
Electronic Preprint for Journal of Information Processing Vol.22 No.3

Invited Paper

Algorithms and Techniques for Proactive Search

C. ShaunWagner1,a) Sahra Sedigh Sarvestani1,b) Ali R. Hurson1,c)

Received: December 4, 2013, Accepted: February 8, 2014

Abstract: While search engines have demonstrated improvements in both speed and accuracy, their response time is
prohibitively long for applications that require immediate and accurate responses to search queries. Examples include
identification of multimedia resources related to the subject matter of a particular class, as it is in session. This paper
begins with a survey of collaborative recommendation and prediction algorithms, each of which applies a different
method to predict future search engine usage based on the past history of a search engine user. To address the short-
comings identified in existing techniques, we propose a proactive search approach that identifies resources likely to be
of interest to the user without requiring a query. The approach is contingent on accurate determination of similarity,
which we achieve with local alignment and output-based refinement of similarity neighborhoods. We demonstrate our
proposed approach with trials on real-world search engine data. The results support our hypothesis that a majority
of users exhibit search engine usage behavior that is predictable, allowing a proactive search engine to bypass the
common query-response model and immediately deliver a list of resources of interest to the user.

Keywords: proactive search, neighborhoods of similarity, recommendation algorithms

1. Introduction

Growing interest in augmenting classroom instruction with
multimedia resources, a more personalized approach to teaching,
and demonstrated efficacy of active learning techniques have led
to more dynamic teaching that seeks to facilitate active learning,
where interaction with and among the students determines the
focus and sequence of the subject matter presented. This adap-
tive approach necessitates that instructors have access to a vast
pool from which they can rapidly select educational resources
to supplement and enrich a predetermined lesson plan. Addi-
tional motivation for pooling and enabling rapid search of ed-
ucational resources arises from the increasingly modular nature
of course design and the overlap among modules in different
courses. Learning artifacts developed for a module in one course
may (and should) become useful in other courses, facilitating net-
worked curricula. In brief, the efficacy of modern instructional
techniques relies on the ability of the instructor to rapidly locate
related learning artifacts, giving search engines an instrumental
role.

The personalized learning that is facilitated by rapid identifi-
cation of supplementary resources is one of many applications
that can benefit from a proactive search engine. We differenti-
ate proactive search from predictive search - the latter predicts
the query likely to be entered by a user; the former predicts the
actual resources of interest, without requiring a query. This pa-
per describes our work on developing techniques for accurate and
rapid proactive search.

Search engines are vital tools for the information age [3], [11],

1 Missouri University of Science and Technology, Rolla, MO 65409, USA
a) csw6g3@mst.edu
b) sedighs@mst.edu
c) hurson@mst.edu

[15], [17]. Their development began as a study on indexing tech-
niques - a topic as old as information storage itself [11]. From the
early indexing of religious texts into books, chapters, and verses
to modern indexing of library resources by type, category, and au-
thor, indexing has served as a natural method of facilitating easier
and faster access to information resources. Early on, search en-
gines used keywords to allow users to refer to an index without
knowledge of how the resources were indexed. Providing a search
query (of keywords) and receiving a list of resources has become
the standard query-response model of search engines [11].

Improvement of search engines focuses on two main aspects of
performance: accuracy and speed [7], [15], [24]. Accuracy refers
to how well the search engine ties a search query to a relevant in-
formation resource. It is subjective, based on the user’s concept of
what is relevant and what is not. Speed refers to how quickly the
search engine is able to return results. Speed is easily measured
as a duration. We do not use the term response time to avoid am-
biguity - the duration we measure transpires between invocation
of the search engine by the user, and the selection of a result.

Our research focuses on the use of recommendation; i.e.,
proactively returning responses to queries that the user is ex-
pected to make, to improve both accuracy and speed of search
engines. Successful recommendation can improve accuracy, as
the resources recommended are likely to be of interest to the user.
Speed is improved because proactive search eliminates the need
for the user to enter a query and wait for a response - the results
will be waiting for the user to review them. Proactive search ca-
pability can supplement the typical query-response functionality
of a search engine - when recommendation is rendered infeasible
due to lack of information; e.g., prior search history, the proac-
tive search engine will perform exactly as it would without rec-
ommendation, without any degradation in accuracy or speed.

Recommendation has proven successful in many application

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

domains where users need to be directed to resources. ama-
zon.com uses recommendation to direct users to products that
they are anticipated to purchase. Netflix uses recommendation
to direct users to movies they are anticipated to find of interest.
Pandora attempts the same task for music. These applications
succeed in guiding a user to resources of interest to him or her;
however, the form of recommendation they use is of limited use
in applications with time constraints, as it generally ignores the
context and presents a user with a “wholesale” list of items of po-
tential interest. Recommendation classifies resources by interest,
without considering the time or sequence in which the resources
are likely to be of interest [2], [10]. In the classroom setting de-
scribed earlier in this paper, such a “wholesale” list is too generic
to be helpful in identifying resources relevant to a specific topic
of discussion.

Prediction is a specialized form of recommendation that iden-
tifies resources that are likely to be of interest to a specific user
in a specific (temporal) context [2]. Using the previous recom-
mendation examples, prediction would identify the item that an
amazon.com user is likely to purchase next Tuesday or the movie
a Netflix user is likely to watch tonight. In the classroom, predic-
tion can identify the resource needed “next” - immediately fol-
lowing the use of a specific sequence of other resources. Proactive
search will transparently and pervasively anticipate the informa-
tion for which the user is likely to search, based on the context
and previous behavior of the user. The proactive approach, when
feasible and successful, eliminates query entry time and hence
reduces the overall search time for the user.

A proactive search engine does not need to identify the abso-
lute time when a resource will be requested - it is enough to iden-
tify the order in which resources will be requested. The search
history of the user, specifically, the resources selected from search
results, creates a sequence of resources that is used to predict the
resources likely to be of subsequent interest. Accuracy and speed
are improved, facilitating applications such as real-time identifi-
cation of educational resources as a class is in session.

The success of proactive search is entirely contingent on mod-
eling and predicting specific user behavior; e.g., purchasing or pe-
rusal of movies or music, based on the history of the user. Model-
ing human behavior is an established science [13], [18]. The com-
mon model is state-based, similar to a Markov model. Users are
defined as being in a discrete state that describes how the user re-
lates to the environment. An event in the environment or an action
by the user causes a change in the state. Behavior models have
been successfully applied to very complex situations, such as pre-
dicting the actions of the driver of an automobile [13], [16], [21].

Many behavior models rely on identifying similarity among
users - it is assumed that similar history begets similar actions in
the future. A population is divided into groups of users, where
the members of a group have exhibited similar behavior. These
are often referred to as neighborhoods of similarity, or simply
neighborhoods. Using neighborhoods of similarity refines behav-
ior models by constraining the pool of users from which the data
supporting the model is drawn. This in turn improves the accu-
racy of predictions made based on the behavioral model. The
k-nearest neighbor (k-NN) algorithm captures the process of con-

structing a neighborhood. All of the many variations of k-NN
aim to construct a neighborhood around a target user [20]. The
parameter k may refer to the extent of similarity between the tar-
get user and other users in the neighborhood - anyone who is less
than k similar is excluded from the neighborhood. In other imple-
mentations, k refers to the cardinality of the neighborhood.

In the interest of improving speed, this paper suggests a re-
finement to the k-NN technique. In classifier systems, the out-
come of classification may be used to refine the classifier and
improve accuracy. Proactive search relies on classification of re-
sources (e.g., results returned in response to a search query) into
two groups. One group is comprised of the one resource that
the user will select; every other resource is in the second group.
In refining the neighborhood, any member whose presence con-
tributed to identifying the resource of interest to the user is kept
in the neighborhood, without any further measurement of similar-
ity. Those who failed at classifying the proper resource are auto-
matically replaced with other users who may be more successful
in the next prediction. Carrying out measurements of similarity
between users can be a complex process, and as such, avoiding
comparisons for members who failed to contribute to success-
ful prediction reduces complexity and is likely to improve accu-
racy. This process is described as outcome-based refinement of
the neighborhood, where the outcome in question is whether or
not the recommended resource was of interest to the user.

This paper demonstrates the feasibility of proactive search,
elaborating and expanding on our earlier work [22]. We describe
the techniques that comprise the foundation of proactive search,
and propose refinements that improve its accuracy and speed.
The novelty of the contribution lies in the very concept of proac-
tive search, which to our knowledge we are the first to propose.
The refinements proposed and demonstrated are also novel. It is
worth reiterating that the objective of our work is to eliminate al-
together the need for entering a query, differentiating our proposal
from techniques such as Google Instant Search, which predict the
query, then continue to apply the query-response model.

The basis of proactive search is accurate prediction of user in-
terests. To this end, Section 2 presents a survey of common pre-
diction algorithms and describes their role in our proposed proac-
tive search method. Prediction is in turn contingent on identifica-
tion of similarity - the topic of Section 3, where common k-NN
implementations are introduced Section 4 describes the specific
hypothesis of the research presented in this paper - that proac-
tive search succeeds in prediction of resources of interest while
eliminating the need for a search query. The test methods used to
confirm this hypothesis, the real-world search engine data used,
and the scoring methods applied in validation of the proposed
techniques are also described in Section 4. The results of an ex-
perimental case study are presented in Section 5. Section 6 con-
cludes the paper by discussing the viability and effects of proac-
tive search.

2. Recommendation and Prediction

The last decade has seen a rapid increase in electronic storage
capacity. Connectivity among these devices has also increased,
resulting in a world-wide web of interconnected networks. The

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

explosion of demand for information has resulted in a plethora
of recommendation algorithms designed to limit the information
that a user must examine when attempting to search the vast pool
available.

General recommendation techniques are of limited use in pre-
diction, as they are unable to give sufficient consideration to con-
text. Consider an amazon.com user who has just purchased vol-
ume five of the Harry Potter series. Recommendation would
identify volumes one through four as being of interest to this tar-
get user. They most likely are of interest. However, the target
user is very likely to have read them before purchasing the fifth
volume. Prediction would go beyond recommendation and iden-
tify volume 6 as the book the user will be interested in next. As
such, prediction is context-aware recommendation. The context
in question is the sequence in which the volumes are read.

In the amazon.com example, it is obvious that the products are
the resources that the algorithm should recommend or predict. In
a standard search engine, prediction could anticipate either the
query that a user will type or the information resource that a user
will select. The latter could be considered the ultimate objective
of the former, as the response to a query is a list of results from
which the user selects one (or more) resources. Google and Bing
have produced algorithms for predicting what a user will type as
a query. However, they still require the user to begin entering the
query and attempt to automatically complete the query before it
is finished or alter the query once it is submitted. However, the
user is actually searching for an information resource; the query is
only a means to an end. Further, a query is not a discrete index to
a specific resource. As an example, a search for “hedgehog” may
refer to a small spiny mammal, a popular chocolate treat, or an
old anti-submarine mine. Prediction of the query is not as effec-
tive as predicting the exact resource that the user will select. This
distinction is the advantage of the proposed work over methods
such as Google Instant Search.

As mentioned earlier, prediction is context-aware recommen-
dation and can leverage existing recommendation techniques.
The simplest form of recommendation utilizes the rank model.
Resources are ranked by the frequency with which they are se-
lected. The resources selected most often, which have the highest
rank, are suggested to the user. The justification of this method
is Zipf’s law, which suggests that the most popular items will be
selected more than half of the time [26].

amazon.com applies a refinement of the rank model when sug-
gesting resources to customers based on similarities in purchase
history (“people who bought X also bought Y”). Instead of identi-
fying the most popular resources over all users, this “also” model
constrains the population considered in determination of popu-
larity to a neighborhood of users who have a past purchase in
common. The most popular resources from this smaller neigh-
borhood are suggested. Omission of completely dissimilar users
should increase the accuracy of such recommendations.

Neither version of the rank model takes time or sequence into
account. As a further refinement, instead of suggesting “people
who bought X also bought Y ,” a better suggestion would be “peo-
ple who bought X then bought Y .”

It may be possible to further improve the recommendation by

considering more than one resource that the target user and the
population share. The n resources most recently selected by the
target user can be represented as an n-gram, defined as a contigu-
ous sequence of n items selected from a (larger) sequence. In this
method, any user who has the same n-gram in his or her search
history is used in making recommendations. The most popular re-
sources that “follow” the n-gram are suggested to the target user.
This should be more accurate at predicting what comes next than
a model that does not consider order.

Humans are not automata, and as such there is variation in their
behavior - even among multiple occurrences of the same action.
The n-gram model requires an exact match between subsets and
does not allow for variance. Allowing a “fuzzy” (rather than
exact) match between the target user’s most recent n-gram and
an n-gram in another user’s history will identify similarities that
would otherwise be missed. Fuzzy matching between sequences
is popular in biostatistics and latent semantic indexing. Identify-
ing similar subsets of two or more sequences is known as local

alignment. When prediction is carried out using fuzzy matching,
the most popular resources that follow the local alignment are
suggested to the target user.

All of the methods described in this section - with the excep-
tion of the simple rank model - are essentially creating a neigh-
borhood of similar users for the target user. The next section
discusses methods for creating and refining these neighborhoods.

3. Neighborhoods of Similarity

The objective of the k-nearest neighbor (k-NN) algorithm is to
identify neighborhoods of similarity [5], [6], [25]. The algorithm
begins with a target user and identifies other users to place in the
target user’s neighborhood. In some models, the k most similar
users are included in the neighborhood. In other models, users
that are at least k similar are included in the neighborhood. Both
models require definition of a measure of similarity.

Measuring similarity between electronic resources is not
straightforward, however, the algorithms described in the remain-
der of this section attempt to quantify similarity (or difference)
among the attributes of electronic entities. Some algorithms treat
each entity as a vector, where each attribute is represented by
a dimension in the vector space [19]. Two parallel vectors that
point in the same direction (regardless of magnitude) are consid-
ered identical. When vectors point in opposite directions, they
are considered opposite. The angle between two vectors becomes
the measure of similarity. Often, the cosine of the angle is used,
producing -1 for opposite and 1 for identical vectors.

If all of the attributes are binary, the Jaccard similarity coef-

ficient is computed as a set comparison between two entities [8].
The more attributes the two entities have in common, the more
similar they are. This is very similar to Hamming distance, which
identifies the number of positions in which two binary strings dif-
fer. If each position of a binary string is considered an attribute,
the Jaccard and Hamming measures may be used interchangeably
to measure either similarity or difference.

Sequence plays an important role in prediction. Neither vec-
tor nor set comparison algorithms require attributes to maintain
a specific order. Consider comparing two users based on gender,

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

age, and nationality. No difference results from changing the or-
der of attributes from {gender, age, nationality} to {age, gender,

nationality}. To preserve (and enable consideration of) sequence,
the attributes must be stored as ordered sequences of values, and
the comparison algorithm must be sensitive to the order.

Ordered sequences of values are often referred to as strings.
String-based comparison measures are order-sensitive extensions
of Hamming distance, which counts the total number of posi-
tions in which two strings differ without considering the order
of the differing bits. If the first two bits of two binary strings,
respectively, are swapped; the Hamming distance between them
will not change. An order-sensitive string-based comparison al-
gorithm should produce a different result when the order of values
is changed.

Levenshtein distance, which is the foundation of most string-
based comparison algorithms [1], [4], [12], identifies the number
of changes required to turn one string of values into another string
of values. It does not provide a specific solution for calculating
minimal distance; i.e., aligning the two strings such that the dif-
ference between their respective elements is minimized. The lat-
ter is achieved by the Wagner-Fischer (often misattributed to Lev-
enshtein) matrix solution [23]. Similar to Wagner-Fischer, there
exist other matrix solutions that can align one string to another to
produce a global alignment (Needleman-Wunsch) or local align-
ment (Smith-Waterman) with minimum difference.

In determining similarity between two search engine users, it
is important to identify the purpose of the comparison. Our ob-
jective is proactive search, which requires that we model the be-
havior of selecting from among search results and predict the re-
source that will be selected. Therefore, the comparison should
be between the search histories of the two users. Consideration
of demographic attributes such as age or gender is unlikely to in-
crease the accuracy of prediction, as these attributes only matter
to the extent of their effect on search behavior. If an older male
physician in Japan performs searches similar to a young female
engineer in Norway, it would be imprudent to ignore this similar-
ity.

Search histories are ordered sequences of resources, implying
that string-based comparison is necessary. One method of detect-
ing similarity is to simply count the resources selected by both
users. The greater the number of resource selections that two
users have in common, regardless of order, the more similar they
can be considered.

Considering the order of selection should improve the measure
of similarity. To this end, the target user’s history is represented
as an n-gram and compared to n-grams representing the history
of other users. Users whose respective histories have long or-
dered sequences in common are considered similar - the greater
the length of the common sequences, the more similar the users.
While this should produce a better neighborhood than a simple
test of common resources, it is prohibitively complex in practice.
The best algorithm for identifying the longest common substring
between two strings of data is complex - O(n2).

As described in Section 2, human behavior has natural vari-
ance. If inclusion of a given user in a neighborhood is contingent
on an exact match of n-grams within the search history, users

whose behavior is similar, but not identical to that of the tar-
get user will be excluded from the neighborhood. Allowing for
“fuzzy” matching in local alignment will address this shortcom-
ing without increasing the complexity of the matching algorithm
over the exact case.

In this paper, we compare three forms of similarity measure-
ment in the k-NN method of building a neighborhood of simi-
larity around a target user. All are limited to the n most recent
resource selections by the target user. The first implementation
identifies users who also selected the n resources most recently
selected by the target user. The second implementation treats the
last n resource selections as an n-gram and identifies users who
also have that n-gram in their history. The third implementation
also treats the last n resource selections as an n-gram, but per-
forms a local alignment of that n-gram with other user’s histories
and measures the extent of the alignment.

As all three implementations are based on k-NN, we propose to
utilize outcome-based refinement to improve the accuracy of pre-
diction. After the similarity neighborhood is produced, the search
history of each member of the neighborhood is used for predic-
tion - each member will produce a suggestion (or a set of sugges-
tions, based on the specific implementation). In outcome-based
neighborhood refinement, the suggestion from each member of
the neighborhood is compared to the resource actually selected
by the user. Only those members whose suggestion matches the
selected resource are kept in the neighborhood. Other members
are replaced with a different user. In theory, outcome-based k-
NN should produce a viable neighborhood of similarity by simply
replacing anyone who fails at prediction with an arbitrarily cho-
sen user. Eventually, the neighborhood will contain only users
who repeatedly make correct predictions. Therefore, checking
the outcome of the prediction made by each member should help
improve accuracy, while reducing the complexity of the overall
algorithm by eliminating fruitless similarity comparisons.

4. Empirical Validation

This research is based on the hypothesis that given the history
of resource selections from a population of search engine users, it
is possible to predict a majority of their future selections. If this
hypothesis is correct, it implies that a search engine can proac-
tively identify the information resource of interest to a user - even
before the user performs a query. The success of proactive search
is contingent upon access to search histories, and as such, each
user will need to provide a number of queries and make a number
of selections to create a history.

4.1 Prediction and Neighborhood Algorithms
The previous section presented a survey of recommendation

and similarity comparison algorithms. The six most common
algorithms, enumerated below, were selected and implemented
to test our research hypothesis and validate our proactive search
technique. Testing multiple algorithms makes data available to
measure how much of an improvement - if any - is achieved by us-
ing more complex algorithms, as compared to simpler algorithms.
We sought to test as many algorithms as possible, as quickly as
possible. One of our data sets, N has 23,168,232 records. If the

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

slowest algorithm took one second to perform a trial on a single
record, a complete test of set N would require nine months of
continual processing.

When used with a neighborhood, a prediction algorithm con-
siders only the members of the neighborhood. Otherwise, the
algorithm uses the entire population of users for prediction, at the
cost of considerably greater runtime. Let s refer to the number
of resources returned by the algorithm and n to the number of se-
lections in the most recent history of the target user. In our tests,
s = 10 and n = 5.

The prediction algorithms, respectively, operate as follows:
(1) Random: Suggests s arbitrarily selected resources. It is used

to provide a worst-case baseline, as no intelligence or history
is used in making predictions.

(2) Popular: Suggests the s most frequently selected resources.
(3) Also: Suggests the s most frequently selected resources from

users whose last n resources selected are the same as those
of the target user. Selection order is not considered. This al-
gorithm becomes redundant with neighborhood models that
use the selection history to construct the neighborhood.

(4) Next: Adds a constraint to the Also algorithm - the resources
returned must have been selected immediately (in sequence)
after the resource in common between the users.

(5) n-Gram: Suggests the s most frequently selected resources,
with an exact ordered match to the last n resources selected
by the target user.

(6) Fuzzy: Suggests the s most frequently selected resources,
with a fuzzy ordered match to the last n resources selected by
the target user. Local alignment is used as the fuzzy match-
ing algorithm.

Multiple neighborhood models were tested, corresponding to
the multiple methods of measuring similarity. The techniques
used in identifying similar users are the same as those used to
identify resources to suggest. The algorithms used in neighbor-
hood construction are:
(1) No-Neighborhood: As a baseline, this algorithm constructs

no neighborhood, forcing prediction to use the entire popu-
lation.

(2) Common: Selects users who selected the s resources most
recently selected by the target user. The order of selection is
not considered.

(3) n-Gram: Selects users who selected, in the same order, the
target user’s s most recently selected resources.

(4) Fuzzy: Selects users who have a local alignment with the
target user’s s most recently selected resources.

Outcome-based refinement is carried out for all the of
neighborhood algorithms, with the obvious exception of No-

Neighborhood.

4.2 Data Sets
While it is possible to theorize how well recommendation or

prediction may perform, tests on records from real search engines
demonstrate performance in a practical setting. Numerous data
sets, from different search engines, were investigated. The six
sets detailed below and described in Table 1 were chosen to il-
lustrate the performance of the algorithm on data sets that vary in

Table 1 Basic statistics of data sets used in validation.

Set Records Users (U) Resources (R) U/R R/U

A 114,494 18,526 57,018 0.32 3.08

E 168,387 12,857 10,458 1.23 0.81

L 1,000,209 68,404 3,708 18.36 0.05

M 3,168 45 255 0.18 5.67

N 23,168,232 463,616 17,755 26.11 0.04

Y 30,655 3,121 27,910 0.11 8.94

V 3,518,498 381,276 1,651,071 0.23 4.33

W 1,257,942 153,857 977,891 0.16 5.31

X 1,025,907 213,608 375,916 0.57 1.76

size and attributes.
Set A comes from AOL. In 2006, AOL Research released a

data set of three months of Internet search history. Users were
deidentified. The attributes of interest to our validation are the
user, query time, and resource selection. We do not consider the
actual queries supplied by the users.

Set E comes from Every Busy Woman, an online catalog of
women-friendly businesses. The log files from the website’s
search engine record the user making the query, the time of the
query, and the business listing selected from the query.

Set L comes from MovieLens. As a recommender system,
MovieLens is not truly a search engine. However, the use of data
set L to predict the movie that a user will watch made one as-
pect of the MovieLens data set interesting. The data set includes
the user, the rating the user gave to a movie, the movie, and the
date(s) on which it was watched. From this set, we derived the
user, timestamp, and movie selection.

Set M comes from the Medical University of South Carolina.
It is comprised of log files from a search engine for employee
training resources. Due to its small size, it is used primarily for
very quick code checking before the larger data sets are tested.

Set N comes from Netflix. Most Netflix data sets are designed
to predict the rating that a user will give a movie - an attribute
irrelevant to our prediction. The data set we utilized included his-
tory without ratings, but containing the user, movie, and the time
the movie was watched.

Set Y comes from Yandex, the largest search engine based in
Russia. Unlike US-based search engines, Yandex regularly re-
leases deidentified data sets for research. Similar to data set A,
this set provides a record of real Internet searches performed by
real people.

Three data sets used in validation, but not detailed in this pa-
per, came from the popular search engines AltaVista, AllTheWeb,
and Excite. These are identified as V , W, and X in Table 1. All
three of these are website search engine logs and were produced
to demonstrate a variety of queries, providing very little longi-
tudinal data for prediction. Tests on these three sets performed
better than set A, another website search engine log file. Overall
performance was very similar to set L (from MovieLens).

All data sources were normalized such that each user and each
resource, respectively, was identified by a unique integer. The
selection time of each resource was converted to a timestamp
indicating the number of seconds since 1970-01-01 00:00:00.
Each database was stored in the format {user, selection time, re-

source selected, previous selection time}. The previous selection

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

time was necessary for linking sequences of resource selections.
When the same user selected the same resource more than once

in succession, it was assumed that reload or refresh of the re-
source had taken place, not a true selection of a new resource. As
such, successive selections of the same resource were flagged as
repeats and ignored. A selection sequence of {1, 2, 2, 3} would
then become {1, 2, 3}. However, a selection sequence of {1, 2, 3,
2} would not be altered, because the two selections of resource 2
are separated by selection of a different resource. Most sets had
no repeats.

On rare occasion, a user selected more than one resource within
one second. When sorting resource selections by selection time,
allowing for more than one resource selection in the same second
could cause errors, as a second was considered the atomic unit
of time. If the query made on the database of selection records
was limited to one resource selection per timestamp, the addi-
tional selections were omitted. If the query was simply sorted on
selection time, it was impossible to determine the order in which
each of several concurrent selections was made. As a solution to
this problem, the data sets were stretched to increase the amount
of time between each selection. After stretching, unused seconds
between each selection allowed the extra selections to be shifted
into the future without overlapping with existing resource selec-
tions. The final order of the resource selections was maintained,
while ensuring that each selection made by a user was given a
unique timestamp.

Users with only a single resource selection were ignored in
testing, as their history was insufficient for use in recommenda-
tion or prediction. Further, the first two resource selections of
each user are ignored, as prediction requires a history of multiple
selections. Testing begins on the third resource selection of each
user.

As shown in Table 1, the data sets resulting from the afore-
mentioned pre-processing tasks are radically different. They vary
considerably in size, number of resources selections recorded for
each user, and the number of users for whom selection of a given
resource is recorded.
4.2.1 Distribution

Zipf’s law states that given a large and structured set of texts
in a given (natural) language, the frequency of occurrence of
any word is inversely proportional to its rank in the frequency
table [26]; e.g., the most frequently occurring word will appear
twice as often as the second most frequently occurring word. We
expect the same property to hold for resource selections recorded
in the data sets used for validation - significant departure from the
Zipfian (power-law) distribution could be indicative of manipula-
tion of the data.

For each data set, the users-per-resource and resources-per-
user frequencies, respectively, were checked against the Zipfian
distribution. The results are shown in Table 2, normalized such
that 0% is a perfect 1/r distribution and 100% is one standard de-
viation away from the expected power-law value. Set A appears to
be manipulated such that there was a cap on the maximum num-
ber of records allowed per user, which matches the description of
how the data was generated. Set N has nearly the same number
of users for each resource, which matches the description of how

Table 2 Deviation of data from Zipfian distribution. 0% = 1/r distribution.
100% = one standard deviation from 1/r distribution.

Set User Deviation Resource Deviation

A 109% 48%

E 88% 15%

L 163% 215%

M 54% 63%

N 39% 193%

Y 93% 5%

Table 3 Order of the data sets.

Set Records Sequences Order

A 114,494 14,847 0.13

E 168,387 189,111 1.12

L 1,000,209 995,253 1.00

M 3,168 2,484 0.78

N 23,168,232 12,004,826 0.52

Y 30,655 1,539 0.05

the data was generated. Set L exhibits fixed user/resource and
resource/user frequency, indicating that it has been significantly
manipulated and is an unnatural representation of search queries.
Data that has been manipulated is unlikely to lead to acceptable
predictions, indicating that proactive search based on sets A, L,
and N is likely to have poor results.
4.2.2 Order

In a large population of search engine users, prediction must
be dependent on the existence of common sequences of resource
selections. If so, it is possible to replace the common sequences
with a single resource identifier that indicates the sequence was
selected. This is similar to file compression, where a common
sequence of bits is replaced with a much shorter identifier.

Andrey Kolmogorov, one of the founders of algorithmic com-
plexity theory, described this form of compression as a measure
of entropy [9]. The greater the number of common sequences, the
lower the complexity of the data. A lack of common sequences
indicates entropy. In this research, lack of entropy manifests as
order, indicating that there is a common order to the selection of
search results.

Within each data set, common sequences of five resource se-
lections were identified. For two data sets of the same size, a
greater number of common sequences indicates entropy, as there
is no single common sequence of resource selections. For two
data sets with the same number of sequences, a larger data set
indicates more order as there are more instances of the common
sequences being selected. Therefore, order is measured as the to-
tal number of records divided by the number of unique sequences
of five resource selections. Table 3 shows the order of the data
sets. Sets E and M have higher order, indicating that prediction
should work well on those sets. Set Y has nearly no order. With
nearly complete entropy, prediction is unlikely to succeed for set
Y .
4.2.3 Convergence

A combination of distribution and order may be referred to as
convergence. If a data set is naturally distributed and there is or-
der, the sequences of data selections should converge on a subset
of the total resources in the data set.

Measuring convergence begins with identifying the distribu-

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

tion of selections. The resources selected are ranked from most-
to least-selected. A best-fit logarithmic trendline is calculated to
match the frequency counts. It has the form f (x) = a ln(x) + c,
where a is the natural logarithmic coefficient and c is a constant.
The trendlines of the data sets cannot be compared directly, due
to the radical differences in population sizes. Dividing a by c will
produce a measure of convergence, where a value of 0 indicates a
uniform distribution. The greater the magnitude of the result, the
more convergent the resource selections. Therefore, convergence
is measured as |a/c|.

Table 4 shows the convergence of the respective data sets. Sets
A, E, and M exhibit the greatest convergence, indicating that pre-
diction should be successful. Set Y has nearly no convergence,
indicating the opposite.

4.3 Quantifying Success of Prediction
In testing algorithms and data sets, the method of scoring the

tests must demonstrate how effective the algorithms are in pre-
dicting the resource that the target user will select. In its simplest
form, the score is the percentage of tests in which the algorithm
produces a suggestion that is the resource the target user selects.
We use the term success score, rather than success rate, to em-
phasize that our measure of success is not a simple percentage.
The proactive search algorithm returns a list of suggestions, sim-
ilar to what the user would receive from a conventional search
engine in response to a query. In the proactively-generated list,
the resources are ordered from most to least likely to be selected.
In determining the success score, we use weights to differentiate
between cases where the user selects resources from different po-
sitions on this list. In other words, our success score is higher if
we correctly predicted the resource to be selected - the resource
that is first on the list of suggestions. If the user selects a resource
that is lower on the list, we still have a successful prediction, but
the resulting success score will be lower.

In recommendation systems, where the objective is to find
items of interest to the user, weighted scoring uses a measure of
interest in determining the success score. For prediction systems,
interest is binary - the user is assumed to be “interested” in the
one resource that is selected and uninterested in others. There-
fore, the rank, r, of each suggestion in the returned list could be
selected as the corresponding weight for scoring. For each trial
(prediction) of the proactive search algorithm, we add 1/r to the
success count, where r is the rank of the resource selected in the
suggestion list. The item most likely to be selected appears at the
top of the list. If this item is selected, r = 1 and the success count
will be incremented by one full unit. If the selection is in the tenth
rank, r = 10, and only 1/10 will be added to the success count.

Table 4 Convergence of the data sets.

Set Ln Coef (a) Constant (c) Convergence (|a/c|)
A −16,901.2 75,762.5 0.22

E −10,278.8 48,873.6 0.21

L −3,724.6 28,258.4 0.13

M −477.3 1,974.8 0.24

N −141,674.8 900,504.4 0.16

Y −19,842.5 842,548.4 0.02

The final success score is the total success count divided by the
number of trials.

In our data sets, the respective selection histories recorded for
different users vary in length. As such, some users will affect
the overall success score more than others - they will contribute a
greater number of trials. To determine the resulting skew, the av-
erage success score was calculated for each user and compared to
the overall success score. If it was significantly greater, the user
was considered to heavily skew the outcome.

The duration of a complete test of each algorithm over each
complete data set (one prediction for each query submitted) is
also recorded, and the average number of trials per second and the
average number of seconds per trial are calculated. The amount
of time that the trials require is important in justifying the added
complexity for prediction algorithms that exhibit a higher success
score.

5. Discussion of Results

Recall that our proactive search involves two tasks: i) identify-
ing users similar to the target user (whose search query is being
examined) and constructing a neighborhood, and ii) predicting
the resource to be selected by the user based on similarities be-
tween the history of the user and the respective histories of its
neighbors. In this section, we discuss the results of empirical tri-
als carried out to validate these respective tasks. Prediction is dis-
cussed first, as the proactive search was initially validated without
constructing neighborhoods. Every test was scored (in weighted
and unweighted form), using a suggestion limit of ten resources.

5.1 Results of Prediction Trials
The first set of trials involved execution of the proactive search

algorithm, without constructing neighborhoods of similar users,
using the each of the algorithms enumerated in Section 4.1 for
predicting the resource selected. The results, shown in Table 5,
were not far from expectations. The results for set M are consid-
erably different from that of every other data set. We attribute this
difference to the small size of M - approximately 3,200 records
and an order of magnitude smaller than any other data set. In
general, as the algorithms increase in sophistication, progressive
improvement is seen in the success score. The n-Gram algorithm
is the exception to this rule. This algorithm is very restrictive, as

Table 5 Unweighted (weighted) success scores of prediction algorithms.

Set Random Popular Also

A 1% (0%) 3% (0%) 4% (1%)

E 10% (2%) 30% (5%) 54% (7%)

L 0% (0%) 12% (2%) 14% (2%)

M 56% (12%) 77% (10%) 73% (9%)

N 0% (0%) 1% (0%) 5% (1%)

Y 0% (0%) 1% (0%) 3% (1%)

Set Next n-Gram Fuzzy

A 8% (3%) 1% (1%) 10% (7%)

E 58% (6%) 51% (28%) 59% (42%)

L 20% (5%) 19% (12%) 27% (16%)

M 75% (7%) 39% (30%) 45% (30%)

N 9% (3%) 6% (4%) 14% (8%)

Y 4% (1%) 0% (0%) 3% (2%)

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

it requires an exact match on n consecutive resource selections
(n = 5 in this test). For sets A and Y , it was very rare for two
users to have five identical, consecutive resource selections. Al-
lowing for minor differences in the resource selections, as is done
in fuzzy matching, increases accuracy. In these trials, a fuzzy
match was declared if was restricted for cases where the edit dis-
tance (difference) between local alignments was at most half the
length of the search history being compared. For the maximal
length of five, a difference of two was accepted. With a target
history of only three selections, the local alignments could have
an edit distance of at most one.

The unweighted results show that there is usually little differ-
ence in success score between Next and Fuzzy. From weighted
results, it is clear that Fuzzy places the resource actually selected
near the top of the list of predicted resources, while Next places
it near the bottom; i.e., Fuzzy is better at predicting the resource
selected. Therefore, it is expected that if the number of resources
suggested are reduced by a factor of two, Fuzzy would retain
nearly the same success score, but Next would drop drastically.

5.2 Results of Neighborhood Trials
Each of the neighborhood algorithms enumerated in Sec-

tion 4.1 was tested separately, with a neighborhood size of twenty
users, using the Next prediction algorithm - chosen due to the
fact that it is not similar to any of the neighborhood algorithms
being tested. As shown in Table 6, the lowest and highest suc-
cess scores, respectively, are achieved with the No-Neighborhood

and Fuzzy algorithms. Once again, sets A and Y did not exhibit
notable improvement (over the baseline) with the n-Gram algo-
rithm, because of the rarity of users who share exact sequences of
n selected resources.

Outcome-based refinement was subsequently applied to the
proactive search algorithm. Every neighborhood algorithm was
tested with this refinement, again using the Next algorithm for
prediction. The success score invariably improved, as may be
seen by comparing Table 6 (results without outcome-based re-
finement) to Table 7 (results with outcome-based refinement).

A second trial of outcome-based refinement was performed,
where the neighborhoods were formed by arbitrarily selecting

Table 6 Unweighted (weighted) success scores of neighborhood algorithms.

Set No-Neighborhood Common n-Gram Fuzzy

A 8% (3%) 5% (2%) 9% (7%) 10% (7%)

E 58% (6%) 55% (14%) 58% (28%) 59% (42%)

L 20% (5%) 13% (6%) 19% (12%) 27% (16%)

M 75% (7%) 81% (80%) 39% (30%) 45% (30%)

N 9% (3%) 8% (2%) 11% (5%) 16% (8%)

Y 4% (1%) 4% (2%) 0% (0%) 6% (4%)

Table 7 Unweighted (weighted) success scores of refined neighborhood algorithms.

Set No-Neighborhood Common n-Gram Fuzzy

A 8% (3%) 12% (6%) 14% (10%) 15% (12%)

E 58% (6%) 61% (27%) 69% (41%) 72% (51%)

L 20% (5%) 25% (14%) 31% (17%) 32% (20%)

M 75% (7%) 82% (80%) 52% (41%) 57% (41%)

N 9% (3%) 17% (10%) 21% (13%) 25% (16%)

Y 4% (1%) 6% (4%) 4% (1%) 11% (9%)

members of the population of users. As before, any user who
did not contribute to success of the prediction was replaced, but
this time with an arbitrarily selected user - who could have been
ejected from the neighborhood in an earlier trial. The success
score attained in initial trials was very low, but consistent across
data sets and invariably improved with time.

5.3 Timing Results
Optimization of the algorithms, such as partitioning user popu-

lations on popular resources and sequences selected, made it pos-
sible to perform many trials per second on a single processor. As
expected, the number of trials per second reduces as the algorithm
complexity increases; however, anomalies were noted. We at-
tribute these anomalies to specific features of the data sets, rather
than the test method. For example, set M was small enough that
the database engine would automatically store the results of all
complex queries as temporary tables. As a result, identifying the
most popular resources or a set of users with a matching n-gram
became abnormally fast - queries were executed on small tempo-
rary tables rather than the main database, artificially increasing
the number of trials per second.

Overall, identifying the most popular resources was the fastest
task, with 4 to 26 trials per second, depending on the size of the
data set. n-Gram trials were slowest, with 0.5 to 8 trials per sec-
ond. The Fuzzy algorithm, with 1 to 9 trials per second, was
not significantly faster than the n-Gram algorithm, which appears
counterintuitive. With a strict limitation of five resources from
the target user’s history, the fuzzy comparison was implemented
as a regular expression, allowing for a linear implementation of
fuzzy string matching rather than a polynomial implementation.

Using outcome-based refinement yielded measurable improve-
ment for every neighborhood algorithm tested. The extent of im-
provement increased with complexity of the neighborhood algo-
rithm - the n-Gram and Fuzzy algorithms showed the greatest im-
provement. However, the reduction in runtime was not enough
to justify using outcome-based refinement to this end - increasing
the accuracy of prediction is the primary motivation for use of
this technique.

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

5.4 Correlation
It would be useful to identify a measurable attribute of a data

set that is strongly correlated with the success score of prediction.
This would enable elimination of data sets for which prediction
is unlikely to succeed.

The respective correlation of success score and each of the
three measures described in Section 4.2 was calculated. Distri-
bution was found to have the weakest correlation, −0.22. Order
and convergence, respectively, were determined to have correla-
tions of 0.84 and 0.60 with the success score. Convergence is a
measure of both distribution and order, and as such it is reason-
able to assume that convergence alone may be used to identify
data sets for which prediction is (un)likely to succeed.

6. Conclusion

In this paper, we have proposed proactive search, which elim-
inates the need for query entry by suggesting resources based on
the search history of the user and similar users. Success of this
technique is contingent on correctly identifying similarity among
users. To this end, we described several algorithms that can be
used to construct neighborhoods of similarity and demonstrated
that prediction based on these neighborhoods is likely to identify
resources of interest to a given user. The most sophisticated algo-
rithm presented is based on fuzzy matching of ordered sequences
of resources selected by different users. The proposed proactive
search technique was experimentally validated using several real-
world search engine logs.

Proactive search can considerably accelerate the search pro-
cess. In this technique, the user accesses the search engine, is
presented with a list of resources, and selects a resource from this
list. There is no query, query analysis, index searching, or re-
source list building - all of which are tasks required in using a
conventional search engine.

What cannot be determined with the methods in this paper is
the effect of showing users a list of resources before they perform
a query; i.e., the extent to which a user will be biased towards
selection of the resources suggested. Such bias has been docu-
mented for usage of recommendation systems [14]. The likely
result of this bias is an improved success rate for prediction. If a
greater number of users select a suggested resource, it will be sug-
gested more often, increasing the likelihood that an even greater
number of users will select it.

In addition to improving performance, implementation of a
proactive search engine creates a fundamental change in how in-
formation resources are perceived. Currently, each resource is
a single entity. Instead of predicting and suggesting single re-
sources, a proactive search engine can predict and recommend
sequences of resources. As such, it is not necessary that each re-
source be viewed a single entity. They will function just as well
as modular resources designed to fit into a sequence.

Returning to the motivation for this research, viewing educa-
tional resources as sequences of modular resources fits well with
the overall goal of supporting a networked curriculum. Ideally, an
instructor will have two options. In the first option, the instructor
searches for a few important topics in a course. The search en-
gine identifies common sequences that include those topics and

presents the instructor with a sequence of resources. In the sec-
ond option, the instructor searches for multimedia resources to
support instruction. The search engine will identify the sequence
of resources being selected and predict the resources likely to be
useful in the immediate future. In the latter case, an instructor
does not have to spend classroom time searching for multimedia.
The resources will be proactively identified and waiting on the
instructor.

References

[1] Bertsekas, D.P.: Dynamic Programming and Optimal Control, Athena
Scientific, 3rd edition (2007).

[2] Cleger-Tamayo, S., Fernández-Luna, J.M., Huete, J.F., Pérez-
Vázquez, R. and Cano, J.C.R.: A Proposal for News Recommenda-
tion Based on Clustering Techniques, Trends in Applied Intelligent
Systems, Lecture Notes in Computer Science, Vol.6098, pp.478–487,
Springer Berlin/Heidelberg (2010).

[3] Cohen, A.M., Adams, C.E., Davis, J.M., Yu, C., Yu, P.S., Meng, W.,
Duggan, L., McDonagh, M. and Smalheiser, N.R.: Evidence-Based
Medicine, the Essential Role of Systematic Reviews, and the Need for
Automated Text Mining Tools, Proc. 1st ACM International Health
Informatics Symposium (IHI), pp.376–380, ACM (2010).

[4] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.: Introduc-
tion to Algorithms, MIT Press, 3rd edition (2009).

[5] Cover, T.M. and Hart, P.E.: Nearest Neighbor Pattern Classification,
IEEE Trans. Information Theory, Vol.13, No.1, pp.21–27 (1967).

[6] Dasarathy, B.V.: Nearest neighbor (NN) norms: NN pattern classifica-
tion techniques, IEEE Computer Society Press, Los Alamitos (1991).

[7] Hawking, D., Craswell, N., Brailey, P. and Griffihs, K.: Measuring
Search Engine Quality, Information Retrieval, Vol.4, No.1, pp.33–59
(2001).

[8] Jaccard, P.: Étude comparative de la distribution florale dans une por-
tion des Alpes et des Jura, Bulletin del la Société Vaudoise des Sci-
ences Naturelles, Vol.37, pp.547–579 (1901).

[9] Kolmogorov, A.N.: On Tables of Random Numbers, Theoretical Com-
puter Science, Vol.207, pp.387–395 (1963).

[10] Konstan, J.A. and Riedl, J.: Recommender systems: From algo-
rithms to user experience, User Modeling and User-Adapted Interac-
tion, Vol.22, pp.101–123 (online), DOI: 10.1007/s11257-011-9112-x
(2012).

[11] Levene, M.: An Introduction to Search Engines and Web Navigation,
John Wiley & Sons, 2nd edition (2010).

[12] Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, In-
sertions, and Reversals, Soviet Physics Doklady, Vol.10, pp.707–710
(1966).

[13] Lewandowski, D.: Search Engine User Behaviour: How Can Users
Be Guided to Quality Content?, Information Services and Use, Vol.28,
No.3-4, pp.261–268 (2008).

[14] Linden, G., Smith, B. and York, J.: amazon.com Recommendations:
Item-to-Item Collaborative Filtering, IEEE Internet Computing, Vol.7,
No.1, pp.76–80 (2003).

[15] Mostafa, J.: Seeking Better Web Searches, Scientific American,
Vol.292, No.2, pp.66–73 (2005).

[16] Pentland, A. and Liu, A.: Modeling and prediction of human behavior,
Neural Computation, Vol.11, No.1, pp.229–242 (1999).

[17] Rangaswamy, A., Giles, C.L. and Seres, S.: A Strategic Perspective on
Search Engines: Thought Candies for Practitioners and Researchers,
Journal of Interactive Marketing, Vol.23, No.1, pp.49–60 (2009).

[18] Skinner, B.F.: The Behavior of Organisms, Copley Publishing Group
(1938).

[19] Tan, P.-N., Steinbach, M. and Kumar, V.: Introduction to Data Mining,
Pearson Addison-Wesley, 1st edition (2005).

[20] Tellez, E.S., Chavez, E. and Navarro, G.: Succinct nearest neighbor
search, Proc. 4th International Conference on Similarity Search and
Applications, pp.33–40 (2011).

[21] Toledo, T. and Katz, R.: State Dependence in Lane-Changing Mod-
els, Transportation Research Record: Journal of the Transportation
Research Board, Vol.2124, pp.81–88 (2009).

[22] Wagner, C.S., Sedigh, S. and Hurson, A.R.: Accurate and Effi-
cient Search Prediction Using Fuzzy Matching and Outcome Feed-
back, Similarity Search and Applications, Brisaboa, N., Pedreira, O.
and Zezula, P. (Eds.), Lecture Notes in Computer Science, Vol.8199,
pp.219–232, Springer Berlin Heidelberg (2013).

[23] Wagner, R.A. and Fischer, M.J.: The String-to-String Correction Prob-
lem, J. ACM, Vol.21, No.1, pp.168–173 (1974).

[24] Wickelgren, W.A.: Speed-Accuracy Tradeoff and Information Pro-

c© 2014 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.22 No.3

cessing Dynamics, Acta Psychologica, Vol.41, No.1, pp.67–85 (1977).
[25] Xiong, L., Xiang, Y., Zhang, Q. and Lin, L.: A Novel Nearest Neigh-

borhood Algorithm for Recommender Systems, Proc. 3rd Global
Congress on Intelligent Systems (GCIS), pp.156–159 (online), DOI:
10.1109/GCIS.2012.58 (2012).

[26] Zipf, G.K.: The Psycho-Biology of Language, Language, Vol.12,
pp.196–210 (1936).

C. Shaun Wagner served in the US Ma-
rine Corps prior to receiving his B.S. de-
gree in Computer Science with honors
from the College of Charleston in 2003.
He is currently completing his Ph.D. the-
sis in Computer Science at the Missouri
University of Science and Technology
while serving as Director of IT for the

Outpatient Quality Improvement Network at the Medical Univer-
sity of South Carolina. His research interests span the computing
and medical disciplines, with focus on search prediction and hy-
pertension, respectively.

Sahra Sedigh Sarvestani received her
B.S.E.E. degree from Sharif University
of Technology in 1995, and her M.S.E.E.
and Ph.D. degrees from Purdue Univer-
sity, in 1998 and 2003, respectively. She
subsequently joined the Missouri Univer-
sity of Science and Technology, where
she is currently an Associate Professor of

Electrical and Computer Engineering. Her research centers on
development and modeling of dependable networks and systems,
with focus on critical infrastructure. She held a Purdue Research
Foundation Fellowship from 1996 to 2000, and is a member of
HKN, IEEE, and ACM.

Ali R. Hurson received his B.S. degree
in Physics from the University of Tehran
in 1970, M.S. degree in Computer Sci-
ence from the University of Iowa in 1978,
and Ph.D. from the University of Cen-
tral Florida in 1980. He was a Profes-
sor of Computer Science at the Pennsylva-
nia State University until 2008, when he

joined the Missouri University of Science and Technology. He
has published over 300 technical papers in areas including mul-
tidatabases, global information sharing and processing, computer
architecture and cache memory, and mobile and pervasive com-
puting. He serves as an ACM distinguished speaker, area editor
of the CSI Journal of Computer Science and Engineering, and
Co-Editor-in-Chief of Advances in Computers. He is a member
of IEEE.

c© 2014 Information Processing Society of Japan

