
IPSJ SIG Technical Report

Performance Evaluation of Index-Less Indexed
Flash Codes for Non-Uniform Write Operations

Yuichi Kaji1,a)

Abstract: A random-walk model is investigated and utilized to analyze the performance of a coding scheme that aims
to extend the lifetime of flash memory. Flash memory is widely used in various products today, but the cells that con-
stitute flash memory wear out as they experience many operations. This issue can be mitigated by employing a clever
coding scheme that is known as a flash code. The purpose of this study is to establish a well-defined random-walk
model of a flash code that is known as an index-less indexed flash code (ILIFC), and clarify the expected performance
of ILIFC. Preliminary study has been made by the author for a simplified model of data operation, and the contribution
of this study is to extend the model of data operation to more general and practical one. Mathematical properties of the
random-walk model is reconsidered, and useful properties are derived that help analyzing the performance of ILIFC
both in non-asymptotic and asymptotic scenarios.

Keywords: flash codes, flash memory, random-walk model, index-less indexed flash codes, coding for storage

1. Introduction
Flash memory is widely used in a number of electronic prod-

ucts today, but data recording in flash memory is not a simple
issue. Flash memory consists of many flash cells that can store
electric charge in their floating gates. Fig. 1 illustrates the sim-
plified structure of flash cells[10]. Each cell has its own control
gate, and several cells (three cells in Fig. 1, but as many as 1018 to
1020 cells in practical products[8]) share a single basement and a
back gate. The collection of cells that share a back gate is called
an erase block because of the reason we mention later. There are
insulators that separate floating gates from control gates and the
basement, and therefore floating gates are electrically isolated.
Basically, the amount of charge that is stored in the floating gate
represents the value of the cell. In this study, we let the cell value
be an integer in Aq = {0, . . . , q − 1}, where q is the resolution of
the quantization of the charge. If we apply positive voltage to a
control gate, then, thanks to the quantum tunnel effect, electrons
in the basement “tunnels through” the insulator and added to the
floating gate. This operation is called a cell programming, and is

cellp p p p p

p p p p p p p p p p p p p
p p p p p p p p p p p p p
pppppppp
pppppppp

pppppppp
pppppppp

control
gate

insulator
floating gate
insulator

basement

back gate

Fig. 1 Flash memory architecture

1 Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma,
Nara, 630-0101, Japan

a) kaji@is.naist.jp

used to raise the value of a selected cell. The charge in a floating
gate remains for a long period of time even if the voltage to the
control gate is removed, which makes flash memory nonvolatile.
An interesting aspect of flash memory is that the operation to re-
move charge from a floating gate is not symmetrical to the cell
programming; the charge in a floating gate is removed by apply-
ing positive voltage to the back gate, but this operation affects all
cells in the same erase block. With this block erase operation,
values of all cells in the erase block are reset to 0. The block
erasure is a quite strong electric operation, and it can deteriorate
the insulators of the affected cells. The deteriorated insulator can-
not prevent the charge in a floating gate from leaking out, and it
is said that flash cells that have experienced thousands of block
erasures are no more suitable for data recording[8]. In this sense,
flash memory has finite lifetime in principle.

A number of efforts have been made to extend the lifetime
span of flash memory products. For example, many flash mem-
ory products are equipped with the mechanism that is known as
wear-leveling[9]. The wear-leveling is a kind of scheduling algo-
rithm, and contributes to prevent excessive use of small number
of specific cells. Recent operating systems inform flash memory
controller of higher-level information of data operation, where
the controller makes use of the information to avoid needless op-
erations. The TRIM command of the Windows operating sys-
tem[12] is an example of this device. We can also investigate
a data structure that is suitable for flash memory. For example,
the file-system architectures of JFFS and JFFS2 are designed to
avoid “in-place” rewritings of journal files that are essential in
hierarchical file-systems[14].

The use of flash codes can be regarded as one of such attempts
to extend the lifetime span of flash memory products. The pur-
pose of flash codes is to give a clever way of data representation

ⓒ 2014 Information Processing Society of Japan 1

Vol.2014-MPS-98 No.19
Vol.2014-BIO-38 No.19

2014/6/27



IPSJ SIG Technical Report

and data operations in a flash memory. Historically saying, a flash
code can be regarded as a descendant of WOM (write-once mem-
ory) codes that was proposed by Rivest in early 1980s[11]. How-
ever, today’s framework of flash codes owes much to the studies
of Jiang et al.[3], [4], in which K-bit data is stored in one erase
block with N flash cells, and the K-bit data is updated by a write
operation which randomly selects one of K-bits of the data and
flips the binary value of the selected bit. A flash code is designed
to accommodate as many write operations as possible between
two consecutive block erasures. Jiang et al. proposed flash codes
which allows more number of write operations than naive cod-
ing scheme[3], and extended the idea in [4]. Mahdavifar et al.
improved the idea of [4], and proposed index-less indexed flash
codes (ILIFC)[8].

The purpose of this study is to analyze the expected perfor-
mance of ILIFC. In the traditional discussion of WOM codes and
flash codes, the worst-case performance has been regarded as sig-
nificant. The worst-case performance gives the guarantee of the
lifetime of a memory product in the most unfortunate case, which
is especially important when the memory is really “write-once”.
However, as stated previously, flash cells today endure thousands
of block erasures. It is quite unlikely that the most unfortunate
scenario is repeated for thousands times, and the expected per-
formance should have strong and direct relation to the lifetime
of mass-produced flash memory products[2], [7]. In [2], the ex-
pected performance is discussed in terms of “cost” of moves of
a certain Markov chain model, and a flash code with good ex-
pected performance was proposed. The code construction is fur-
ther improved in [7], but these two studies do not discuss ILIFC.
Suzuki considered to improve the expected performance of IL-
IFC, and applied the Markov chain formalization of [2] in their
analysis[13]. The formalization contributes to estimate the ex-
pected performance of ILIFC with small parameters, though, the
approach seems not scalable because we need to construct and
analyze a Markov model whose size is exponential in N. Kaji
modeled the behavior of ILIFC as a multi-token cyclic random-
walk model, and clarified the expected performance of ILIFC in
a uniform writing scenario in which it is assumed that K data bits
are selected by write operations with an equal probability[6].

The contribution of this study is to relax the assumption in [6],
and to extend the discussion in [6] to the non-uniform writing
scenario. In many applications of data processing, data to be han-
dled is not homogeneous. In a practical file-systems, for example,
some files are updated frequently, while many files remain un-
changed for long time. When a user edits an ASCII encoded text
file, the most significant bit hardly changes while the other seven
bits have great probabilities to be modified. This kind of bias is
common in computer system, and the performance of flash codes
for such non-uniform writing scenario has practical importance.
Fortunately, the random-walk model that was developed in [6] is
still effective for this extended scenario. Unfortunately, however,
the analysis techniques that was used in [6] is no more available
because bits of the data have different statistical characteristics.
In this study, we reorganize the mathematical discussion in [6],
and refine the analysis technique so that it can be adopted to the
more general class of the problem.

2. Preliminary
2.1 Flash Codes

Flash codes and related notions are briefly reviewed in this
section. See [3] for detailed discussion and background issues
related to these preliminary. An erase block of a flash memory
is an array of N cells, where a cell is an element which stores
an integer value in Aq = {0, . . . , q − 1} where q is an integer
greater than one. A cell is said to be empty (resp. full) if its value
is 0 (resp. q − 1). Cells in an erase block are ordered, and the
value of the i-th cell with 0 ≤ i < N is denoted by ci. A Tuple
(c0, . . . , cN−1) ∈ AN

q is used to represent the contents of cells, and
called a state of the erase block. For two states c = (c0, . . . , cN−1)
and c′ = (c′0, . . . , c

′
N−1), we write c ≼ c′ if ci ≤ c′i for all 0 ≤ i < N,

and c ≺ c′ if c ≼ c′ and c , c′. The notion of “states” and “≺” are
extended to subsets of cells in a natural manner. In an erase block
with N cells, we store a value a K-bit binary data (b0, . . . , bK−1).
The value of the data is changed through a write operation, which
probabilistically selects one of bits of the data and flips the binary
value of the selected bit. This is a simplified model of the data
operation for a memory with the striping architecture. In the fol-
lowing discussion, we write pi with 0 ≤ i < K for the probability
of the i-th bit of the data be selected by a write operation.

The purpose of a flash code is to give correspondence between
{0, 1}K (the values of the K-bit data) and AN

q (states of N cells),
and to determine how to operate cell values for a requested write
operation. Indeed, a flash code is defined as a pair of func-
tions C = (E,D). The decoding function D is a mapping from
AN

q to {0, 1}K , and used to translate the state of the block to a
K-bit data value. The encoding function E is a mapping from
{0, . . . ,K−1}×AN

q to AN
q ∪{E}, where E is a special symbol which

is called block erasure, and determines how to operate cell values.
It is required that, if c′ = E(i; c) and c′ , E, then c ≺ c′, andD(c)
and D(c′) differ at the i-th bit position only. If there is no c′ that
satisfies the above conditions, then Emust return E. It is asusmed
that, at the initial moment, all cells are empty and the K-bit data
is (0, . . . , 0). Write operations are then performed repeatedly, and
the encoding function E is executed for each write operation. Be-
cause the state of the block increases monotonically with respect
to ≺, the encoding function eventually returns E. Let T denote the
number of write operations that were accommodated before E re-
turns E (i.e. E is returned at the T +1-th call of E). In general, the
value of T depends on the bit positions that were selected by the
write operations, and hence T is regarded as a random variable.
It is understood that T ≤ N(q − 1), and therefore

∆ = N(q − 1) − T,

which is called a write deficiency, indicates the “overhead” that
was induced by using the flash code. Obviously, a smaller value
of ∆ is more favorable. The maximum ∆ is called the worst-
case write deficiency, and the expected value of ∆ is called the
expected write deficiency.

2.2 Index-Less Indexed Flash Codes
An index-less indexed flash code (ILIFC)[8] has two different

“stages” in encoding. Asymptotically saying, using both of the

ⓒ 2014 Information Processing Society of Japan 2

Vol.2014-MPS-98 No.19
Vol.2014-BIO-38 No.19

2014/6/27



IPSJ SIG Technical Report

first and the second stages is good to reduce the worst-case write
deficiency[8]. However, the asymptotic difference is so small that
the use of the second stage gives very little contribution for prac-
tical choices of N. Indeed it often happens that the performance
is improved by omitting the second stage of ILIFC[6]. For this
reason, we consider ILIFC with the first stage only.

In ILIFC, N cells in an erase block are divided into slices with
each slice consists of K cells. For simplicity, we assume that N is
a multiple of K and there are N/K slices in one erase block. We
also assume that K(q−1) is an even number, which is essential in
ILIFC. A slice consists of K cells sm = (cmK , . . . , cmK+K−1) with
0 ≤ m < N/K. A slice is empty (resp. full) if its state is (0, . . . , 0)
(resp. (q−1, . . . , q−1)). A slice which is neither of empty nor full
is said to be active. The weight of a slice is defined as the sum of
values of cells in the slice. The key idea of ILIFC is to devise a
coding scheme which allows a slice to simultaneously represent
the value and the index of one of bits of the data. For integers i
and w with 0 ≤ i < K and 0 ≤ w ≤ K(q − 1), let define c[i]

w as
follows;
• c[0]

0 = (0, . . . , 0),
• c[0]

w+1 is obtained from c[0]
w by increasing the value of the left-

most nonempty cell in c[0]
w by one, and

• c[i+1]
w is obtained from c[i]

w by cyclically shifting c[i]
w to the

right direction by one position.
For example, if q = 3 and K = 4, then c[0]

0 , . . . , c
[0]
K(q−1) are

0000, 1000, 2000, 2100, 2200, 2210, 2220, 2221, 2222,

respectively. States c[2]
0 , . . . , c

[2]
K(q−1) are obtained by cyclically

shifting the above states by two-bits each;

0000, 0010, 0020, 0021, 0022, 1022, 2022, 2122, 2222.

If the state of a slice equals to c[i]
w , then we say that the slice has an

index i and a binary value (w mod 2). An update is an operation
to modify the state of a slice from c[i]

w to c[i]
w+1 where 0 ≤ i < K

and 0 ≤ w < K(q−1). Note that an update operation increases the
weight of a slice by one, and flips the binary-value of the slice.
The index of the slice stays unchanged by update operations.

ILIFC manages cell values in such a way that the i-th bit of the
K-bit data is 1 if and only if there is an active slice whose index
is i and whose binary value is 1. If there is no active slice with
index i, or, if there is an active slice with index i but its binary
value is 0, then the i-th bit of the data is interpreted as 0. Con-
sider for example that a value (b0, b1, b2, b3) of the K-bit data is
recorded as the state in Fig. 2(a), where we assume that N = 24,
K = 4 and q = 4. In this case N = 24 cells are divided into
six slices with K = 4 cells each as in (b) in the figure. We can
determine that the slice s0 has an index 1 and a binary value of 1,
which means that b1 = 1. The slices s1 and s3 have indexes 0 and
2, respectively, but their binary values are both 0. Consequently
we have b0 = b2 = 0. There is no active slice with index 3 in
Fig. 2(b), and b3 is interpreted as 0. Summarizing, the data value
is (b0, b1, b2, b3) = (0, 1, 1, 0).

The encoding function E operates cell values so that the state
is consistent with the current value of the K-bit data. Consider
that a write operations requests to flip the i-th bit of the data. The

a: 0 3 3 1 2 0 0 0 0 0 0 0 3 1 3 3 0 0 0 0 0 0 0 0

s0 s1 s2 s3 s4 s5

��	 ��� ��
 BBN AAU @@R

b: 0 3 3 1 2 0 0 0 0 0 0 0 3 1 3 3 0 0 0 0 0 0 0 0

c: 0 3 3 1 2 0 0 0 0 0 0 0 3 2 3 3 0 0 0 0 0 0 0 0

d: 0 3 3 1 2 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0

e: 0 3 3 1 2 0 0 0 0 0 1 0 3 3 3 3 0 0 0 0 0 0 0 0

f: 1 3 3 3 3 2 0 0 3 3 3 3 3 3 3 3 2 0 0 3 3 3 3 3

Fig. 2 Illustration of ILIFC

first attempt the encoding function tries is look for an active slice
with index i, and update the found slice. If there is no active slice
with index i, then the function chooses one of empty slices, and
activates the slice to become c[i]

1 . In case there is no empty slice
available, then E returns E. Again consider that the state of the
block is given by Fig. 2)(b). If a write operation requests to filp
b2, then the encoding function spots and updates s3 because its
index is 2. The encoding results in Fig. 2)(c). With one more
write operation of b2, the state becomes as in Fig. 2)(d). Note
that there is no active slice with index 2 in Fig. 2)(d), but this is
not a problem because b2 = 0 at this moment. If another writ
operation is performed for b2, then the encoding function acti-
vates an empty slice, for example s2, and the encoding continues.
Consider that we have reached Fig. 2)(f), and a write operation
of b2 is requested. In this case, the erase block has no room to
accommodate the request, and a block erasure E is returned.

3. Cyclic Random-Walk Model
The purpose of this section is to define a mathematical model

that contributes to analyze the performance of ILIFC. The model
indeed reprsents the distribution of weights of slices that are as-
sociated with the bits of the data. A fundamental property of the
model is discussed in this section, which will be is utilized in the
next for the performance analysis of ILIFC.

3.1 Definition of the Model
In the following discussion, we let Z = K(q−1) which equals to

the weight of a full slice. Consider a structure which consists of Z
places Q0, . . . ,QZ−1 and K tokens τ0, . . . , τk−1. Fig. 3 illustrates a
simple example of such a structure with siz states and four tokens,
where tokens are represented by numbered small circles. The
places are cyclically connected, and we say that Qw+1 mod Z is the
next place of Qw. The tokens are initially put in the place Q0, and
moved to the next places according the execution of the encoding
function E; if E is invoked for a bit position i with 0 ≤ i < K,
then the i-th token τi is moved to the next place. From the char-
acteristic of the encoding function, we have the relationship that a
token τi is in the place Qw with 1 ≤ w < Z (note that w = 0 is not
included here) if and oly if there is an active slice whose index is
i and whose weight is w. The token τi is in Q0 if and only if there
is no active slice whose index is i.

This place-and-token structure can be regarded as a cyclic
random-walk model with multiple tokens. At each move of the

ⓒ 2014 Information Processing Society of Japan 3

Vol.2014-MPS-98 No.19
Vol.2014-BIO-38 No.19

2014/6/27



IPSJ SIG Technical Report

model, one of tokens is selected according to the probabilities
p0, . . . , pK (note that these are probabilities of the corresponding
bits selected by a write operation), and moved to the next place.
We are interested in the distribution of the tokens after t moves of
this model, where t is an arbitrary positive integer. For 0 ≤ w < Z
and t ≥ 0, let denote the number of tokens in the place Qw after t
moves by a random variable X(t)

w;p0 ,...,pK−1 . We would like to obtain
a mathematical means that gives clear perspective of the expected
value of X(t)

w;p0 ,...,pK−1 .

3.2 Simplification to a Single-Token Model
It is difficult to clarify the distribution of X(t)

w;p0 ,...,pK−1 precisely
because there is complicated correlation among random vari-
ables. For example, we must have

Z−1∑
w=0

X(t)
w;p0 ,...,pK−1 = K, and

Z−1∑
w=0

wX(t)
w;p0 ,...,pK−1 = t.

To get around such complicated discussion, we consider to “de-
compose” the multi-token model into K independet single-token
models. We remark that there are subtle problems in the de-
composition; the decomposition loses some important aspects of
the multi-token model including the correlation amoung tokens,
though, it is still helpful as far as our interest is limited to the ex-
pected values. We formalize the single-token model in this sec-
tion, and its relation to the multi-token model is discussed in the
next section.

A cyclic random-walk model with a single token is a struture
that consists of places and only one token. The token stays at the
current place with probability 1 − p, and moves to the next place
with probability p. We use Y (t)

w;p with 0 ≤ w < Z and t ≥ 0 as
the random variable denoting the number of token in the place
Qw after t moves of the model. Because there is only one to-
ken in this model, Y (t)

w;p is either of 0 or 1, and the expected value
of the variable E

[
Y (t)

w;p

]
equals to the probability that the token

is in the place Qw. This means that the relation among E
[
Y (t)

w;p

]
can be stated by utilizing a recursion that characterizes the prob-
ability distribution of the token. For t ≥ 0, let define a vector
Y(t) =

(
E

[
Y (t)

0;p

]
, . . . , E

[
Y (t)

Z−1;p

])
. Because a token must be in Q0

initially, we have Y(0) = (1, 0, . . . , 0) The token stays at the same
place with probability 1 − p, and moves to the next place with
probability p. Therefore, we have

��
��

��
��

��
��

��
����

����
�� HHj

?

���HHY

6

��*
Q0

Q1

Q2

Q3

Q4

Q5
h0

h1 h2

h3
Fig. 3 Cyclic Random-Walk Model with Multple Tokens

(
Y(t)

)T
= W

(
Y(t−1)

)T
= W t

(
Y(0)

)T
, (1)

where T denotes the transposition of a vector and

W =



1 − p 0 . . . 0 p
p 1 − p

. . .
. . . O

O
. . .

. . .

p 1 − p


. (2)

The change of values of Y(t) is sketched in Fig. 4 for p = 0.1
(left), 0.5 (center) and 0.8 (right) with taking Z = 16. Each il-
lustration consists of arrays of square tiles, where the color of the
(w, t′) component of the tile (the top-left tile is the (0,0) compo-
nent) represents the value of E(Y (5t′)

w;p ), and therefore one column
shows the component values of Y(5t′). A tile with denser color
means greater probability; black is 1, white is 0, and gray color
represents a intermediate probability. We can see that the token
disperses uniformly as the number t of moves increases.

3.3 Relation between Single-Token and Multi-Token Models
The following lemma connects the single-token model and the

multi-token model.
Lemma 3.1 For any p0, . . . , pK−1 with p0 + · · · + pK−1 = 1,

E(X(t)
w;p0 ,...,pK−1 ) =

K−1∑
i=0

E(Y (t)
w;pi ).

�
Remind that the positions of tokens in the multi-token model is
correlated with each other, which makes the analysis of the model
quite complicated. However, Lemma 3.1 implies that, as far as
we discuss the expected number of tokens, we can decompose
the multi-token model into k single-token models that move inde-
pendently. This characteristic simplifies the analysis of the multi-
token model, and contributes to the performance evaluation of
ILIFC as we see in the next section.

For the proof of Lemma 3.1, we first consider non-cyclic vari-
ants of the random-walk models, and extend the discussion to
the original cyclic models. A linear random-walk model with
multiple tokens (resp. a single token) is a struture with infinite
places Q0,Q1, . . . and K tokens τ0, . . . , τK−1 (resp. one token τ).
The move of the token is defined in the same way as the cyclic
counterparts of the model. We use V (t)

w;p0 ,...,pK−1 and W (t)
w;p as ran-

dom variables of the numbers of tokens in the linear random-walk
model with multiple tokens and a single token, respectively. The
single-token model defined here is a Markov model of a binomial
process, and

E
[
W (t)

w;p

]
=

(
t
w

)
pw(1 − p)t−w

for w ≥ 0. The following lemma is the non-cyclic counterpart of
Lemma 3.1.

Lemma 3.2 For any p0, . . . , pK−1 with p0 + · · · + pK−1 = 1,

E
[
V (t)

w;p0 ,...,pK−1

]
=

K−1∑
i=0

E
[
W (t)

w;pi

]
=

K−1∑
i=0

(
t
w

)
pw

i (1 − pi)t−w. (3)

Proof: The proof is by induction on the number K of tokens.

ⓒ 2014 Information Processing Society of Japan 4

Vol.2014-MPS-98 No.19
Vol.2014-BIO-38 No.19

2014/6/27



IPSJ SIG Technical Report

p = 0.1 p = 0.5 p = 0.8

Fig. 4 The diffusion of the expected number of tokens

When K = 1, the multi-token and single-token models are identi-
cal, and the equation holds obviously. Assume for the induction
that the equation holds for any cases with K − 1 or less tokens.
Consider that a linear random-walk model with K tokens have
made t moves, and t moves contain l moves of the K-th token
τK−1 where 0 ≤ l ≤ t. Note that this case happens with probabil-
ity

rl =

(
t
l

)
pl

K−1(1 − pK−1)t−l,

because τK−1 is selected and moved with probability pK−1. The
remaining t− l moves are used for other K−1 tokens τ0, . . . , τk−2.
Consider to restrict this multi-token model by ignoring the token
τK−1 and l moves of τK−1, then we have another random-walk
model with K −1 tokens and t− l moves. In this restricted model,
the token τi with 0 ≤ i < K −1 is characterized by the probability
qi = pi/(1 − pK−1). Use the inductive hypothesis, and we have

E
[
V (t−l)

w;q0 ,...,qK−2

]
=

K−2∑
i=0

(
t − l
w

)
qw

i (1 − qi)t−l−w.

Now bring back the token τK−1 to this restricted model. The to-
ken τK−1 must be in the place Ql, and contribute to the expected
number of tokens in Ql. Consequently, if τK−1 has made l moves,
then

E
[
V (t)

w;p0 ,...,pK−1

]
= E

[
V (t−l)

l;q0 ,...,qK−2

]
+ ϕ(w, l), (4)

where ϕ(w, l) is an indicator function that is 1 if and only if w = l,
and 0 otherwise.

Remind that we are now discussing the case of τK−1 moved l
times, which happens with probability rl. The general value of
E

[
V (t)

w;p0 ,...,pK−1

]
must be obtained by averaging (4) over all possi-

ble values of l. Therefore, we have

E
[
V (t)

w;p0 ,...,pK−1

]
=

t∑
l=0

rl

(
E

[
V (t−l)

w;q0 ,...,qK−2

]
+ ϕ(w, l)

)
(5)

The first term in the right-hand side of (5) is reduced to

K−2∑
i=0

(
t
w

)
pw

i (1 − pi)t−w, (6)

where detailed transformation of the formula is given in Fig. 5.
The second term in the right-hand side of (5) is simply reduced to

t∑
l=0

rlϕ(w, l) = rw =

(
t
w

)
pw

K−1(1 − pK−1)t−w. (7)

Add (6) and (7), and (3) is shown for this K token case. This
completes the proof of the lemma. �

Lemma 3.2 is for linear random-walk models, but the re-
sult can be transformed to the cyclic case by merging places

Qw+Z ,Qw+2Z , . . . into Qw, where 0 ≤ w ≤ Z − 1. This observation
implies that

E
[
X(t)

w;p0 ,...,pK−1

]
=

∞∑
h=0

E
[
V (t)

w+hZ;p0 ,...,pK−1

]
, and (8)

E
[
Y (t)

w;pi

]
=

∞∑
h=0

E
[
W (t)

w+hz;pi

]
(0 ≤ i < K). (9)

Use (3) of Lemma 3.2 to connect the right-hand sides of (8) and
(9), and we have

E
[
X(t)

w;p0 ,...,pK−1

]
=

∞∑
h=0

E
[
V (t)

w+hZ;p0 ,...,pK−1

]
=

∞∑
h=0

K−1∑
i=0

E
[
W (t)

w+hZ;pi

]
=

K−1∑
i=0

∞∑
h=0

E
[
W (t)

w+hZ;pi

]
=

K−1∑
i=0

E
[
Y (t)

w;pi

]
,

and the proof of Lemma 3.1 completed.

4. Expected Write Deficiency of ILIFC
Lemma 3.1 gives the baseline of the performance analysis of

ILIFC, but we need to employ different techniques to utilize
Lemma 3.1 according to our target. We first consider a non-
asymptotic scenario in which N is rather small, and the block
erasure is returned while the random-walk model is still in the
transient behavior. In the second asymptotic scenario, we deal
with the case that N is sufficiently large and the limit discussion
is feasible.

4.1 Non-Asymptotic Discussion
Remind that the encoding function of ILIFC performs either

one of two actions; increase the weight of an active slice, or “ac-
tivate” an empty slice (i.e. choose an empty slice and raise its
weight by one). The block erasure is requested when the encod-
ing function tries to perform the N/K + 1-th activation, because
the number of slices in the erase block is only N/K. Note that
the activation of a slice is made when a write operation tries to
flip a data bit, say i-th bit, that does not have a corresponding
active slice. In this case, the token τi must be in the place Q0

due to the correspondence between the bahvior of the encoding
function and the random-walk model. Consequently, at the t-th
write opearation, an activation of a slice takes place with proba-
bility

∑K−1
i=0 piE

[
Y (t−1)

0;pi

]
. This probability can be also regarded as

the expected number of slices that are newly activated at the t-th
write operation, and the accumulation of this value

S t =

t∑
l=1

K−1∑
i=0

piE
[
Y (l−1)

0;pi

]
=

K−1∑
i=0

t∑
l=1

piE
[
Y (l−1)

0;pi

]
(10)

gives the expected number of slices which have been activated

ⓒ 2014 Information Processing Society of Japan 5

Vol.2014-MPS-98 No.19
Vol.2014-BIO-38 No.19

2014/6/27



IPSJ SIG Technical Report

t∑
l=0

rlE
[
V (t−l)

w;q0 ,...,qK−2

]
=

t∑
l=0

(
t
l

)
pl

K−1(1 − pK−1)t−l
K−2∑
i=0

(
t − l
w

)
qw

i (1 − qi)t−l−w

=

t∑
l=0

K−2∑
i=0

t!
l!(t − l)!

(t − l)!
w!(t − l − w)!

pl
K−1(1 − pK−1)t−l

(
pi

1 − pK−1

)w (
1 − pi

1 − pK−1

)t−l−w

=

K−2∑
i=0

t!
w!(t − w)!

pw
i (1 − pi)t−w

t∑
l=0

(t − w)!
l!(t − w − l)!

(
pK−1

1 − pi

)l (
1 − pK−1

1 − pi

)t−w−l

=

K−2∑
i=0

(
t
w

)
pw

i (1 − pi)t−w.

Fig. 5 Transformation of the first term of (5)

0

1

2

3

4

0 10 20 30 40 50 60 70 80

p = 0.1
p = 0.3
p = 0.5
p = 0.8

Fig. 6 The accumulation of used slices (single bit)

by the t write operations performed so far. Since N/K is the
maximum number of slices that we can use, the smallest t with
S t > N/K gives the estimation of the number of write operations
that causes the block erasure. The expected write deficiency is
therefore estimated as ∆ = N(q − 1) − t where t is the smallest
integer with S t > N/K.

Fig. 6 shows how the inner summation
∑t

l=1 piE
[
Y (l−1)

0;pi

]
in (10)

where the value of t is varied from 0 to 80. Four different values
pi = 0.1, 0.3, 0.5 and 0.8 are sketched. Intuitively, this graph
shows the expected number of slices that have been used to rep-
resent a certain bit of the data. For example, we can read that the
values of the curves for p = 0.1 and 0.3 at t = 40 are 0.99 and
1.06, respectively. This suggests that a data bit with probability
0.1 (resp. 0.3) should consume approximately 0.99 (resp. 1.06)
slices after t = 40 write operations. The accumulation of these
values gives the total number of slices that are used by either bit
of the K-bit data. For example, if K = 4 and four bits are selected
by write operations with probabilities 0.1, 0.3, 0.3 and 0.3, then,
after 40 write operations, 0.99+1.06×3 = 4.17 slices are expected
to be in use. We let this example as “case 1”. In the “case 2”, we
consider that four bits are selected by write operations with prob-
abilities 0.1, 0.1, 0.3 and 0.5. In this case, the expected number
of slices in use will be 0.99×2+1.06+1.87 = 4.91 after 40 write
operations. The expected number of slices for these two cases are
illustrated in Fig. 7, again the x-axis is the value of t. The number
of slices is expected to exceed 5 at t = 51 for the case 1, and at
t = 43 for the case 2. If an erase block contains only four slices
(and hence 4 × 4 = 16 cells), then ILIFC can offer 51 − 43 = 8
more write operations in the case 1 compared to the case 2. From
this example, we can see that the non-uniform nature of write op-
erations affects the performance of ILIFC for relatively small N.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

case 1
case 2

Fig. 7 The accumulation of used slices (multiple bits)

4.2 Asymptotic Discussion
If there are so many cells in the erase block and asymptotic

discussion is feasible, then we can take purely analytical ap-
proach. In ILIFC, it is easily understood that the sum of weights
of slices equals to the number of performed write operations. This
means that the write deficiency is determined by subtracting from
N(q − 1) the sum of weights of all slices at the time of block era-
sure. Assume that t write operations have been successfully per-
formed, and block erasure occurs at the t + 1-th write operation.
At this moment, at most K slices are used to store K-bit data, and
the other N/K − K slices are full. The sum of weights of those
full slices is (N/K −K)K(q− 1) because one full slice has weight
K(q − 1). The weights of the remaining K slices are character-
ized by the random-walk model discussed in Sect 3. Remind that
X(t)

w;p0 ,...,pK−1 with 1 ≤ w ≤ K(q − 1) − 1 equals to the number
of data bits whose values are represented by slices with weight
i, that is, the erase block contains X(t)

w;p0 ,...,pK−1 slices with weight
w. For w = 0 case, we need special care because X(t)

0;p0 ,...,pK−1
is

the number of data bits which do not have corresponding active
slices. This means that the K slices under investigation contain
X(t)

0;p0 ,...,pK−1
slices which are not active. These non-active slices

cannot be empty, because the encoding function is returning a
block erasure, and hence those X(t)

0;p0 ,...,pK−1
slices must be all full.

For notational simplicity, let define X(t)
K(q−1);p0 ,...,pK−1

= X(t)
0;p0 ,...,pK−1

.
Summarizing the discussion, the write deficiency of this block
erasure event is given as follows:

W = N(q − 1) − (N/K − K)K(q − 1) −
K(q−1)∑

w=1

wX(t)
w;p0 ,...,pK−1

= K2(q − 1) −
K(q−1)∑

w=1

wX(t)
w;p0 ,...,pK−1 .

The expected write deficiency is therefore equal to

ⓒ 2014 Information Processing Society of Japan 6

Vol.2014-MPS-98 No.19
Vol.2014-BIO-38 No.19

2014/6/27



IPSJ SIG Technical Report

K2(q − 1) −
K(q−1)∑

w=1

wE
[
X(t)

w;p0 ,...,pK−1

]
. (11)

The value of E
[
X(t)

w;p0 ,...,pK−1

]
is characterized by E

[
Y (t)

w;pi

]
as in

Lemma 3.1. Recall the vector representation Y(t) of the expected
values, the recursive relation (1), and the transition matrix W in
(2). According to the discussion in Chapter XVI of [1], the (a, b)
component of W t is given as

w(t)
a,b =

1
K(q − 1)

K(q−1)∑
r=1

θr(a−b) (1 − p(1 − θr))t , (12)

where θ = e2πi/K(q−1) with i2 = −1 (remark: there is an error in
Eq. (2.11) in Chap. XVI of [1], where r should range from 1 to ρ,
not to ρ − 1, with ρ = K(q − 1) in our context).

Lemma 4.1 limt→∞ w(t)
a,b = 1/K(q − 1).

Proof: We show that terms in (12) diminish to zero except for
r = K(q − 1). Let define tr = 1 − p(1 − θr). By using the Eular’s
formula eix = cos x + i sin x, tr can be written as

tr = 1 − p + p cos 2πr/K(q − 1) + ip sin 2πr/K(q − 1).

The L2-norm of tr is computed as

(1 − p + p cos 2πr/K(q − 1))2 + (p sin 2πr/K(q − 1))2

= 1 − 2p(1 − p)(1 − cos 2πr/K(q − 1)),

which is smaller than 1 if r , K(q − 1), and equals to 1 if
r = K(q − 1). Therefore, all terms in (12) diminish to zero at
t → ∞ except for r = K(q − 1). The lemma holds because
θr(a−b) = θr = 1 for r = K(q − 1). �

Since
(
Y(t)

)T
= W t

(
Y(0)

)T
= W t(1, 0, . . . , 0)T, the above

lemma implies that E
[
Y (t)

w;p

]
= 1/K(q − 1) for any w at t → ∞,

independent from the probability value of p.
Lemma 4.2 For very large N, the expected write deficiency

of ILIFC is K(K(q − 1) − 1)/2.
Proof: From Lemma 3.1, the expected number of active slices
with weight w is given by E

[
X(t)

w;p0 ,...,pK−1

]
=

∑K−1
i=0 E

[
Y (t)

w;pi

]
. If

N is very large, then a large number of write operations are per-
formed, and E

[
Y (t)

w;pi

]
approaches to 1/K(q − 1). In this case,

E
[
X(t)

w;p0 ,...,pK−1

]
= 1/(q − 1), and (11) is computed as

K2(q − 1) −
K(q−1)∑

w=1

wE(X(t)
w;p0 ,...,pK−1 )

= K2(q − 1) −
K(q−1)∑

w=1

w/(q − 1)

= K(K(q − 1) − 1)/2,

and the lemma holds. �
We remark that the probabilities p0, . . . , pK−1 do not affect the
expected write deficiency in this asymptotic scenario, which is an
interesting contrast to the non-asymptotic case.

5. Conclusion
The expected write deficiency of ILIFC is studied for non-

uniform write operation. The write deficiency of ILIFC has
strong relation to the weight distribution of active slices. The

transition of weight distribution can be modeled as a cyclic
random-walk with multiple tokens, for which discussion can be
decomposed to simpler problems with just one token. Based on
this decomposition, the expected write deficiency is determined
for non-asymptotic scenario with the aid of computation. For
asymptotic case with very large N, the weight distribution con-
verges to a certain value, and the write deficiency is not affected
by the non-uniform nature of write operations. This is an interest-
ing contrast to the non-asymptotic discussion in which the non-
uniform nature affects the write deficiency in general.

References
[1] Feller, W., An Introduction to Probability Theory and Its Applications,

Third Edition, Wiley, 1968.
[2] Finucane, H., Liu, Z. and Mitzenmacher, M.: “Designing Floating

Codes for Expected Performance,” Proc. of 46th Allerton Conf. on
Communication, Control and Computing, pp.1389–1396, 2008.

[3] Jiang, A., Bohossian, V. and Bruck, J.: “Floating Codes for Joint Infor-
mation Storage in Write Asymmetric Memories,” Proc. of 2007 Intl.
Symp. on Inf. Theory, pp.1166–1170, 2007.

[4] Jiang, A. and Bruck, J.: “Joint Coding for Flash Memory Storage,”
Proc. of 2008 Intl. Symp. on Inf. Theory, pp.1741–1745, 2008.

[5] Jiang, A., Mateesch, R., Schwartz, M. and Bruck, J.: “Rank Modula-
tion for Flash Memories,” IEEE Trans. on Inf. Theory, 55, 6, pp.2659–
2673, June 2009.

[6] Kaji, Y.: “The Expected Write Deficiency of Index-Less Indexed Flash
Codes,” IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, E95-A, 12, pp.2130-2138, 2012.

[7] Kamabe, H.: “Floating Codes with Good Average Performance,” Proc.
of 32nd Symp. on Inf. Theory and Its Applications, pp.856–861, 2009.

[8] Mahdavifar, H., Siegel, P.H., Vardy, A., Wolf, J.K. and Yaakobi, E.:
“A Nearly Optimal Construction of Flash Codes,” arXiv:0905.1512,
2009.

[9] MicronTechnology, Inc.: “Wear Leveling in Micron NAND Flash
Memory,” Technical Note, TN-29-61, 2010 (retrieved on May 12,
2014).
http://www.micron.com/-/media/Documents/Products/Technical
Note/NAND Flash/tn2961 wear leveling in nand.pdf

[10] Olson, A.R. and Langlois, D.J.: “Solid State Drives Data Reliability
and Lifetime,” Imation Corporation White Paper, 2008 (retrieved on
May 12, 2014).
http://www.csee.umbc.edu/ squire/images/ssd1.pdf, 2008

[11] Rivest, R.L. and Shamir, A.: “How to Reuse a ‘Write-Once’ Memory,”
Information and Control, 55, pp. 1.19, 1982.

[12] Shu, R.: “Windows 7 Enhancements for Solid-State Drives,” 2008
Windows Hardware Engineering Conference, 2008 (retrieved on May
14, 2014).
http://download.microsoft.com/download/F/A/7/FA70E919-8F82-
4C4E-8D02-97DB3CF79AD5/COR-T558 Shu Taiwan.pdf

[13] Suzuki, R. and Wadayama, T.: “Modified Index-less Indexed Flash
Codes for Improving Average Performance,” IEICE Trans. on Fun-
damentals (Japanese Edition), J94-A, 12, pp.991–1000, 2011. (in
Japanese).

[14] Woodhouse, D.: “JFFS2: The Journalling Flash File System, version
2,” 2003 (retrieved on May 14, 2014).
https://www.sourceware.org/jffs2/

ⓒ 2014 Information Processing Society of Japan 7

Vol.2014-MPS-98 No.19
Vol.2014-BIO-38 No.19

2014/6/27


