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Abstract: Assurance cases are documented body of evidence that provide valid and convincing argument that the
system is adequately dependable in a given application and an environment. Assurance cases are widely required as
a regulation for safety-critical systems in EU. There have been several graphical notations for assurance cases. GSN
(Goal Structuring Notation) and CAE (Claim, Argument, Evidence) are such two notations. However, these notations
have not been defined in a formal way. This paper presents a formal definition of GSN and its pattern extensions. We
take the framework of functional programming language as the basis of our study. The implementation has been done
on an Eclipse based GSN editor. We report case studies on previous works about GSN and show the applicability of
the design and implementation. This is a step toward developing an assurance case language.
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1. Introduction

System assurance has become important in many industrial ar-
eas, and the notion of assurance cases [13] has been getting at-
tention.

Safety cases (assurance cases for system safety) are required
to submit to certification bodies for developing and operating
safety critical systems, e.g., automotive, railway, defense, nuclear
plants and sea oils. There are several standards, e.g., EUROCON-
TROL [8], Rail Yellow Book [28] and MoD Defense Standard 00-
56, which mandate the use of safety cases. The current state of
safety cases in the UK is summarized in Ref. [34].

There are several definitions for assurance cases. We show one
of such definitions as follows.

A structured argument, supported by a body of evidence
that provides a compelling, comprehensible and valid
case that a system is safe for a given application in a
given environment [5].

There have been several researches on graphical notations for
assurance cases to ease the difficulty of writing and validating
them. GSN (Goal Structuring Notation) [17] and CAE (Claim,

Argument, Evidence) [5] are two such notations. Writing assur-
ance cases and reusing them in a cost effective way is a critical
issue for organizations. Patterns, modules, and their supporting
constructs are proposed in GSN for the reuse of existing assur-
ance cases, which includes parameterized expressions and ref-
erence from a node in a module to another node in other mod-
ules. Recently the basic syntax and the extensions for patterns and
modules have been defined in the GSN community standard [10].

Assurance cases are getting attention as a framework for assur-
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ing systems dependability to various stakeholders including gov-
ernment sectors, certification bodies, and end users. The OPEN-
COSS project is an European large scale integrating FP7 project
dedicated to produce the first European-wide open safety certifi-
cation platform [25]. In the OPENCOSS project, GSN has been
studied as a representation of certification documents. The SAFE
(Safe Automotive soFtware architEcture) project [31] aims to en-
hance methods for defining safety goals and define development
processes complying with the new ISO26262 [14] standard for
functional safety in automotive electrical and electronic systems.
As ISO26262 mandates the use of safety cases, meta-model, pat-
terns, and other topics on safety cases have been studied in the
project. The DEOS (Dependable Embedded Operating System)
project [36] is a Japanese national project for developing depend-
able systems. The project aims to use assurance cases in both de-
velopment and operational phases (specially for failure response
action) [9], [23] for assuring the dependability of the systems.

However, as assurance cases are a new research field, the syn-
tax and semantics of assurance case languages are in developing
stages. For example, the GSN community standard has some
informal definitions for GSN and its extensions, as shown in
Ref. [23]. Recently several efforts have been done for formal-
izing GSN and its extensions [6], [32]. However, there still has
not been a well accepted formalization for assurance case lan-
guage. To facilitate the discussions and development, this paper
presents a new formalization of GSN and GSN patterns. Our aim
is to develop simple and general framework which can be imple-
mented easily. To do so, we exploit the framework of functional
programming languages [27], which is the most basic and formal
framework in programming languages.

Our contributions are as follows.
• We give a formal definition and semantics for GSN and its

pattern extension.
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• We implement GSN and its pattern extension on an open
source GSN editor [19].

• We test the applicability of the extension with existing GSN
examples [3], [11], [12], [15], [38].

The paper is organized as follows. Section 2 presents back-
ground of assurance cases and the graphical notations. Section
3 presents our formalization of GSN and its pattern extensions.
Section 4 introduces current implementation of the extension.
Section 5 discusses related work. Section 6 concludes the paper.

2. Background

2.1 Assurance Cases
An assurance case is called a safety case when arguing the

safety of a system. Similarly, it is called a dependability case,
security case, reliability case, or availability case when arguing
the dependability, security, reliability, or availability of a system,
respectively. The basic structure of assurance cases is shown in
Fig. 1 (slightly modified from the original figure in Ref. [4]).

The scientific background of assurance cases includes Toul-
min’s Argumentation Model [37], which is the basic model in
argumentation theory [26]. Toulmin identifies the key compo-
nents of information in terms of the roles played within the ar-
gument. These components are facts, warrants, backing, rebuttal,
and qualified claims. Facts are the basis for the argument. A
warrant is the part of the argument that relates facts to qualified
claims. Backing is some kind of justification for a warrant. Re-
buttal captures the circumstances that would be regarded as ex-
ceptions for a warrant. A qualified claim is a conclusion that can
be drawn if the warrant holds true and the rebuttal does not hold
true. In a sense, the facts plus the warrant imply the claim [26].
Comparing this model with Fig. 1, a qualified claim can corre-
spond to the top goal in Fig. 1, facts to evidence, and the warrant
to the argument structure.

Assurance cases have been widely recognized in the U.K. af-
ter recent serious disasters, including the Piper Alpha North Sea
oil disaster in 1988 (167 people dead) and the Clapham Junction
rail crash in 1988 (35 people dead). The term safety case seems
to have emerged from a report by Lord Cullen on the Piper Al-
pha disaster [35]. It has been recognized that not only following a
prescribed process and filling in some checklists is required, but
system developers and operators must argue why their systems
are safe during the period of operation based on evidence.

There are some criticisms of assurance cases themselves. In
Ref. [18], Leveson wrote, “Most papers about safety cases ex-

Fig. 1 Argument structure.

press personal opinions or deal with how to prepare a safety case,
but not whether it is effective.”

2.2 GSN (Goal Structuring Notation) and CAE (Claim, Ar-
gument, Evidence)

Goal Structuring Notation (GSN) is introduced by Tim Kelly
and his colleagues [17]. It is a graphical notation for assurance
cases. Some safety cases written in GSN are publicly avail-
able [7]. We briefly explain constructs and their meanings in
GSN. Arguments in GSN are structured as trees with a few kinds
of nodes, including: goal nodes for claims to be argued for, strat-

egy nodes for reasoning steps that decompose a goal into sub
goals, and evidence nodes for references to direct evidences that
respective goals hold. Figure 2 is a simple example of GSN. The
root of the tree must be a goal node, called top goal, which is the
claim to be argued (G 1 in Fig. 2). For G 1, a context node C 1
is attached to complement G 1. Context nodes are used to de-
scribe the context (environment) of the goal attached to. A goal
node is decomposed through a strategy node (S 1) into sub goal
nodes (G 2 and G 3). The strategy node contains an explanation,
or reason, for why the goal is achieved when the sub goals are
achieved. S 1 explains the way of arguing (argue over each pos-
sible fault: A and B). When successive decompositions reach a
sub goal (G 2) that has a direct evidence of success, an evidence
node (E 1) referring to the evidence is added. Here we use a
result of fault tree analysis (FTA) as the evidence. For the sub
goal (G 3) that is not decomposed nor supported by evidences,
a node (a diamond) of type undeveloped is attached to highlight
the incomplete status of the case. The assurance case in Fig. 2 is
written with D-Case Editor, an open source, Eclipse based GSN
editor [19].

CAE (Claim, Argument, Evidence) [5] is another well known
graphical notation. In OMG (Object Management Group), a
standardization effort has been done for a common meta-model
for graphical notations of assurance cases including GSN and
CAE, and the OMG SACM (Structured Assurance Case Meta-
model) [24] has been published. GSN and CAE are compatible

Fig. 2 A simple GSN.
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to each other via SACM, and our formalism can be adapted to
CAE easily.

2.3 GSN Patterns
There have been several publicly available GSN patterns [3],

[16], [38]. Figure 3 is a simple example of GSN patterns in
Ref. [3]. The top-level goal of system safety (G1) is re-expressed
as a number of goals of functional safety (G2) as part of the strat-
egy identified by S1. In order to support this strategy, it is neces-
sary to have identified all system functions affecting overall safety
(C1) e.g., through Functional Hazard Analysis (FHA). In addi-
tion, it is also necessary to put forward (and develop) the claim
that either all the identified functions are independent, and there-
fore have no interactions that could give rise to hazards (G4) or
that any interactions that have been identified are non-hazardous
(G3). Figure 3 includes main GSN extensions for GSN pat-
terns [10]:
• Parameterized expressions. {System X} and {Function Y} are

parametrized expressions. We can instantiate X and Y by ap-
propriate (possibly safety critical) system and function, re-
spectively.

• Uninstantiated. Triangles (�) attached to nodes indicate that
the nodes contain uninstantiated parametrized expressions.
To instantiate the GSN pattern as an assurance case, we need
to instantiate the expressions.

Fig. 3 An example of GSN patterns [3].

Fig. 4 A GSN pattern with loop.

• 1 to many expressions (multiplicity). Number of functions
are different by the target system. We can instantiate the
number of functions (n) for the target system.

• Choice. The user can select arbitrary sub goals from the set
of sub goals depending on the user system.

Loop construct is also introduced. Figure 4 is a simplified pattern
containing loop construct in Ref. [12].

The loop is represented by the back edge from G2 to S 1. Loop
instantiation is done by recursively unfolding the back edge. For
example, in Fig. 4, one step unfolding is shown. However, the
definition of loop constructs has not been well developed, as the
loop counter (n) is given in informal way in Ref. [12].

3. A Formal Definition of GSN and Its Pattern
Extensions

3.1 GSN Basic Definition
We first define the GSN term as follows. Let g, e, and st be

meta-variables for goals, evidence (solution) and strategies, re-
spectively. For simplicity, we omit other GSN nodes including
context, assumption, and justification nodes. Each node contains
the description by strings such as “System is dependable.” This
structured definition of GSN terms first appearing in Ref. [22].

Definition 1 (GSN term T )

T ::= ♦ | (g, ♦) | (g, e) | (g, st, (T1, . . . ,Tn))

♦ implies an empty GSN term. (g, ♦) is a GSN term of the top
goal g with no supporting argument. (g, e) is a GSN term whose
top goal g is supported by a direct evidence e. (g, st, (T1, . . . , Tn))
is a GSN term with top goal g which is supported by sub trees
T1, . . . , Tn via strategy st. This definition normalizes current GSN
definitions in several way. For example, in the GSN Commu-
nity Standard [10], strategy nodes can be omitted among goal
nodes, and multiple strategies can be connected from the same
goal. These node links can be incorporated into our definition by
adding a few other nodes (Fig. 5). Also, we add sibling order in
sub goals of a goal as in Ref. [6].

3.2 GSN Patterns
We formalize the following construct of GSN patterns: param-

eterized expressions, multiplicity, choice, and loop.

Fig. 5 Normalization of GSN link.
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In Ref. [22], Matsuno and Taguchi introduced types and define
the scope of variables appeared in expressions. These two are
not new and are fairly basic notions in programming languages.
However, the current GSN [3] neither incorporates types nor pro-
vides the precise account of the scope of variables. As explained
in Section 2.3, the intended meaning of the parameterized expres-
sion {System X} in Fig. 3 is to instantiate the variable X by some
particular instance which belongs to the System class (or type).
We believe that introducing types and giving a precise account
of the scope of variables will contribute to avoid misuses of pa-
rameterized expressions and to detect errors in early stages. For
example, we can automatically avoid mis-placement of variables
by type checking. In Fig. 3, if a user instantiates X with e.g.,
“Railway hazards,” then the argument does not make sense. It is
fairly obvious that type checking prevents such a mis-placement.
If the scoping rules are not precisely defined, we cannot figure
out where variables in a node are declared in the first place.

We introduce parameter context as a sub-class of context node
of the form [x : τ = v] where x is a parameter of type τ to which
a value v is assigned (we use x, y, z, . . . for parameters and v for
values). Parameter context is attached to a goal. In Fig. 6, a pa-
rameter x is defined in parameter context C1. x can be used in the
goal G1 and its sub-trees. “x” is defined as a parameter of type
string, and assigned a value “car.” In current implementation,
a parameter can be used in GSN nodes as “[x] is dependable”
where parameters are enclosed by “[].” If a parameter is assigned
a value, then the occurrence of the parameter in the scope is re-
placed with the value such as “[car] is dependable.” Currently,
types τ is defined as follows.

τ ::= int | double | string | enum | raw,

where raw types mean other than int, double, string, and enum
types. Also, the set of values includes ⊥ for unassigned parame-
ters. In Ref. [10], node “uninstantiated” is attached to a goal node
to indicate a parameter is unassigned in the goal node. In our for-
malization, we use ⊥ for unassigned parameters. Next, we define
choice constructs. Following Ref. [6], we regard the semantics
of the choice construct as follows. Given an integer k within the
range, a choice construct is instantiated with k sub GSN terms
(we use i, j, k, . . . for integers). For example, if a choice construct
has 4 sub GSN terms, and the user chooses 2 for k, then the choice
construct is instantiated with the first and second sub GSN terms.

Third, we define multiplicity constructs. Given an integer k

within the range, a multiplicity construct is instantiated with k

Fig. 6 An example of parameter context.

copies of a GSN term.
Definition 2 states the syntax of GSN pattern.
Definition 2 (GSN pattern P)

d ::= ε | [x : τ = v]

P ::= α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (P1, . . . , Pn), d)

| (g, st, c[i, j](P1, . . . , Pn), d)

| (g, st,m[i, j](P), d) | μα.P

d is parameter context. Without loss of generality, we assume
that at most one parameter can be defined in one parameter con-
text. We omit d if d is ε, i.e., no parameter is defined in the
goal. α is variable for patterns which is used for loop con-
structs. (g, st, c[i, j](P1, . . . , Pn), d) is choice construct where
[i, j] is the range of pattern instantiation. The user can choose
k (1 ≤ i ≤ k ≤ j ≤ n) patterns from P1, . . . , Pn. Multiplic-
ity construct is represented by (g, st,m[i, j](P), d), where [i, j] is
the range of pattern instantiation. The user selects the number of
multiplicity k (1 ≤ i ≤ k ≤ j), and the construct is instantiated
with k copies of P. μα.P represents loop construct. α is a binding
variable within the body P. α possibly appears as sub terms of
P such as P1 = (g1, st1, (α, (g1, e1))). We say P is closed if there
is no free occurrence of α within the body of P (note that P1 is
not closed). During instantiation, the user can substitute α with
P itself. This represents unfolding of loop construct as shown in
Fig. 4.

Pattern Instantiation is defined as a binary relation of the form
P1 −→ P2 (Fig. 7).

The first three are instantiation relations by parameter assign-
ment. For example, in (g, ♦, [x : τ = ⊥]), if the user selects value
v for x (v should have the same type of x. Current D-Case Editor
only accepts a value of the same type for the parameter), then the
pattern is instantiated with (g[v/x], ♦, [x : τ = v]), with all oc-
currences of x in g is replaced with v. These first three relations
that explicitly determine the scope of the parameter, i.e., the sub-
tree. This is different from the GSN community standard [10] in
which there is no formal description of parameter scope and the
work by Denney and Pai, which only considers global parameters
of a GSN tree [6].

The user-selected value v is indicated as an annotation to the
arrow as

v−→. This corresponds to non-deterministic evaluation
in programming languages. The fourth relation is for choice con-

Fig. 7 Pattern instantiation relation P1 → P2.
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struct instantiation. The user chooses the number of sub GSN
terms k within the range, and the construct is instantiated by k

sub GSN terms. Similarly, the fifth relation is for multiplicity
construct instantiation. If the user selects the multiplicity num-
ber k, the construct is instantiated with k copies of P as sub GSN
terms of the goal g. The last two relations are for loop constructs.
If the user wants to unfold the loop constructs, the occurrence of
α within the body P is replaced with μα.P it self. Otherwise (the
last rule), the loop construct is replaced with ♦. Note that a loop
construct can be unfolded many times as the user wants.

Next, we generalize the pattern instantiation relation by envi-

ronmental context E. An environmental context is a pattern with
possibly multiple holes []. For example, if E = (g1, st, ([], P2), d),
then E[P1] = (g1, st, (P1, P2), d).

Definition 3 (Environmental Context E)

E ::= [] | α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (E1, . . . , En), d)

| (g, st, c[i, j](E1, . . . , En), d)

| (g, st,m[i, j](E), d) | μα.E
Using E, the pattern instantiation rules also include:

P1 −→ P2

E[P1] −→ E[P2].

The following definitions state the relation between a pattern
and its instances.

Definition 4 (elim(P)) elim(P) is a function that returns P′ in
which all parameter contexts are eliminated from P. For example,
if P = (g, e, [x : τ = v]), then elim(P) = (g, e).

Definition 5 (Normal Form) A pattern P is said to be nor-
mal form if and only if there does not exit P1 such that P −→ P1.

Definition 6 (Instances of a Pattern) Let P be a pattern in
which all parameters are unassigned. If

P −→∗ I

and I is a normal form, then elim(I) is an instance of P.
Thanks to the functional programming language formalization,

pattern instantiation algorithm can be defined in a straight and re-
cursive way. We denote the algorithm as Π(P). In the algorithm,

Fig. 8 Pattern instantiation algorithm.

u = v, k, μ, ♦ are user input. The algorithm is shown in Fig. 8.
Note that v is other than ⊥ in the algorithm.

The correctness of the algorithm is stated as follows.
Theorem 1 Let P be a closed GSN pattern. If

Π(P) = I,

then elim(I) is an instance of P.

4. Implementation

We have implemented the GSN pattern extensions using the
open source code of D-Case Editor [19].

Matsuno and Yamamoto [23] reported a preliminary imple-
mentation of parameter instantiation function in D-Case Editor.
In this paper, we have implemented all pattern constructs. The
pattern instantiation takes the following steps.
( 1 ) The user selects an appropriate pattern from the pattern li-

brary.
( 2 ) The user recursively chooses values for parameters, number

of multiplicity and choice, and whether to unfold loop struc-
ture once or not on the GSN tree structure.

( 3 ) The editor automatically places the instantiated pattern in the
canvas.

The implementation has been done using Eclipse GMF
(Graphical Modeling Framework) [1]. A user can easily install D-
Case Editor as a plug-in of Eclipse. The download page is located
in Ref. [19]. The source codes for GSN pattern have already been
incorporated in the D-Case Editor open source repository [2]. A
screenshot of D-Case Editor is shown in Fig. 9. Using D-Case
Editor, a user can draw a GSN diagram by putting GSN nodes
and links in the canvas.

We show some fragments of the source code for pattern instan-
tiation.

Putting a pattern into the canvas
A user can put an instance of a pattern by right clicking the
canvas, and select a pattern from “Add Pattern” menu. This
function is implemented by method widgetSelected() in
AddPatternSelectionAdapter class. The source code is lo-
cated in Ref. [20].

The procedure of method widgetSelected() is as follows.
• Get the selected pattern by the user.
• Test whether the top goal of the pattern exists or not. If not,

report the error.
• Copy the pattern into an object copyModel.
• Call method ModuleUtil.processPatterns, which

takes copyModel as an argument, and returns the

Fig. 9 A screenshot of D-Case Editor.
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instantiated pattern. The procedure of method
ModuleUtil.processPatterns will be explained
next.

• Put the instantiated pattern into the canvas.
Processing Loop, Choice, and Multiplicity instantiation
The main part of the instantiation algorithm (Fig. 8) is

implemented in method ModuleUtil.processPatterns

(used in method widgetSelected()) from 1067 line of
common/util/ModuleUtil.java, which can be obtained from
[21].

In the implementation, GSN terms are represented by lists of
nodes and links:
copyArgument.getRootBasicNode() and
copyArgument.getRootBasicLink().
Method ModuleUtil.processPatterns traverses the GSN

term and instantiates patterns from the top goal according to the
tree structure.

A part of the source code is shown below. For readability,
some parts of the code is omitted (indicated as (...SKIP...)).
Among loop, choice, and multiplicity constructs, only the code of
choice construct is shown. For detail, please refer to the source
code [21].

public static boolean processPatterns

(Argument copyArgument) {

// Get the top goal (rootNode).

BasicNode rootNode =

ModuleUtil.getRootNode(copyArgument);

(...SKIP...)

// This while loop

// corresponds to PI(P) in Fig.8.

// (Parameter instantiation

// is in other method.)

while (true) {

// Search pattern nodes

// from the top goal

(...SKIP...)

// Process pattern nodes.

// cNode is the current Pattern node.

// subType is the type of the pattern node,

// either loop, choice, or multiplicity.

// Each pattern construct is

// instantiated according to the subType.

// k is the user input.

// k is the iteration number

// for loop construct.

// For choice and multiplicity,

// k is the number of sub goals

// to be instantiated.

System scNode = (System)cNode;

String subType = scNode.getSubType();

int k = getPatternNumber(scNode);

(...SKIP...)

// Case for Loop pattern construct //

if (PatternUtil.isLoop(subType)) {

// Unfolding the loop pattern

// construct k-1 times.

(...SKIP...)}

// Case for Choice pattern construct //

if (PatternUtil.isChoice(subType)) {

// Get the children nodes

List<BasicNode> childList =

PatternUtil.getChildren(cNode, copyArgument);

// Remove from k+1 th to n th sub goals

// from the pattern,

// and remain the first k sub goals.

for (int i = k; i < childList.size(); i++) {

ArrayList<BasicNode>pnodeList =

new ArrayList<BasicNode>();

ArrayList<BasicLink>plinkList =

new ArrayList<BasicLink>();

HashSet<BasicNode>checkedSet =

new HashSet<BasicNode>();

BasicNode pnode = childList.get(i);

PatternUtil.getSubtree

(pnode, copyArgument, pnodeList

, plinkList, checkedSet);

copyArgument.getRootBasicNode()

.removeAll(pnodeList);

copyArgument.getRootBasicLink()

.removeAll(plinkList);

// Remove links of deleted nodes.

for (BasicNode dnode : pnodeList) {

PatternUtil.removeLinks

(dnode, copyArgument.getRootBasicLink());

}}}

// Case for Multiplicity pattern construct //

if (PatternUtil.isMultiplicity(subType)) {

// Add k-1 times of the pattern construct.

// The implementation is mostly similar to

// that of choice construct

(...SKIP...)}

// remove the current Pattern node.

(...SKIP...)

// Process all Parameter nodes.

// Continue until no Parameter nodes found.

(...SKIP...)}

return true;}

4.1 Pattern Instantiation Examples
We show a few pattern examples in our implementation.
A simple example
Let P1 = (g1, st1,m[1, 3]((g2, e2, [FunctionName : S tring =

⊥]))), where g1 = “System is dependable,” st1 = “Argument over
functions,” g2 = “[⊥] is dependable,” e2 = “Evidence for [⊥].”
Note that a parameter is enclosed by [] in the node description.
P1 can be written as in Fig. 10. In our implementation, param-
eter, multiplicity, choice, and loop constructs are generalized as
“Pattern” node. Figure 11 shows an instantion of P1. The number
of multiplicity is set as 2, and parameter “FunctionName” is in-
stantiated with “Function1” and “Function2” in each instantiated

c© 2014 Information Processing Society of Japan 6
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Fig. 10 A simple example of pattern.

Fig. 11 An instantiation of Fig. 10.

Fig. 12 A simple example of loop pattern.

Fig. 13 An instantiation of Fig. 12.

sub tree, respectively.
A simple loop example
Let P2 = μα.(g1, st1, (α)). P2 in D-Case Editor is shown in

Fig. 12. In current implementation, an occurrence of α is defined
by choosing the parent node. In Fig. 12, the strategy node S 1 is
chosen as the parent node of α. Figure 13 is an instance of the
loop pattern by unfolding of the loop once.

Fig. 14 Pattern example in Fig. 3.

Fig. 15 An instantiation of Fig. 14.

The pattern example in Fig. 3
Figure 14 represents the pattern example in Fig. 3. We nor-

malized the example in Fig. 3 to separate multiplicity and choice
constructs. Note that the choice semantics used in the example
is different from our semantics. The former is to choose one of
two sub trees whereas the latter is to choose one sub tree or two
sub trees. It is easy to define the semantics of choice constructs
according to that of Fig. 3.

An instantiated pattern of Fig. 14 is shown in Fig. 15. For the
parameter X, we select “Automobile.” We assume that “Auto-
mobile” has two functions: “Running” and “Braking,” which are
instances of parameter Y . For the choice construct, we choose
the sub goal “Interactions between system functions are non-
hazardous.”

c© 2014 Information Processing Society of Japan 7
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Fig. 16 A GSN fragment for use case analysis for ACC.

Fig. 17 A GSN pattern for decomposition.

4.2 Preliminary Evaluation
As a preliminary evaluation, we show comparison between

writing GSN with and without GSN pattern function by counting
user steps. We take an example in development of ACC (Adaptive
Cruise Control) system. ACC is a sub system of an automobile
for automatically adjusting distance between the user automobile
and an automobile ahead of it. Figure 16 is a GSN top level frag-
ment for UML use case of a ACC system, written by an engineer
who is an expert in UML modeling. UML use case consists of
three components: use case diagram, use case description, and
use case scenario list. This fragment is for assuring that use case
analysis for ACC system is adequate by decomposing the goal
into sub goals for its components. This decomposition by a con-
struct is very typical in conventional GSN diagrams. For such
decomposition, the pattern in Fig. 17 is useful. This pattern is es-
sentially the same as the simple pattern of Fig. 10. An instance
of the pattern is shown in Fig. 18. By adding the context C1 in
Fig. 16, this essentially becomes the same fragment.

We compare the user steps for writing the GSN fragment in
Fig. 16 and the instance in Fig. 18.
• Input words counting. The fragment in Fig. 16 requires 24

input words, whereas the instance in Fig. 18 requires 10
words (we omit the word counting for the context C1).

• Processing steps counting. The fragment in Fig. 16 requires
6 and 5 selections for nodes and links, respectively. The
instance in Fig. 18 requires 1 pattern selection and 1 instan-
tiation step (for multiplicity).

Therefore, user steps for the fragment in Fig. 16 is 24+6+5 = 35
and the instance in Fig. 18 is 10 + 1 + 1 = 12. This result indi-
cates GSN patterns reduce user steps significantly. The difference

Fig. 18 An instance of the pattern in Fig. 17.

could increase as the size of GSN diagrams become bigger.

4.3 Discussions
Currently, we are representing existing GSN examples in the

literatures [3], [11], [12], [15], [38]. We found that most of ex-
isting examples can be represented in our implementation with a
few minor modifications.

There are several issues to be considered. An issue is to com-
bine instantiation of parameters and other pattern constructs. For
example, in loop instantiation, sometimes a parameter should
be instantiated automatically according to the loop counter. In
Ref. [11], a loop pattern is introduced for each software “tier.”
In our current implementation, the number of tier need to be in-
stantiated manually for each loop unfolding. Other issues include
addition of “list pattern.” For example, assume that there is a
hazard list. In many existing GSN examples, a goal is divided
into sub goals for each item of such lists (the GSN fragment of
ACC system in the previous sub section is such one). It seems
worth defining list pattern for automatically generating sub goals
according to a given list in the context node in the goal.

For simplicity, our implementation of the choice construct is
restricted to be instantiated to the first k sub GSN terms. It
is easy to generalize the instantiation to arbitrary k sub GSN
terms (for example, (g, st, c[1, 3](P1, P2, P3)) can be instantiated
to (g, st, (P1, P3))). The next version of D-Case Editor will incor-
porate the generalized choice construct.

We list other interesting issues.
• More types. Current implementation only has basic types

for parameters: int, double, string, enum, and raw types. It is
worth adding more types relevant to system assurance such
as system, f unction, f ault, f ailure, S IL, and so on. Also, it
would be beneficial to introduce mechanism for use-defined
types.

• Reverse instantiation. In Fig. 7, parameter instantiations
leaves the parameter context after the instantiation such as
(g, ♦, [x : τ = ⊥])

v−→ (g[v/x], ♦, [x : τ = v]). As x does not
appear in the instantiated pattern, the parameter context is
semantically not necessary, so the relation can be written as
(g, ♦, [x : τ = ⊥])

v−→ (g[v/x], ♦). The reason for leaving the
parameter context is that it is often the case that a user wants
to replace the value of a parameter. For example, assume
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that g = “the system satisfies SIL [x].” SIL (Safety integrity
level) consists of 1 through 4 levels. A user might select 1
for x for the first time, but the user would want to change
the value to 2 later. In such a case, the parameter context
should remain. As in this case, reverse instantiation would
be needed for practical use of a GSN editor. In current im-
plementation, only reverse instantiation of parameters is al-
lowed. Mechanism for reverse instantiation of other pattern
constructs is left as future work.

5. Related Work

The most closely related work is Denney and Pai’s work [6].
We follow some part of their paper such as the semantics of
choice and multiplicity. Their paper defines GSN as a control
flow graph, and introduces pattern constructs on the graph. How-
ever, a few subtle issues arise due to the un-structuredness of the
control flow graph. For example, patterns are required to satisfy
a condition on the back-edges. Also, their instantiation algorithm
is sophisticated but contain a few ad-hoc parts, and the notion
of scope of parameters has not been considered. In general, in
the programming languages field, structured representation of a
program is preferred over un-structured representation due to the
difficulties in the treatment of un-structured objects. Our formal-
ization is fairly structured: GSN is represented by a simple tree
structure, and only structured simple loops are allowed in GSN
pattern. Our formalism made several simplifications. We believe
that our limitation deserves the benefit of structured-ness.

Takeyama has implemented D-Case/Agda [32], which is an in-
teractive GSN editing and verifying tool. Agda [33] is a depen-
dently typed functional programming language and also a proof
assistant. D-Case/Agda lets users write GSN in Agda. This en-
ables more formal and consistent GSN to be written and veri-
fied. The definition of GSN in Ref. [32] is structured and we re-
ferred to the definition. However, because D-Case/Agda directly
uses Agda, it is difficult for ordinary users to write GSN in D-
Case/Agda. Also, D-Case/Agda does not explicitly comply with
the GSN community standard. If a user wants to write very rig-
orous GSN, then D-Case/Agda will be a good alternative. How
much formalism should assurance case language has is an often
discussed question in the community.

Our work is based on Matsuno and Taguchi’s work [22] which
introduced parameters for pattern. However, the implementation
is limited because parameters can only be defined as global pa-
rameters of a GSN term. This paper further introduced choice,
multiplicity, and loop pattern contracts, and defined pattern in-
stantiation as a binary relation on GSN patterns. In current im-
plementation, all pattern constructs can be defined both globally
and locally in a GSN term.

There have been works for verification of assurance cases such
as Ref. [29]. However, such works use their own definition of
assurance cases representation. Defining an assurance case lan-
guage will be a base for such verification work, as various type
systems have been developed on functional programming lan-
guages such as Standard ML and Haskell based on λ calculus,
the basic model of functional programming language. It is worth
studying how to apply other functional programming concepts

such as polymorphism for document generation for dependabil-
ity assurance.

6. Concluding Remarks

In this paper we have reported on our formalization and imple-
mentation of GSN and its extensions, using a functional program-
ming framework. Currently we are developing a module system.
Together with the current pattern instantiation function, we plan
to release the next version of D-Case Editor soon. This imple-
mentation could be a base for developing an assurance case lan-
guage.

Assurance cases are becoming important as a framework for
dependability assurance. Therefore, an assurance case language
should be defined and implemented in a formal way. This will
also help automatic verification of assurance case documents, as
noted in Ref. [30].

A future step is to show that the assurance case language can
be used for generating documents for dependability assurance of
a real system. By feedbacks from the use in real systems, the lan-
guage could be refined and made more practical. We would like
to report the results in a near future.
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