select operation.

A keyboard person who usually selects something by using

keyboard especially the shortcut keys often has two methods to

select text too: [Shift]+arrow and [Ctrl]+[Shift]+[Right arrow] |

[Left arrow]. The latter method can select from the current posi-

tion to the right or left of the current word, so it almost just need

the arrow key to be pressed 3 times than the former to select the

whole text such as "The first case." text.

It will be convenient by using the mouse and keyboard effec-

tively. However, some appropriate subjects should be debated

namely when the similar program elements need to be modified

are very many, maybe they are scattered in the source file. It will

take some time to find out the next element needs to be modified,

and prevent missing the modifications necessary. Furthermore, it

is too much hassle to select the text of each element need to be

modified continuously.

We conducted an experiment about keyboard person to de-

scribe these problems. Nine similar elements in each pattern are

expected to rewrite the text continuously. To present the propor-

tion of the keystrokes for selecting texts and moving in the en-

tire task, the minimal keystrokes of them are counted separately

and the percentage are showed in Table 1.

Pattern 1 2 3 4 5

All keystrokes 203 68 78 160 150

Selecting and moving 68 41 42 56 60

Percentage 33% 60% 54% 35% 40%

Table 1. The minimal keystrokes comparison of

non-tool-using

As the table shows, the minimal keystrokes for selecting texts

and moving are at least 33% of the all keystrokes, while it is

60% when the each text to be changed is shorter. Furthermore,

when the distance between each element is longer, the keystro-

kes for moving will be in increased. So the cost of the keystro-

kes for selecting texts and moving are should not be neglected in

programming. To increase the programming productivity, the

keystrokes are expected to be reduced.

Pattern 1 2 3 4 5

All keystrokes (tool-using) 154 40 49 121 106

Selecting and moving

(tool-using)

19 13 13 17 16

Selecting and moving (non-tool) 68 41 42 56 60

Percentage of non-tool-using 28% 32% 31% 30% 27%

Table 2. The minimal keystrokes comparison of tool-using

Table 2 shows the minimal keystrokes comparison by using

SimilarHighlight and the percentage of non-tool-using. Almost

70% of the minimal keystrokes for selecting texts and moving

are reduced by using our tool. SimilarHighlight will extract all

similar elements of first two modified elements and highlight

them. The cursor can be move to the next similar element by

shortcut keys immediately, and the whole text of it will be se-

lected to modify easily. Therefore, the longer distance between

each element is, the higher productivity will be obtained.

ⓒ 2014 Information Processing Society of Japan

Vol.2014-SE-185 No.20
2014/7/11

IPSJ SIG Technical Report

 3

3. SimilarHighlight: a tool to increase pro-

gramming productivity

An approach is proposed to help programmers increase their

programming productivity by SimilarHighlight. It can give pro-

grammers some suggests that program elements are similar to

the last selected elements and might be modified at the next

modifications. The elements will be highlighted and the text of

the next element can be selected immediately for easy modify it

by shortcut keys.

Fig. 1. Overview of SimilarHighlight

The main steps of SimilarHighlight are summarized in Figure

1. A source code file is first parsed into a concrete syntax tree

(CST) [12] similar to the XML DOM by Code2Xml library [13].

A program element can be represented as a single node or a

subtree in this tree. And two different elements of last selected

elements will be compared to extract the common node set as

the similarity pattern. In addition, candidate node types will be

extracted to find out the candidate nodes corresponding to ele-

ments. Next, each of the candidate nodes will be compared with

the similarity pattern to check whether it is matched. Finally,

SimilarHighlight will highlight the all matched elements to pre-

sent them to programmers.

3.1 Parsing a source file to concrete syntax tree

The source code of a source file is called a compilation unit in

C# and JAVA, etc. A compilation unit normally contains a single

class definition. The compilation unit is parsed into a CST by

Code2Xml library. Code2Xml is a set of parsers for in-

ter-converting between source code and xml supporting multiple

programming languages. Due to Code2Xml, SimilarHighlight

supports C, C# JAVA, JavaScript, and other languages in future.

<statement id="1096">

 <expression_statement id="1063">

 <primary_expression id="210">

 <primary_expression_start id="232">

 <identifier id="241">

 <IDENTIFIER id="set1277">

 <TOKEN id="set1277" startline="86" startpos="20" endline="86"

endpos="27">Console</TOKEN>

 </IDENTIFIER>

 </identifier>

 </primary_expression_start>

 <primary_expression_part id="233">

 <access_identifier id="256">

 <access_operator id="268">

 <DOT id="set278">

 <TOKEN id="set278" …>.</TOKEN>

 </DOT>

 </access_operator>

 <identifier id="269">

 <IDENTIFIER id="set1277">

 <TOKEN id="set1277" startline="86" startpos="28" end-

line="86" endpos="37">WriteLine</TOKEN>

 </IDENTIFIER>

 </identifier>

 </access_identifier>

 <brackets_or_arguments id="257">

 <arguments id="276">

 <TOKENS id="char_literal279">

 <TOKEN id="char_literal279" …>(</TOKEN>

 </TOKENS>

 <argument_list id="280">

 <STRINGLITERAL id="set1275">

 <TOKEN id="set1275" startline="86" startpos="38" end-

line="86" endpos="55">"The first case."</TOKEN>

 </STRINGLITERAL>

 </argument_list>

 <RPAREN id="char_literal281">

 <TOKEN id="char_literal281" …>)</TOKEN>

 </RPAREN>

 </arguments>

 </brackets_or_arguments>

 </primary_expression_part>

 </primary_expression>

 <SEMI id="char_literal1133">

 <TOKEN id="char_literal1133" …>;</TOKEN>

 </SEMI>

 </expression_statement>

</statement>

List 3. Omitted xml text of syntax tree represent an example:

Console.WriteLine("The first case.");

Each program element has node type and position information.

To present the parsed xml is easy to understand, that an omitted

xml texts of subtree of the example: Console.WriteLine("The

first case.");, which is presented in List 3. The complete xml

text is triple of it in practice. The main elements in the expres-

sion are presented in bold. In this approach, the effective node

type to extract the candidates is the node type of the outmost

node which is ancestor node of a node and hasn’t other direct

children node. It can be found that the effective node type of the

Console element is primary_expression_start, while the effec-

tive node type of "The first case." is argument_list.

In the example of List 1, when the parameter texts of Con-

sole.WriteLine in the first two case blocks, which are “The first

case.” and “The second case.” are selected successively by using

the mouse or keyboard, the corresponding nodes of the element

are need to be found in the CST firstly. Then, the two subtrees

will be compared to extract the common nodes. Figure 2 and 3

show a subtree of each element in the CST respectively.

Though some nodes are omitted, it is not difficult to under-

Source code file

Visual studio IDE

1

2

4

3

5 6 7

Concrete syntax tree (XML)

2

4

3

5 6 7

Two subtrees of two

program elements

Common node set

Comparison

The set of candidate

nodes of elements

The set of matched

elements

Comparison with

Source code parser

Code2Xml DLL

Candidate

Highlight the matches

node types

each element

ⓒ 2014 Information Processing Society of Japan

Vol.2014-SE-185 No.20
2014/7/11

IPSJ SIG Technical Report

 4

stand the structures and the position of each element, which is

very obvious that those nodes in black frame are the same as the

other subtree. The different nodes are just presented in red frame,

and they have the same node type which is argument_list.

Fig. 2. A subtree of an example:

Console.WriteLine("The first case.");

Fig. 3. A subtree of an example:

Console.WriteLine("The second case.");

3.2 Extracting the similarity pattern

As mentioned above, SimilarHighlight will compare the sub-

trees of two elements. It is very important to get valid subtree of

each node corresponding to element, consisting of surrounding

nodes: ancestor nodes, sibling nodes and descendant nodes. A

data set of surrounding nodes of each node from parsed CST

data will be extracted. The omitted data sets are presented like

List 4 and 5. The numbers in the left are the index of data’s in

the data sets. As the index number is not consecutive, too many

data are omitted to understand the relationship between the List

3 and List 4. Each data of the data set in List 4 is composed of

the nodes type and nodes id and token text. Firstly, a traversal

from the outmost node to token is presented as the data from the

index 0 to 22.

Next, two methods will be used to find other surrounding

nodes including: finding child nodes of all new nodes which are

considered in other methods and finding sibling nodes of the

direct parent node. And the methods will be used several times

to collect more data to find similar elements more accurately.

The program element texts in the expression can be found in

bold. The common data of two data sets is the data set except

the data of the index 24 and others omitted, and the number of

common data is 52 in practice. It is obvious that the subtrees of

two elements have the common nodes and the common data set

instead of the common nodes are defined as the similarity pat-

tern.

3.3 Extracting all possible matched elements

 To ensure a high running performance, we can’t traverse each

program element in the file to judge whether it is a similar ele-

ment. Lucky, the candidates can be extracted by using the effec-

tive node types of CST as mentioned above (3.1). In the exam-

ple, they are both argument_list. All elements that the effective

node type is argument_list will be extracted as candidate ele-

ments and each of them will be compared with the similarity

pattern. Then if they have the common data and the number of

the common data is bigger than a threshold set before, the ele-

ment will be seen as a valid match, in other words it is a similar

element.

4. A visual studio extension

This approach is implemented in a visual studio extension

called SimilarHighlight to evaluate the approach and implement

it to help programmers increase their programming productivity.

The main functions of the SimilarHighlight are as follows:

1) Highlight all the similar elements of last selected ele-

ments.

2) The previous or next similar element can be found by

shortcut keys immediately, and the whole text of it will be

selected to modify easily.

3) A margin will be added on the right side of the visual

studio editor to offer relative position marks about similar

elements.

4) A pane named “Similar” will be added into the output

window, to offer more information about similar ele-

ments.

5) Some settings are provided to customize the tool, includ-

ing enable or disable the functions, and similarity level

which can change the threshold to increase or reduce the

scope of similar elements.

 Fig. 4. The running result of SimilarHighlight

expression_statement

primary_expression_start primary_expression_part

access_identifier brackets_or_arguments

argument_list

"The first case."

identifier

Console

WriteLine

DOT Identifier
(

SEMI

)

;

.

expression_statement

primary_expression_start primary_expression_part

access_identifier brackets_or_arguments

argument_list

"The second case."

identifier

Console

WriteLine

DOT Identifier
(

SEMI

)

;

.

ⓒ 2014 Information Processing Society of Japan

Vol.2014-SE-185 No.20
2014/7/11

IPSJ SIG Technical Report

 5

 To present the functions of the tool, the running result of a

more complicated example than the motivating example like

Figure 4 is shown. In the parameter texts of Console.WriteLine

in the first two case blocks: first and second the two words are

selected successively by using the mouse or keyboard. It is very

obvious that the similar elements look like being highlighted.

Though the whole text in the token has the double quotations

like "The first case." not The first case, to modify quickly in

the next operation, the double quotations will be ignored. The

current cursor is located in the second case block whose back-

ground color is deeper than others. It can be found out the next

similar element by pressing Ctrl + Alt + Right Arrow, and the

cursor will be changed to the next element, then the text of it

can be modified immediately. As the results, many select and

move operations will become unnecessary, and the minimal

keystrokes are reduced.

Furthermore, another technique is worth mentioning that is to

click a mark by left mouse button in the right margin, then the

corresponding element of that mark will be selected, which is

helpful to find an element jump some elements quickly. An ad-

ditional function is that the “Similar” output window is used to

offer selected element information and similar element infor-

mation involves text and similarity in order. The similarity is the

count of common data with similarity pattern. In this example,

the max similarity is 52, while the similarity of the element in

fifth case block is just 45, which is higher than the threshold is

set before. In addition, though the part text of the element is

selected by the mouse or keyboard, the element can be found

exactly, if the source code in the file hasn’t a serious format

error.

5. Evaluation

To assess the effectiveness of this approach and SimilarHigh-

light, we conducted a set of experiments and compared the re-

sults against conventional methods. Specifically, it is necessary

to investigate the following research questions:

RQ1: How can this tool to increase the programming produc-

tivity?

RQ2: Whether the tool is running smoothly?

5.1 Experiment 1

 To investigate RQ1, the tool is used to accomplish some pro-

gramming task in practice. An extreme example which consists

of ten case blocks in a switch block like Figure 4 showed will be

tested. (https://github.com/youfbi008/SimilarHiglight/bl-

ob/master/SimilarHighlight.Tests/SimilarityTest1.cs) As men-

tioned above, the third step of the Copy-Paste method that mod-

ifies the elements as expected to accomplish the task will be

considered in this experiment.

 non-tool-using tool-using

Time-

cost

Key-

strokes

Mouse

clicks

Time-

cost

Key-

strokes

Mouse

clicks

keyboard

person
3min13s 540 4 2min5s 330 4

mouse person 2min26s 186 87 2min 260 16

Table 3. The running results in the extreme example

Table 3 show the time-cost, the keystrokes and the mouse

clicks to present the programming productivity in

non-tool-using and tool-using. It is obvious that using the tool

can reduce 1/3 time-cost and keystrokes for a keyboard person

in this example.

Therefore, a higher programming productivity can be ob-

tained by using the tool especially for a keyboard person.

5.2 Experiment 2

The running performance about the tool will be considered

because the line number of source code file the parsed xml text

become too long with the line number of source code file, and

the candidates are too many in some times.

To investigate RQ2, The average running time is measured in

three selection patterns as follows:

Pattern 1: parameter texts of two methods are selected.

Pattern 2: names of two local variables are selected.

Pattern 3: names of two methods are selected.

 Pattern 1 Pattern 2 Pattern 3

File Name SLOC Count ART Count ART Count ART

CstInferrer 358 35 103ms 27 145ms 5 127ms

Line500 500 60 80ms 80 129ms 60 160ms

Line1000 1000 121 133ms 159 200ms 121 303ms

HLTextTagger 1053 85 150ms 94 163ms 17 268ms

Line5000 5000 605 351ms 795 845ms 605 1003ms

Table 4. The running results as the three patterns.

Table 4 shows the running results of selecting elements as the

three patterns by using the tool.

(https://github.com/youfbi008/SimilarHighlight) In this table,

the names of test files and the source lines of code (SLOC) of

the file, and the number of similar elements (Count), and aver-

age running time (ART) are showed to present the running per-

formance of the tool.

As the table shows, these source files which SLOC is less

than 5000 can be ran in 1 second. And the elements are high-

lighted earlier than Reference Highlighting of visual studio in

practice [14], so programmers almost don’t need wait the ele-

ment be highlighted and continue the next operations. Further-

more, it is running by background thread.

Therefore, SimilarHighlight can run smoothly not to interrupt

programmers continue the operations.

6. Related works

Nguyen presents an AST-based incremental approach that

computes characteristic vectors for all subtrees of the AST for a

file [15].

Murakami is conducting challenging research on automated

code change and propose a technique to predict what kinds of

program elements are deleted and added in the next change on

Java methods [16].

Bruch propose intelligent code completion systems that learn

from existing code repositories by searching for code snippets

[17], and provide confidence values of the recommendations to

default code completion widget.

ⓒ 2014 Information Processing Society of Japan

Vol.2014-SE-185 No.20
2014/7/11

IPSJ SIG Technical Report

 6

7. Summary and future works

In this paper, we elucidated the problems in existing testing

methods through motivating examples. We proposed an ap-

proach and developed a tool called SimilarHighlight to improve

the problems. SimilarHighlight that suggests which program

elements are similar to the last selected elements and might be

modified at the next modifications. The elements will be high-

lighted and the text to be changed of the next element can be

selected immediately by shortcut keys. Moreover, we evaluated

the effectiveness of SimilarHighlight in empirical experiments.

As we presented, the tool can be used in programming task

and modification task to increase the programming productivity.

Furthermore, source code review is peer review of source code

of computer programs. It is intended to find and fix defects

overlooked in early development phases, improving overall code

quality [18]. In our tool, the highlighting about similar elements

can help reviewers find them easily, especially about the con-

sistency checking.

In the future, we will improve our approach as follows.

1) Improve the running performance when the source lines

of code are more than 5000.

2) Improve the precision to match the similar elements more

effectively.

3) Support more programming languages.

4) Extract more patterns from programming habits

Reference
1) Huizhong Duan and Bo-June (Paul) Hsu. Online spelling correction

for query completion. In Proceedings of the 20th international confer-

ence on World wide web, WWW '11, pages 117-126, New York, NY,

USA, 2011, ACM.

2) S. Han, D. R. Wallace, and R. C. Miller, “Code completion from

abbreviated input,” in Proceedings, ASE. IEEE Computer Society, 2009,

pp. 332–343.

3) M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study

of copy and paste programming practices in OOPL. In Proc. of ISESE

2004, pages 83–92, 2004.

4) I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier. Clone

detection using abstract syntax trees. In Proc. of ICSM ’98, pages

368–377, 1998.

5) T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic

token-based code clone detection system for large scale source code.

IEEE Trans. Softw. Eng., 28(7):654–670, 2002.

6) B. Lagu ë, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl.

Assessing the benefits of incorporating function clone detection in a

development process. In Proc. of ICSM ’97, pages 314–321, 1997.

7) Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of

semantic clones. In ICSE '08, pages 321{330, New York, NY, USA,

2008. ACM.

8) Elizabeth Burd and John Bailey. Evaluating clone detection tools for

use during preventative maintenance. In SCAM, Montreal, October

2002. IEEE-CS.

9) Stefan Bellon , Rainer Koschke , Giulio Antoniol , Jens Krinke ,

Ettore Merlo, Comparison and Evaluation of Clone Detection Tools,

IEEE Transactions on Software Engineering, v.33 n.9, p.577-591, Sep-

tember 2007.

10) A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, "Predicting

source code changes by mining change history," IEEE Trans. Softw.

Eng., vol. 30, no. 9, pp. 574-586, 2004.

11) 15 ways to select text in a Word document,

http://www.techrepublic.com/blog/microsoft-office/15-ways-to-select-te

xt-in-a-word-document/

12) Parse tree, http://en.wikipedia.org/wiki/Parse_tree

13) Code2Xml, https://github.com/exKAZUu/Code2Xml

14) Microsoft: How to: Use Reference Highlighting,

http://msdn.microsoft.com/en-us/library/vstudio/ee349251(v=vs.100).as

px

15) T. T. Nguyen, H. A. Nguyen, J. M. Al-Kofahi, N. H. Pham, and T.

N. Nguyen, "Scalable and incremental clone detection for evolving

software," ICSM'09, 2009.

16) H. Murakami, K. Hotta, Y. Higo and S. Kusumoto. Towards Au-

tomated Code Evolution. IEICE technical report, Vol. 113 No. 422. pp.

107-112, Jan 2014.

17) M. Bruch, M. Monperrus, and M. Mezini. Learning from examples

to improve code completion systems. In Proceegings of FSE, pages

213–222, Amsterdam, The Netherlands, 2009. ACM.

18) Uwano, H., Nakamura, M., Monden, A., and Matsumoto, K., "An-

alyzing individual performance of source code review using reviewers'

eye movement", in Proceedings of 2006 symposium on Eye tracking

research & applications (ETRA), San Diego, California, 2006, pp.

133-140.

ⓒ 2014 Information Processing Society of Japan

Vol.2014-SE-185 No.20
2014/7/11

