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Background 

Non-small cell lung cancer (NSCLC) remains lethal despite the development of numerous drug therapy technologies. About 85% 

to 90% of lung cancers are NSCLC and the 5-year survival rate is at best still below 50%. Thus, it is important to find drug target 

genes for NSCLC to develop an effective therapy for NSCLC. 

Results 

Integrated analysis of publically available gene expression and promoter methylation patterns of two highly aggressive NSCLC 

cell lines generated by in vivo selection was performed. We selected eleven critical genes that may mediate metastasis using 

recently proposed principal component analysis based unsupervised feature extraction. The eleven selected genes were 

significantly related to cancer diagnosis. The tertiary protein structure of the selected genes were inferred by Full Automatic 

Modeling System, a profile based protein structure inference software, to determine protein functions and to specify genes that 

could be potential drug targets.  

Conclusions 

We identified eleven potentially critical genes that may mediate NSCLC metastasis using bioinformatic analysis of publically 

available data sets. These genes are potential target genes for therapy of NSCLC. Among the eleven genes, TINAGL1 and 

B3GALNT1 are possible candidates for drug compounds that inhibit their gene expression 

 

 

1. Introduction     

  Currently, there is no effective therapy for non-small cell lung 

cancer (NSCLC), thus NSCLC remains lethal [1]. Five-year 

survival rate is at best still below 50%. In addition, NSCLC 

consists of several subtypes that require distinct therapies. Thus, 

from both a diagnosis and therapy point of view, the 

identification of genes critical to NSCLC is urgent. Few studies 

have identified NSCLC critical genes. Fawdar et al [2] recently 

found that mutations in FGFR4, MAO3K and PAK5 have 

critical roles in lung cancer progression. Li et al [3] also recently 

identified EML4-ALK fusion gene and EGFR and KRAS gene 

mutations were associated with NSCLC. Takeuchi et al [4] also 

reported that RET, ROS1 and ALK gene fusions were observed 

in lung cancer. However, it is likely that other critical gene 

candidates for NSCLC exist.  

In this study, we attempted to identify new critical candidate 

genes important for NSCLC using recently proposed principal 

component (PCA) based unsupervised feature extraction (FE) 

mediated integrated analysis [5–8] of publically available 

promoter methylation and gene expression patterns of two 

NSCLC cell lines with and without enhanced metastasis ability. 

Most of the identified genes were previously reported as 

significant cancer-related genes. To understand the functionality 

of the selected genes, we predicted the tertiary structures of 

selected genes by Full Automatic Modeling System (FAMS) [9] 

and phyre2 [10] profile-based protein structure prediction 

software. This system also allowed the identification of drug 

target candidate genes. 
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2. Results 

2.1 The first principal components show no significant 

difference between samples 

Fig. 1 shows two-dimensional embeddings of probes using PCA 

for gene expression and promoter methylation. To determine 

what each principal component (PC) represents, the 

contributions of samples to the first PC (PC1) are shown (Fig. 2). 

As previously observed [6, 8], the first PC did not identify 

distinct features among the samples, although they have major 

contributions (97% for gene expression and 87% for promoter 

methylation). Contributions of samples to PC1 are almost 

constantly independent of samples for gene expression and 

promoter methylation. Thus, we concluded that PC1 did not 

exhibit any significant differences among samples. It should be 

noted that this does not mean that PC1s are biologically 

meaningless, but rather that most gene expression and promoter 

methylation is sample independent; thus, the cell lines are very 

similar to each other independent of the ability for metastasis. 

This is not surprising, as they are similar NSCLC cell lines. 

Significantly different outcomes caused by sample dependence 

and/or metastasis presence would be unusual. 

2.2 The second PCs demonstrate distinction between cell 

lines. 

  Because the first PCs did not distinguish between samples, we 

next considered second PCs (PC2s). As can be seen by 

two-dimensional embeddings of probes (Fig. 1), the second PCs 

have relatively smaller contributions. The second PC of gene 

expression has only a 1.7% contribution while for promoter 

methylation it is 9.6%. These values for contributions, 

especially for gene expression, can be ignored. In this case, 

since the samples are similar NSCLC cell lines, differences 

between samples are expected to be small as well. Thus, PCs 

with tiny contributions may represent biologically critical   
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Figure 1 Two-dimensional embeddings of probes using PCA 

Two-dimensional embeddings of probes (left: gene expression, right: promoter methylation) spanned by the first (horizontal axes) and 

the second (vertical) axes. 
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Figure 2 Contributions of samples to PCs 

Contributions of samples (black open circles: A549 without metastasis, red triangles: A549 with metastasis, green crosses: HTB56 

without metastasis, blue crosses: HTB56 with metastasis) to PCs. Left column: gene expression, right column: promoter methylation. 

“cor” indicates Pearson correlation coefficients of PCs between gene expression and promoter methylation averaged within each  of 

four categories and “P” is attributed to “cor”.   

 

 differences between samples, as shown in Fig. 2 where the 

contributions of samples to PC2s are demonstrated. It is obvious 

that PC2s did not distinguish between samples with and without 

metastasis ability, but could distinguish between A549 and 

HTB56 cell lines. Because we are interested in 

metastasis-causing genes in HSCLC, what PC2 expresses is out 

of scope of the present study. However, it is useful to identify 

genes associated with PC2 to determine which genes are 

different between the two cell lines, A549 and HTB56. PC2s 

showed good correlated between gene expression and promoter 

methylation. Thus, integrated analysis using PCA based 

unsupervised FE is applicable (Methods). P-values attributed to 

selected genes (Table 1) common between gene expression and 

promoter methylation are 4.1×10-9 and 5.1×10-12, respectively 

(Methods). Thus, integrated analysis using PCA based 

unsupervised FE was successful. In contrast to expectations, the 

selected genes were frequently and significantly shown to be 

related to cancers by the Gendoo server [11] (Methods and Table 

1). This suggests that HTB56 and A549 cell lines are potentially 

distinct to each other and should be considered separately. This 

is coincident with findings that when distinct genes are 

demonstrated to be present between samples with and without 

metastasis, they can also reflect differences between the HTB56 

and A549 cell lines. Conversely, in contrast to the high 

correlation of PC2 for gene expression and promoter 

methylation, correlations between gene expression and promoter 
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methylation of individual genes were not significant. This might 

be because of too small a contribution of PC2s.  

2.3 The third PCs distinguish differences between samples 

with and without metastasis for HTB56 but not for A549 

  Because no PCs reflected differences between samples with 

and without metastasis, we considered additional PCs. Fig. 2 

shows the contributions of samples to the third PC (PC3). 

Although PC3s have even smaller contributions (0.2% for gene 

expression and 1.5% for promoter methylation) than PC1s or 

PC2s their correlation is high. Thus, genes associated with PC3 

represent differences between samples with and without 

metastasis. Interestingly, PC3 exhibited differences between 

samples with and without metastasis only for the HTB56 cell 

line. However, since the two cell lines are distinct in terms of 

their oncogenic potential, it is not surprising that genes that 

exhibit differences between samples with and without metastasis 

for HTB56 did not exhibit differences between samples with and 

without metastasis for A549. Thus, we applied integrated 

analysis using PCA-based unsupervised FE. P-values attributed 

to selected genes (Table 1) common between gene expression 

and promoter methylation were 3.5×10-5 and 5.1×10-4 (Methods). 

Thus, integrated analysis using PCA based unsupervised FE was 

successful. The association of cancer disease and the selected 

genes are shown in Table 1. As expected, most of the selected 

genes were reported to be significantly associated with cancer 

disease. Correlations between gene expression and promoter 

methylation of individual genes were not significant.  

2.4 The fourth PC of promoter methylation and the fifth 

PC of gene expression represent differences between samples 

with and without metastasis for A549 but not for HTB56 

  We further sought PCs that exhibited differences between 

samples with and without metastasis for A549. The fourth PC 

(PC4) of promoter methylation and the fifth PC (PC5) of gene 

expression demonstrated differences between samples with and 

without metastasis for the A549 cell line (Figs. 2 and 3). 

Because the correlation between these PC4 and PC5 were very 

high despite small contributions (0.6% for PC4 of promoter 

methylation and 0.09% for PC5 of gene expression), integrated 

analysis using PCA based unsupervised FE could still be used.   

P-values attributed to selected genes (Table 1) common between 

gene expression and promoter methylation were 9.8×10-8 

(Methods). Thus, integrated analysis using PCA based 

unsupervised FE was successful. Cancer diseases associated 

with selected genes are listed in Table 1 and more than half were 

reported to be associated with cancer-related diseases. However, 

correlations between gene expression and promoter methylation 

of individual genes were not significant.

Table 1 Cancer disease association with genes selected in the present study based on Gendoo server.  

Gene Symbol 

Refseq 

mRNA 

Cancer associations 

(P-value) 

PC2 vs PC2   

SLC22A3 NM_021977 

Gonadoblastoma (0.0002), Dysgerminoma (0.00075), Testicular 

Neoplasms (0.00456), Ovarian Neoplasms (0.0297), Cell 

Transformation, Neoplastic (0.0384) 

DFNA5 NM_004403 Melanoma (0.006), 

SPG20 NM_015087 Hepatoblastoma (0.0033), Liver Neoplasms (0.00496) 

CYP1B1 NM_000104 

Breast Neoplasms (1.13×10-45), Endometrial Neoplasms 

(2.44×10-12), Lung Neoplasms (1.56×10-9), Prostatic Neoplasms 

(4.65e-9), Adenocarcinoma (6.03×10-6), Ovarian Neoplasms 

(1.35×10-5) Carcinoma, Squamous Cell (0.00018), Colorectal 

Neoplasms (0.000337), Head and Neck Neoplasms (0.00052), 

Adenoma, Liver Cell (0.0072), Urinary Bladder Neoplasms 

(0.012), Neoplasms (0.019), Carcinoma, Small Cell (0.028), 

Carcinoma, Non-Small-Cell Lung (0.0326) 

ALX1 NM_006982 
Carcinoma (0.000305), Chondrosarcoma (0.00129), Bone 

Neoplasms (0.0106), Uterine Cervical Neoplasms (0.011) 

TFPI2 NM006528 

Uterine Neoplasms (2.6×10-21), Neoplasm Invasiveness 

(1.18×10-14), Choriocarcinoma (2.33×10-13), Fibrosarcoma 

(7.98×10-9), Glioma (2.50×10-8), Cystadenocarcinoma (1.68×10-5), 

Lung Neoplasms (6.74×10-5), Carcinoma, Non-Small-Cell Lung 

(0.00559) 

HOXA9 NM_152739 Leukemia, Myeloid (2.0×10-48), Leukemia, Myeloid, Acute 
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(9.24×10-30), Cell Transformation, Neoplastic (4.64×10-29), 

Leukemia (9.46×10-19), Leukemia, Myelogenous, Chronic, 

BCR-ABL Positive (2.64×10-14), Precursor Cell Lymphoblastic 

Leukemia-Lymphoma (2.46×10-8), Precursor B-Cell 

Lymphoblastic Leukemia-Lymphoma (1.65×10-6), Myoma 

(0.00046), Leukemia, T-Cell (0.0012), Endodermal Sinus Tumor 

(0.0079), Seminoma (0.0157),  

HOXA11 NM_005523 

Uterine Neoplasms (8.23×10-7), Choriocarcinoma (3.97×10-5), 

Carcinoma, Endometrioid (0.0065), Adenocarcinoma, Clear Cell 

(0.00662), Wilms Tumor (0.0076),  

PCSK1 NM000439 
Bronchial Neoplasms (0.0022), Adenoma (0.0030), Adenoma, 

Islet Cell (0.0035), Bile Duct Neoplasms (0.011) 

SPARC NM_003118 

Neoplasm Invasiveness (8.42×10-14), Glioma (1.35×10-8), Brain 

Neoplasms (1.01×10-7), Melanoma (2.99×10-7), Lung Neoplasms 

(1.43×10-5), Carcinoma (0.00013), Carcinoma, Non-Small-Cell 

Lung (0.0009) 

PC3 vs PC3   

HOXB2 NM_002145 

Lung Neoplasms (0.000159), Leukemia, Myeloid (0.000326), 

Pulmonary Emphysema (0.00139), Carcinoma, Embryonal 

(0.0025), Adenocarcinoma (0.0054), Leukemia, Erythroblastic, 

Acute (0.0096), Leukemia, Promyelocytic, Acute (0.0124), 

Carcinoma, Small Cell (0.0148), Carcinoma, Non-Small-Cell 

Lung (0.0387) 

CCDC8 NM_032040  

ZNF114 NM_153608  

DIO2 NM_000793 
Choriocarcinoma (0.000616), Carcinoma, Papillary (0.00366), 

Hemangioma (0.0099), Adenoma (0.019), Neuroblastoma (0.025) 

LAPTM5 NM_006762 

Carcinoma, Hepatocellular (0.000396), Liver Neoplasms 

(0.000495), Multiple Myeloma (0.00947), Neoplasm Recurrence 

(0.010), Cell Transformation, Neoplastic (0.032) 

RGS1 NM_002922 

Burkitt Lymphoma (3.55×10-5), Lymphoma, B-Cell (9.14×10-5), 

Leukemia-Lymphoma, Adult T-Cell (0.0076), Lymphatic 

Metastasis (0.0329), Skin Neoplasms (0.0364), Stomach 

Neoplasms (0.0454), Melanoma (0.0455) 

B3GALNT1 NM_003781 Neuroblastoma (0.0034) 

PC5 vs PC4   

TINAGL1 NM_022164 Carcinoma, Hepatocellular (0.000119), Neoplasms (0.0295) 

PMEPA1 NM_020182 
Prostatic Neoplasms (2.30e-12), Carcinoma, Renal Cell (0.0233), 

Kidney Neoplasms (0.032) 

CX3CL1 NM_002996 Neuroblastoma (0.0014) 

ICAM1 NM_000201 

Melanoma (0.00305), astrocytoma (0.00644), Granular Cell 

Tumor (0.0166), Colonic Neoplasms (0.0233), Lymphoma, 

AIDS-Related (0.023), Adenoma, Oxyphilic (0.0433) 

 

 

2.5 Conclusions  

This study performed the integrated analysis of promoter 

methylation and gene expression using PCA based unsupervised 

FE. It selected 11 genes that were differently expressed and 

which had different promoter methylation patterns between cell 

lines with and without metastasis ability. P-values attributed to 

the simultaneous selection between gene expression and 
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promoter methylation were significant and many cancer-related 

diseases were associated with the 11 genes selected. Two of 

selected eleven genes, B3GALNT1 and TINAGL1, were 

identified as drug target candidates that might suppress 

metastasis in NSCLC. Further detailed and advanced studies are 

required to confirm these findings.  

3. Methods 

3.1 Promoter methylation and gene expression profiles 

Promoter methylation profiles were downloaded from Gene 

Expression Omnibus (GEO) with GEO ID: GSE52144 that 

included two replicates of HTB56 cell lines with (H3R_d0) and 

without (H0R_d0) metastasis ability and A549 cell lines with 

(A3R_d0) and without (A0R_d0) metastasis ability. Gene 

expression profiles were downloaded from GEO with GEO ID: 

GSE52143 that included three replicates of the samples in 

GSE52144. For these two cell lines, data sets deposited in the 

“Series Matrix Files” were retrieved. Promoter methylation 

measured by sequencing was obtained from GEO with GEO ID: 

GSE52140. Within GSE52140_RAW.tar, eight files 

corresponding to those in GSE52144, (two replicates of H0R_d0. 

H3R_d0, A0R_d0 and A3R_d3) were used. 

3.2 Integrated analysis of gene expression and promoter 

methylation using PCA based unsupervised FE 

First, PCA was applied to gene expression and promoter 

methylation and each probe was embedded into a two 

dimensional space spanned with the first and the second PC 

scores. Then contributions of each probe to each PC were 

investigated and biologically meaningful PCs were selected. The 

100 top outlier probes with larger (positively larger) or smaller 

(negatively larger) PC scores were extracted for each PC. The 

coincidence between selected probes for gene expression and 

promoter methylation were estimated as follows. If 

contributions of each probe to PCs were positively correlated 

between gene expression and promoter methylation, then 

intersections between gene expression outlier probes having 

larger (smaller) PC scores and promoter methylation outlier 

probes having smaller (larger) PC scores were sought, since 

gene expression and promoter methylation were expected to be 

negatively correlated with each other. Conversely, if 

contributions of each probe to PCs were negatively correlated 

between gene expression and promoter methylation, 

intersections between gene expression outlier probes having 

larger (smaller) PC scores and promoter methylation outlier 

probes having larger (smaller) PC scores were sought. P-values 

attributed to simultaneous selection of probes between gene 

expression and promoter methylation were computed by 

distribution that obeyed binomial distribution as follows: 

 

1-P(x,100,100/y) 

 

where x is the number of commonly selected probes between the 

top 100 outliers of gene expression and promoter methylation, y 

is total number of probes on the microarray, and P is the 

cumulative frequency of binomial distribution. 
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