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Towards HMM Parameter Estimation
with Differential Privacy

Nut Sornchumni1,a) Kenji Hashimoto2,b) Hiroyuki Seki2,c)

Abstract: In this work, we study an application of differential privacy to stateful data mining, specifically the parame-
ter estimation of hidden Markov models (HMM). In the differential privacy framework, the computation on two similar
datasets is required not to be significantly different from each other, that is, the computation should be insensitive to
the presence or absence of a single individual data record, thus, preserving the privacy. In this study, we investigate an
HMM parameter estimation algorithm that makes the counts calculated by the algorithm differentially private. Finally,
we will show the performance evaluation and the trade-off between privacy protection and model precision.
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1. Introduction
Privacy concerning issues have been recently emerging as an

active discussion [12] in security research field in addition to
system protection using conventional cryptographic approaches.
As a data-miner, one would want to derive useful information or
trend that can improve the system, community and even human
world. On the contrary, individuals who provided the data may
concern about the usage of the data and the information leakage.

Conventional approaches to protecting the privacy of the indi-
viduals are anonymization or de-identification, which are proven
to be insufficient [10]. Differential privacy [3] is a recently pro-
posed mathematical model for adequately defining the privacy of
the individuals participating in a statistical database. The frame-
work, as opposed to traditional cryptographic definition, captures
increased risk of the private data leakage from a specific database.
That is to say, the framework measures relative information leak-
age by computation on data in the database.

Although differential privacy framework was just recently pro-
posed, the strength of the framework made it actively discussed
and evolving continuously [4,8,11] including integration into big
data processing such as the map-reduce framework.

Many investigations are made regarding data mining under the
framework [1,6,7]. However, most of the discussions investigated
stateless algorithms, such as k-means and decision tree classifier.

Hidden Markov model(HMM) is one of the powerful modeling
tools that can be used to analyze and build a model that resem-
bles the targeted system. HMM excels in the application of tem-
poral pattern recognition such as speech, handwriting and ges-
ture recognition. By learning and extracting information from
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the sample data, accurate prediction or classification model can
be built. However, sensitive information can be leaked through
the model. In order to mitigate the risk, privacy protection is re-
quired to be applied.

In this paper, we will introduce ε−differential privacy to hid-
den Markov model using differential privacy framework. We will
propose a parameter estimation algorithm with ε−differential pri-
vacy. Finally, we will show the experiment results on the pro-
posed algorithm and evaluate the trade-offs between privacy re-
striction and model accuracy.

2. Differential Privacy
Differential privacy [3] is another definition of privacy that

guarantees the outcome of computations from datasets to be in-
sensitive. To be insensitive means that the results of computa-
tions should not be significantly different for two similar datasets,
specifically, any two datasets that only differs by one element.

2.1 Definition
Differential privacy requires that the difference of computa-

tions on two similar datasets be restricted by a factor exp(ε).
Definition 1. A randomized function κ gives ε−differential pri-
vacy if for all datasets D1 and D2 differing on at most one ele-
ment, and all S ⊆ Range(κ),

Pr[κ(D1) ∈ S ] ≤ exp(ε) × Pr[κ(D2) ∈ S ].

The ε in the formula can be adjusted to meet specific privacy
requirement, that is, lowering ε means that the information on
whether a single record is present or absent will reduce. We will
call ε the privacy parameter.

The ε-differentially private mechanism has two important
properties, compatibilities with sequential composition and par-
allel composition [9]. Sequential composition allows consecu-
tive computations be differentially private and ε of each computa-
tion will be accumulated, for example, ε-differential privacy with
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ε = 2 can be guaranteed for two consecutive computations that
guarantee ε-differentially private with ε = 1. Parallel composi-
tion of computation that process disjoint subsets of the dataset
can guarantee ε−differential privacy with ε being the maximum
among the privacy parameters of all the parallel computations.

2.2 Sensitivity
Sensitivity measures the difference of an outcome from func-

tion f when a single element in the dataset be inserted or re-
moved.
Definition 2. For f : D → Rd, the L1-sensitivity of f is

S ( f ) = ∆ f = max
D1 ,D2

|| f (D1) − f (D2) ||1

for all D1,D2 differing in at most one element where || x ||1 is the
L1-norm of x.

1

Resultf(D1) f(D2)

∆f

Fig. 1 Sensitivity of f

2.3 Laplace Mechanism
To achieve ε−differential privacy, a random noise

is drawn from Laplace probability distribution [5] (
Lap(δ) = (1/2δ)exp(− | x | /δ) ) and is applied to the
computation result. This is called Laplace mechanism. The scale
of Laplace distribution is determined by the sensitivity of the
function f and the parameter ε.
Theorem 1. For all f : Dn → Rd, the following mechanism pro-
vides ε-differential privacy

M(x) = f (x) + Lap(S ( f )/ε)

1

Resultf(D1) f(D2)
Fig. 2 Outcomes of f when perturbed by Laplacian noise.

3. Hidden Markov Model
3.1 Definition

Hidden Markov Model(HMM) is a statistical model that is
widely used especially in temporal pattern recognition applica-
tions. A system being modeled is assumed to be a Markov pro-
cess which consist of hidden states and observable symbols.

An HMM is a tuple A = (S ,Γ, 〈akl〉1≤k,l≤n, 〈ek(b)〉1≤k≤n,b∈Γ)
where S = {1, 2, ..., n} is a set of states, Γ is a set of observable
symbols, akl is a transition probability from state k to state l and
ek(b) is a probability of emitting b ∈ Γ in state k.

For a given sequence of states π = π1π2 · · · πL(πi ∈ S , 1 ≤ i ≤
L), A defines the probability of π and the probability of an obser-
vation sequence x = x1x2 · · · xL by

akl = P(πi = l | πi−1 = k) (1)

ek(b) = P(xi = b | πi = k) (2)

s1 s2

b1 b2 b3 b4 b5 b6
Fig. 3 HMM with 2 hidden states and 6 observable symbols.

State Symbol Emission prob.
s1 b1 1/6

b2 1/6
b3 1/6
b4 1/6
b5 1/6
b6 1/6

s2 b1 1/10
b2 1/10
b3 1/10
b4 1/10
b5 1/10
b6 1/5

Table 1 Example of emission probability in HMM.

3.2 Parameters Estimation
When building (or training) an HMM, many factors, such as

model structure, initial probability distribution of akl and ek(b)
should be thoroughly considered as it will impact the precision of
the training. In this paper, we do not focus on the method to max-
imize HMM precision, but only on the effect of the noise onto
HMM.

The training of HMM [2] can be done by two types of training
datasets. One is the observable sequence with respective hidden
state transition. By having both hidden state transition path and
observable sequence as a training data, parameters of the model
can be estimated effectively and easily by using maximum likeli-
hood estimator on the training sequence,
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akl =
Akl∑
l′ Akl′

(3)

State transition probability of state k → l can be calculated by
counting transitions from state k → l divided by number of tran-
sitions from state k → l′ where l′ is state other than l.

ek(b) =
Ek(b)∑
b′ Ek(b′)

(4)

In the same way, emission probability of symbol b from state k
can be calculated by counting number of symbol b that has been
emitted from state k, divided by number of b′, the symbol other
than b that has been emitted by state k.

In another situation when the training dataset consist only of
observable sequences, state transition path can only be guessed.
By using the initial randomize (or provided manually) parame-
ters and training sequences, the forward-backword algorithm, is
used to derive the most probable state path. After that, maximum
likelihood estimator will be used to derive new parameters of the
model and iterate until the stopping condition is met, this is called
Baum−Welch algorithm, which is a special case of the Expecta-
tion Maximization(EM) algorithm.

Let θ = (a11, . . . , ass, e1(b1), . . . , es(bn)) be a parameter vector
of an HMM. Let X = {x1, . . . , xD} be a set of D observation se-
quences where x j = x j

1 · · · x
j
L for each x j. The forward probability

of state k at position i, f j
k (i), is,

f j
k (i) = P(x j

1 · · · x
j
i , π = k)

and the backward probability of state k at position i, b j
k(i) is,

b j
k(i) = P(x j

i+1 · · · x
j
L, πi = k)

The model training uses the following probability:

ξ
j
i (k, l) = P(πi = k, πi1 = l | x j, θ)

=
f j
k (i)aklel(x j

i+1)b j
j(i + 1)

P(x j | θ)

γ
j
i (k) = P(πi = k | x j, θ)

=

|S |∑
l=1

ξ
j
i (k, l)

We assume here that the length of the observation sequence is L.
1. Let g1 be a function that computes Akl for each two states k

and l, that is, g1(X) = (A11, . . . , Ass), where

A j
kl =

L−1∑
i=1

ξ
j
i (k, l),

Akl =
∑

j

A j
kl.

2. Let g2 be a function that computes Ek(bm) for
each state k and symbol bm, that is, g2(X) =

(E1(b1), . . . , E1(bn), . . . , Es(bn)), where

E j
k(b) =

L∑
i=1,x j

i =b

γ
j
i (k),

Ek(b) =
∑

j

E j
k(b).

3. Let g3 be a function that compute akl and ek(b) according to
(3) and (4).

4. Privacy-Preserving Parameter Estimation
4.1 Privacy Model

We propose a trusted boundary between a data miner and a
data provider accessing to raw data. Data in the database con-
tains a set of observable sequences. When miners want to build
an HMM model, they have to provide the initial parameters and
structure of HMM to the data provider.The data provider then pro-
duces a result by running an estimation maximization algorithm
on the datasets and the HMM skeleton given by the data miner.
After perturbed with noise, the result of the computation will be
returned to the data miner.We use noisy versions ĝ1 and ĝ2 of g1

and g2 preserving differential privacy.

����

�����	
�

����

���
�

Fig. 4 DP version of parameter estimation

4.2 Adding Noise
The sensitivity of g1 is as follows.

S (g1) = max
X,X′:|X	X′ |=1

|g1(X) − g1(X′)|

= max
j

s∑
k=1

s∑
l=1

L−1∑
i=1

ξ
j
i (k, l)

≤ L

(5)

where X 	 X′ = (X \ X′)∪ (X′ \ X). The sensitivity S (g2) of g2 is
L in analogy with g1.

We use noisy version of g1 and g2, adding Laplace noise to
each coordinate according to the sensitivity of g1 and g2:

Âkl = Akl + nA
kl where nA

kl ∼ Lap(L/ε), and

Êk(b) = Ek(b) + nE
k,b where nE

k,b ∼ Lap(L/ε)

where ε is a parameter of differential privacy.
The resulting noisy EM will be,

âkl =
Âkl∑
l′ Âkl′

and,

êk(b) =
Êk(b)∑
b′ Êk(b′)

.

5. Experiments
In this part, we will show the trade-off between the model pre-

cision and the privacy preservation. We divided the experiment
into two settings. In the first experiment, we only added noise in
the last iteration of the training and in the second experiment, we
added noise in every iteration of the training. The parameters for
HMM training are ∆−threshold = 0.00001, maximum iterations =

80. The training datasets are: 10x100, 10x200, 10x300, 20x100,
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20x200, 20x300, 30x100, 30x200, 30x300 where m × n means
m = L (the length of the observable sequence) and n = | D |
(the number of observable sequence). Since our study focuses on
how the noise affects the HMM output, we evaluated the simi-
larity of the maximum likelihood state paths produced by A1 and
A2 when A1 is the HMM obtained by the normal parameter esti-
mation algorithm (called normally trained HMM) and A2 is the
HMM obtained by the proposed algorithm (called differentially
private HMM).

5.1 Numerical Result
In the first experiment, we train HMM by applying Laplacian

noise into the probability distribution only in the last iteration of
the training in DP.

Fig. 5 2 states HMM training with length L = 10.

Fig. 6 2 states HMM training with length L = 20.

Figures 5, 6 and 7 show the similarity of normally trained
HMM and differentially private HMM with different lengths and
numbers of training sequences with HMM skeleton shown in Fig-
ure 4. Figures 8, 9, and 10 are the results for a three states HMM.
As L, the length of observable sequence, becomes longer, the
noise also becomes stronger and thus affecting the performance
of the proposed algorithm.

Three states HMM trained by the same training dataset, are
more affected by noise than two states HMM though the differ-
ence them is not so significant as shown in the figures.

In the second experiment, Laplacian noise is added into every
training iteration. Adding noise in every iteration means that the

Fig. 7 2 states HMM training with length L = 30.

Fig. 8 3 states HMM training with length L = 10.

Fig. 9 3 states HMM training with length L = 20.

Fig. 10 3 states HMM training with length L = 30.

provided ε will have to be divided among each training iteration,
so the ε used when adding noise becomes very low, resulting in a
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very strong noise.

Fig. 11 2 states HMM for which a noise is added in every iteration.

Fig. 12 3 states HMM for which a noise is added in every iteration.

From the result, performance of the proposed algorithm drops
drastically when using low ε.

5.2 Discussion
As D, the number of observable sequences, becomes larger, the

performance (accuracy) of the HMM becomes better. This is be-
cause the sensitivity of the proposed algorithm is independent of
D.

It is not easy to find the optimal value L, the length of an ob-
servable sequence. The reason is as follows. In one hand, the
sensitivity of the proposed algorithm is proportional to L and for
the same ε, a larger L implies a larger noise. On the other hand,
an observable sequence with larger L provides more information
to the training algorithm.

When ε = 1, the similarity of the proposed algorithm and the
normal algorithm is not less than 95%.

In related studies, the value of ε is often set to 1 or below [4].
From these observations, the tradeoff between privacy and per-
formance of the proposed algorithm is fairly good.

6. Conclusion
We have investigated the application of differential privacy for

stateful data mining, the hidden Markov model. In this paper, we
proposed an approach which can be realized in the application
of HMM, by using noisy count in EM algorithm used by HMM

training. Based on the sensitivity of the traditional parameter esti-
mation algorithm for HMM, we proposed an ε-differential private
algorithm for the parameter estimation. We empirically evalu-
ate the trade-offs between privacy and model precision and we
conclude that the proposed algorithm achieves a sufficient model
precision while keeping ε-different privacy with ε ∼ 1.
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