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Prediction of Heterotrimeric Protein Complexes by
Two-phase Learning Using Neighboring Kernels

Peiying Ruan1,a) Morihiro Hayashida1,b) OsamuMaruyama2,c) Tatsuya Akutsu1,d)

Abstract: In biological systems, protein complexes are one of important molecules to perform as transcription factors
and enzymes. Protein complexes with size more than three have been focused by most prediction methods. It, however,
is known that protein complexes with smaller sizes occupy a large part of whole complexes for several species. In our
previous work, we developed a method with several feature space mappings and the domain composition kernel for
prediction of heterodimeric protein complexes, which outperforms existing methods.
In this technical report, we propose methods for prediction of heterotrimeric protein complexes by extending the pre-
vious prediction method on the basis of some ability that heterotrimeric protein complexes are not likely to share the
same protein with each other. We make use of the discriminant function in support vector machines (SVMs), and
design novel feature space mappings for the second phase. As the second classifier, we examine SVMs and relevance
vector machines (RVMs).
We perform ten-fold cross-validation computational experiments. The results suggest that our proposed two-phase
methods and SVM with the extended features and the domain composition kernel outperform the existing method
NWE in terms of F-measure, which was reported to outperform other existing methods for prediction of heterotrimeric
protein complexes.

1. Introduction
In biological systems, protein complexes are one of important

molecules to perform as transcription factors and enzymes. Iden-
tification of functional protein complexes is essential for under-
standing molecular systems in living cells. Several proteins form
a complex and work as a transcription factor, whereas there exist
another type of proteins that work as enzymes. Hence, to identify
proteins that constitute such transcription factors is useful for un-
covering gene regulatory networks. Also for metabolic pathways,
it is important to find enzymes that consist of several proteins.

Many computational methods have been developed for predict-
ing protein complexes from protein-protein interaction networks
[1], [2]. Enright et al. developed the Markov cluster (MCL) al-
gorithm [3], which repeatedly executes two operators called ex-
pansion and inflation to a matrix whose element represents the
transition probability from a protein to another. The expansion
operation takes the power of the matrix, and the inflation op-
eration takes the Hadamard power of the matrix. MCL is fast
and efficient because of these operations. Macropol et al. devel-
oped the repeated random walks (RRW) method [4], which itera-
tively expands a cluster depending on the probabilities in steady

1 Bioinformatics Center, Institute for Chemical Research, Kyoto Univer-
sity, Gokasho, Uji, Kyoto 611–0011, Japan

2 Institute of Mathematics for Industry, Kyushu University, 744 Motooka,
Nishi-ku, Fukuoka 819–0395, Japan

a) ruan@kuicr.kyoto-u.ac.jp
b) morihiro@kuicr.kyoto-u.ac.jp
c) om@imi.kyushu-u.ac.jp
d) takutsu@kuicr.kyoto-u.ac.jp

states of random walks with restarts. Maruyama and Chihara
improved the RRW method by weighting the restart probabili-
ties and proposed the node-weighted expansion (NWE) method
[5]. Bader and Hogue developed the molecular complex detec-
tion (MCODE) method [6], which uses a modified clustering co-
efficient defined by edge density in a subset of the original and
adjacent vertices to find densely connected regions. King et al.
developed the restricted neighborhood search clustering (RNSC)
method [7], which selects clusters generated by a cost function
according to the cluster size, density and functional homogene-
ity. Altaf-Ul-Amin et al. developed DPClus [8], which tries to
find densely connected regions. Chua et al. developed the pro-
tein complex prediction (PCP) method [9], which finds maximal
cliques using the functional similarity weight based on indirect
interactions. Liu et al. developed the clustering based on max-
imal cliques (CMC) method [10], which generates all maximal
cliques from the protein-protein interaction networks, and assem-
bles highly overlapped clusters based on their interconnectivity.
Wu et al. developed the core-attachment based (COACH) method
[11]. Most methods basically focus on finding densely connected
subgraph in protein-protein interaction networks. Hence, it is
considered to be difficult that they detect small protein complexes
because, for instance, the edge density of two interacting proteins
is always 1.0 even if the proteins do not form a complex.

Protein complexes with small sizes, however, occupy a large
part of whole known protein complexes. CYC2008 is a compre-
hensive catalogue of 408 manually curated yeast protein com-
plexes [12]. In the catalogue, 172 complexes (42%) are het-
erodimeric, and 87 complexes (21%) are heterotrimeric as re-
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ported also in [13]. In our previous study, hence, we developed
a method using our proposed kernel for predicting heterodimeric
protein complexes that consist of two distinct proteins [14], which
outperforms an existing method using the naive Bayes classifier
[15].

In this technical report, we introduce prediction methods for
heterotrimeric protein complexes by extending techniques in our
previous method on the basis of some ability that heterotrimeric
protein complexes are not likely to share the same protein with
other heterotrimeric protein complexes [16]. For that purpose, we
apply supervised learning methods twice such as support vector
machine (SVM) [17] and relevance vector machine (RVM) [18].

Tatsuke and Maruyama developed the proteins’ partition sam-
pler (PPSampler) method based on the Metropolis-Hastings al-
gorithm, which generates clusters whose sizes follow a power-
law distribution, and outperforms other existing methods in F-
measure for whole protein complexes [13]. For prediction of het-
erotrimeric protein complexes, they reported that the F-measure
of NWE was better than those of the existing methods, MCL,
MCODE, DPClus, CMC, COACH, RRW, and PPSampler.

We perform ten-fold cross-validation, and calculate the aver-
age F-measure. The results suggest that our proposed methods
outperform the existing method NWE.

2. Methods
In this section, we introduce prediction methods for het-

erotrimeric protein complexes. More accurately, we consider the
following problem: Given a network of protein-protein interac-
tions weighted by some reliability, determine whether or not three
distinct proteins that are connected in the protein-protein interac-
tion network form a protein complex.

Let G(V, E) be an undirected graph with a set V of vertices
and a set E of edges, representing the protein-protein interaction
network. Here, a vertex represents a protein, an edge (i, j) repre-
sents an interaction between proteins Pi and P j, and the weight
wi j represents reliability and strength of the interaction between
Pi and P j. In this technical report, we use the WI-PHI database
[1] as edge weights, which has been calculated from heteroge-
neous biological experimental data. We say that Pi is a neighbor-
ing protein to P j if (i, j) ∈ E. Then, our proposed methods use
the support vector machine (SVM), its discriminant function, and
the relevance vector machine (RVM).

2.1 Support and relevance vector machine
We briefly review the support and relevance vector machines

[17], [18]. Suppose that N training data {xi, ti} with target ti ∈
{−1, 1} are given. For our purpose, xi corresponds to a set of
three distinct proteins, ti = 1 corresponds to the case that the set
forms a heterotrimeric protein complex. Then, we consider linear
models represented by the form

y(x) =
M∑

i=1

aiϕi(x) + b, (1)

where ϕi denotes a basis function, M denotes the number of basis
functions, ai denotes the coefficient, and b denotes the bias pa-
rameter. In the SVM, ϕi(x) is implicitly defined as K(xi,x) with

Pi Pj

Pk

wij

wik
wjr

Pr
wkr

Fig. 1 Example of a subgraph including three focused proteins Pi, P j, Pk
and their neighboring proteins. In this example, protein Pr is neigh-
boring to both of P j and Pk .

a positive semidefinite kernel function K, M is equal to N, and ai

and b are determined by maximizing the margin. New sets x of
proteins are classified according to the sign of y(x). We make use
of this discriminant function y(x) in our proposed methods.

The RVM is a Bayesian sparse kernel technique for classifica-
tion and regression, and shares some characteristics of the SVM.
As well as the SVM, the basis functions of the RVM are given
by kernels, which are not required to be positive semidefinite. It,
however, is known that training time of the RVM is in general
longer than that of the SVM. In the RVM, a hyperparameter γi

for each parameter ai and a prior distribution over parameters ai

are introduced to obtain a sparse model.
For the classification, the model in Eq. (1) is transformed

as σ(y(x)), where σ(y) denotes the logistic sigmoid function
1/(1 + e−y), and ai and b are determined by maximizing the
marginal log-likelihood with respect to γ.

2.2 Extension of feature space mapping
In our previous study, we proposed seven feature space map-

pings for prediction of heterodimeric protein complexes [14].
These are based on the idea that the reliability of the interaction in
a heterodimer should be high and conversely the reliability of the
interaction between a protein in a heterodimer and a protein not in
the heterodimer should be low. We extend the feature space map-
pings for two interacting proteins to mappings for three distinct
proteins Pi, P j, and Pk that are connected in the protein-protein
interaction network as follows:

(F1) max
{(p,q)∈E|p,q∈{i, j,k}}

wpq

(F2) min
{(p,q)∈E|p,q∈{i, j,k}}

wpq

(F3) max
{(p,r)∈E|p∈{i, j,k},r<{i, j,k}}

wpr

(F4) min
{(p,r)∈E|p∈{i, j,k},r<{i, j,k}}

wpr

(F5) max
{(p,r),(q,r)∈E|p,q∈{i, j,k},p,q,r<{i, j,k}}

min{wpr, wqr}

(F6) max{# domains of Pi, # domains of P j, # domains of Pk}
(F7) min{# domains of Pi, # domains of P j, # domains of Pk}

Here, the fifth mapping in the previous study is eliminated be-

ⓒ 2014 Information Processing Society of Japan 2

Vol.2014-MPS-98 No.26
Vol.2014-BIO-38 No.26

2014/6/27



IPSJ SIG Technical Report

cause more neighboring proteins increase the maximum of differ-
ences close to the maximum of neighboring weights denoted by
(F3).

(F1) and (F2) denote the maximum and minimum of the
weights of interactions between Pi, P j, and Pk, respectively. The
first feature in the previous study is the weight of the interaction
between two proteins. Since there are at least two interactions
for three focused proteins and we cannot use all the weights as
elements of our feature vector without changes, we take the max-
imum and minimum of the weights (see Fig. 1). In addition,
the proteins in a heterotrimer should interact with each other, and
(F2), which is the minimum of the weights, is expected to be high.

(F3) and (F4) denote the maximum and minimum of the
weights of interactions between either of Pi, P j, Pk and a neigh-
boring protein Pr, respectively, where r , i, j, k and (i, r) ∈ E,
( j, r) ∈ E, or (k, r) ∈ E. It is considered that (F3), which is the
maximum of the neighboring weights of a heterotrimer, should be
lower than the weights of interactions in the heterotrimer. Con-
sider the case that a protein Pr interacts with two of proteins Pi,
P j, and Pk, where Pr is not any of Pi, P j, and Pk (see Fig. 1). If
the weights of both interactions are large, these proteins including
Pr may form a complex. We introduce the maximum of smaller
weights of interactions with neighboring proteins Pr denoted by
(F5).

(F6) and (F7) denote the maximum and the minimum of the
numbers of domains contained in Pi, P j, and Pk, respectively.
The number of domains in a protein complex is expected to be
large because domains are considered as mediators of protein-
protein interactions.

In addition to the extended features, we examine the domain
composition kernel developed in our previous study [14]. We
defined equivalence =d between two proteins Pi and P j as the
condition that Pi consists of the same domains of P j, and de-
fined equivalence =c between two sets xi and x j that consist of
{Pi1 , · · · , Pin } and {P j1 , · · · , P jn }, respectively, as

(∃σ ∈ Sn)∀k(Pik =d P jσ(k) ), (2)

where Sn denotes the symmetric group of degree n on the set
{1, · · · , n}. Then, the domain composition kernel Kc was defined
by

Kc(xi,x j) = δ(xi =c x j), (3)

where δ(A) = 1 if condition A holds, otherwise 0.

2.3 Two-phase learning approach
Our proposed methods take two-phase learning approach. The

basic idea for designing our methods is based on some ability
that heterotrimeric protein complexes share the same protein with
other heterotrimeric protein complexes.

We estimate model parameters of SVM using training data in
the first phase, and predict whether or not the training data and
the neighboring sets sharing at least one protein with the training
data are heterotrimeric protein complexes, respectively. Then, the
second phase predictor makes use of the discriminant values ob-
tained by the first phase predictor. It is expected that the discrim-
inant values for a target set of proteins and its neighboring set do

S
1

S
2

S
3

S
4

Fig. 2 Example of a subgraph including a focused set of proteins and neigh-
boring sets of proteins. Each neighboring set of three proteins shares
at least one protein with the focused set (black circle). In this ex-
ample, sets S 1 and S 4 of three proteins share two proteins with the
focused set, and S 2, S 3 share one protein, respectively.

not become large together if heterotrimeric protein complexes do
not share the same protein.

Suppose that the training data set comprises N sets xi of three
distinct proteins with the corresponding label ti ∈ {−1, 1}. For
each xi, we calculate seven-dimensional feature vector f (1)(xi)
using (F1),...,(F7), and the combination kernel matrix whose
(i, j)-th element is

⟨f (1)(xi),f (1)(x j)⟩ + αKc(xi,x j), (4)

where α is a constant and ⟨·, ·⟩ denotes the inner product. Then,
we obtain the model parameters in Eq. (1) by applying the SVM
to the training data set.

LetN(x) be all sets of three distinct proteins that are neighbor-
ing to x and connected in the protein-protein interaction network,
where we say that xi is a neighboring set to x j if xi and x j share
the same protein and xi is not x j (see Fig. 2). For each xi, we cal-
culate the discriminant values y(xi) and y(x) for all x ∈ N(xi).
Since the discriminant values may include outliers, by taking the
averages of positive and negative discriminant values separately,
we define four feature space mappings for xi,

f (2s)(xi) = y(xi), (5)

f (2p)(xi) =
1

|{x ∈ N(xi)|y(x) > 0}|
∑

{x∈N(xi)|y(x)>0}
y(x), (6)

f (2n)(xi) =
1

|{x ∈ N(xi)|y(x) < 0}|
∑

{x∈N(xi)|y(x)<0}
y(x), (7)

f (2a)(xi) =
1

|N(xi)|
∑

x∈N(xi)

y(x), (8)

where |S | denotes the number of elements in the set S . Here,
we define f (2p)(xi) = 0, f (2n)(xi) = 0, and f (2a)(xi) = 0 if
|{x ∈ N(xi)|y(x) > 0}| = 0, |{x ∈ N(xi)|y(x) < 0}| = 0, and
|N(xi)| = 0, respectively.

We compose eleven-dimensional feature vector f (2)(xi) using
f (1), f (2s), f (2p), f (2n) and f (2a), calculate the combination kernel
matrix with the (i, j)-th element

⟨f (2)(xi),f (2)(x j)⟩ + αKc(xi,x j), (9)
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Fig. 3 Illustration of two-phase learning for training set xi.

and we apply some supervised learning method. It should be
noted that our methods use only training data to estimate model
parameters. Fig. 3 illustrates the two-phase learning for training
set xi.

For test data x, we calculate ⟨f (2)(xi),f (2)(x)⟩ + αKc(xi,x)
for training data xi, and determine whether or not x is a het-
erotrimeric protein complex according to the second classifier.

3. Computational Experiments
3.1 Data

To evaluate our proposed methods, we performed computa-
tional experiments and compared them with the existing method
NWE [5]. We used the WI-PHI database [1] containing 49607
interacting protein pairs except self interactions as input weights
of interactions, which is available at the supporting information
web page of the paper. The weights were obtained from high-
throughput yeast two-hybrid data [19], [20] and several biolog-
ical databases such as BioGRID [2] and BIND [21] by using a
log-likelihood score (LLS) to each dataset and the socioaffinity
(SA) index [22] that measures the log-odds score of the number
of times that two proteins are observed to interact to the expecta-
tion value from the dataset.

We prepared datasets using heterotrimeric protein complexes
in CYC2008 protein complex catalogue [12], which con-
tains 87 heterotrimeric protein complexes, and is available at
http://wodaklab.org/cyc2008/. We restricted positive and nega-
tive examples to sets of three distinct proteins that form a single
connected component in the input protein-protein interaction net-
work. Thus, 7 heterotrimers were eliminated, and we used 80 het-
erotrimers as positive examples. For negative examples, we ex-
tracted 32647 sets of three proteins included in protein complexes
with size more than three of CYC2008, and we selected uniquely
at random 100 examples from the sets because our methods re-
quire many neighboring sets of three proteins for an example in
the second phase. It is considered that negative examples selected
from such sets are more difficult to be classified than those se-
lected from all sets of three proteins except heterotrimers.

For NWE, we set some options related with the size of com-
plexes so that NWE output protein complexes with size two or
more from the WI-PHI protein-protein interaction network in the
same way as [13], and extracted only protein complexes with size
three from the result.

For measuring the performance, we used precision, recall, and
F-measure defined by

precision =
T P

T P + FP
, (10)

recall =
T P

T P + FN
, (11)

F-measure =
2 · precision · recall
precision + recall

, (12)

where T P, FP, and FN mean the number of true positive, false
positive, false negative examples, respectively.

We used ‘libsvm’ (version 3.11) [23] and ‘SparseBayes’ pack-
age (version 2.0) [24] as implementations of SVM and RVM, re-
spectively.

3.2 Results
We performed ten-fold cross-validation, and took the average

of precision, recall, and F-measure. Furthermore, we repeated
this procedure 10 times for other datasets with randomly selected
negative examples, and took the average.

Table 1 shows the results on the average of precision, re-
call, and F-measure by our proposed methods and NWE.
‘SVM+SVM’ and ‘SVM+RVM’ denote two-phase methods us-
ing SVM and RVM as the second classifier, respectively. ‘SVM’
denotes usual SVM using only features f (1). α denotes the coeffi-
cient of the domain composition kernel Kc. We examined α = 0.5
because the case was best for prediction of heterodimeric protein
complexes in our previous study [14]. NWE predicted 54 protein
complexes with size three from the WI-PHI protein-protein inter-
action network, and 19 of them were actual heterotrimeric protein
complexes in the CYC2008 protein complex catalogue.

We can see from the table that the F-measures by SVM+SVM,
SVM+RVM, SVM for both α = 0, and 0.5 were higher than
those by NWE, respectively. Furthermore, the F-measure by the
two-phase method SVM+SVM was higher than those by usual
SVM with f (1). The F-measure by SVM+RVM, however, was
lower than those by SVM. It implies that RVMs may be less
useful than SVMs for these problems that SVMs can be applied.
Thus, the results suggest that our proposed methods SVM+SVM,
SVM+RVM, and SVM outperform the existing method NWE.
The results also suggest the usefulness of the second phase.

4. Conclusions
We proposed prediction methods by two-phase learning for

heterotrimeric protein complexes. In the methods, we extended
the feature space mappings in our previous study for prediction of
heterodimeric protein complexes, and made use of the discrimi-
nant function for neighboring sets of three proteins.

To validate our proposed methods, we performed ten-fold
cross-validation computational experiments. The results sug-
gest that our two-phase prediction methods and SVM with the
extended features outperform the existing method NWE, which
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Table 1 Results on the average of precision, recall, and F-measure by our proposed methods and NWE.
‘SVM+SVM’ and ‘SVM+RVM’ denote two-phase methods using SVM and RVM as the sec-
ond classifier, respectively. ‘SVM’ denotes usual SVM using only features f (1). α denotes the
coefficient of the domain composition kernel Kc. Note that NWE is unsupervised, and predicts
protein complexes of various sizes. The precision and recall for NWE were calculated as T P
divided by the numbers of predicted and known heterotrimers, respectively.

SVM+SVM SVM+RVM SVM NWE
α 0 0.5 0 0.5 0 0.5

precision 0.936 0.869 0.847 0.899 0.909 0.873 0.352
recall 0.840 0.926 0.770 0.766 0.819 0.862 0.218

F-measure 0.880 0.891 0.767 0.810 0.854 0.862 0.270

was reported to outperform many other existing methods such as
MCL, MCODE, DPClus, CMC, COACH, RRW, and PPSampler,
although our methods are limited to prediction of heterotrimeric
protein complexes. For further evaluation, we would like to per-
form computational experiments for other datasets if such data
become available.

We have some possibility to further improve the prediction ac-
curacy. For instance, we can use sequence information for de-
signing feature space mappings as well as domains contained in
proteins. In addition, we can introduce some probabilistic model
such as conditional random fields to neighboring sets of three
proteins although in this technical report we considered kernels
between neighboring sets.
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