
IPSJ SIG Technical Report

Search space reduction through commitments in pathwidth
computation:

an experimental study

Yasuaki Kobayashi1,a) Keita Komuro2,b) Hisao Tamaki2,c)

Abstract: In designing an XP algorithm for pathwidth of digraphs, Tamaki introduced the notion of commitments and
used them to reduce the search space with naively O(n!) states to one with nO(k) states, where n is the number of vertices
and k is the pathwidth of the given digraph. The goal of the current work is to evaluate the potential of commitments
in heuristic algorithms for the pathwidth of undirected graphs that are aimed to work well in practice even for graphs
with large pathwidth. We classify commitments by a simple parameter called depth. Through experiments performed
on TreewidthLIB instances, we show that depth-1 commitments are extremely effective in reducing the search space
and lead to a practical algorithm capable of computing the pathwidth of many instances for which the exact pathwidth
was not previously known. On the other hand, we find that the additional search space reduction enabled by depth-d
commitments with 2 ≤ d ≤ 10 is limited and that there is little hope for effective heuristics based on commitments
with such depth.

1. Introduction
Pathwidth [17] and treewidth [18] are among the central no-

tions in the graph minor theory developed by Robertson and
Seymour and have numerous applications in algorithm design.
In particular, many NP-hard graph problems are fixed parame-
ter tractable [11] when parameterized by pathwidth or treewidth:
they have algorithms with running time f (w)nO(1), where n is
the instance size, w is the pathwidth or treewidth of the instance
graph, and f is a typically exponential function of w. Such algo-
rithms are often practical when w is small and therefore comput-
ing these width parameters (and constructing associate graph de-
compositions) is of great practical importance. Theoretically, the
problems of computing the treewidth and the pathwidth are both
NP-hard [1], [12], although they are fixed parameter tractable
admitting algorithms with running time linear in the graph size
[4], [5].

Unfortunately, the running time of the fixed parameter algo-
rithm given by [4], [5] has huge dependence on the width pa-
rameter and generally considered impractical. From the practical
point of view, however, “finding a tree-decomposition of small
width is far from hopeless” [8] and there has been a considerable
amount of effort on turning this hope into reality [2], [8], [16]. For
example, van den Broek and Bodlaender provide a benchmark
suite TreewidthLIB [3] and lists known upper and lower bounds
on the treewidth of most of the graph instances therein (see [2]

1 Gakushuin University, Toshima-ku, Japan 171-8588
2 Meiji University, Kawasaki, Japan 214-8571
a) yasuaki.kobayashi@gakushuin.ac.jp
b) kouki-metal@cs.meiji.ac.jp
c) tamaki@cs.meiji.ac.jp

for a method of computation used to derive such bounds). Ac-
cording to the description of the library [3], the instances there
are collected with the criterion that finding tree-decompositions
of small width is useful for solving some problem of real interest
on those instances.

Compared with this situation for treewidth, the research effort
on practically computing the pathwidth seems to be much more
scarce. In particular, computing the pathwidth of TreewidthLIB
instances would seem a valid goal of experimental research but
no such report can be found in the literature.

The work reported in this paper significantly improves this
situation. Our experimental results show that “finding a path-
decomposition of small width is also far from hopeless” in prac-
tical situations. More specifically, our improved algorithms for
pathwidth perform well on TreewidthLIB instances. Their perfor-
mances are comparable to those of treewidth algorithms reported
in the TreewidthLIB site. On some instances, they are even able
to improve the best known treewidth upper bound by finding a
path-decomposition, a special case of a tree-decomposition, with
a smaller width.

Our basic algorithm is a backtrack search for a vertex sequence
corresponding to an optimal path-decomposition, employing the
standard memoization technique (see [10], for example). This
basic algorithm may be viewed as a practical implementation of
the standard vertex ordering approach for pathwidth [6] (see also
[7] for a similar approach for treewidth): the dynamic program-
ming algorithm of [6] stores in the table the solutions of all possi-
ble subproblems, while the corresponding table in our algorithm
stores solutions of only those subproblems that are encountered in
the backtrack search. To reduce the search space of this basic al-

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.15
2014/6/14

IPSJ SIG Technical Report

gorithm, we use the notion of commitments introduced by Tamaki
[20]. He used commitments to obtain a theoretical result: an algo-
rithm for the pathwidth of digraphs that runs in nO(k) time, where
n is the number of vertices and k is the pathwidth of the given
graph. This notion is also used in [14] to derive an O(1.89n) time
algorithm for the pathwidth of directed and undirected graphs,
which improves on the O(1.9657n) time algorithm of Suchan and
Villanger [19] for the pathwidth of undirected graphs. The goal of
this paper is to evaluate the potential of commitments in heuris-
tic algorithms that are aimed at performing better in practice than
guaranteed by the theoretical bounds.

A commitment occurs between a pair of search states S and
T , where T is a descendant of S in the search tree. Under a cer-
tain condition, we discard all descendants of S but T , knowing
that S leads to a successful computation if and only if T does
(see Section 3 for more details of commitments). We define the
depth of the commitment to be the depth of T in the search tree
minus the depth of S . Some variants of depth-1 commitments
can be found in theoretical work on pathwidth [14], [19]. Our ex-
periments on TreewidthLIB show that depth-1 commitments are
extremely effective in reducing the search space. Depth-1 com-
mitments also have the advantage of being “cheap” in that they
can be detected with very small computational effort. Indeed, the
memoized backtrack search with depth-1 commitments performs
well on small to medium-sized TreewidthLIB instances: out of
the total of 162 instances therein with 300 or fewer vertices, our
algorithm is successful in computing the exact pathwidth of 145
instances. This number compares favorably with 65, which is
the number of instances, out of the same set, on which the exact
treewidth is known. For fair comparisons, we need to note that
those exact bounds for treewidth are rather old (obtained in 2007
or earlier). Despite continued efforts for improvements (see [9],
for example), however, no new exact bounds have been reported
in TreewidthLIB or elsewhere, to the best of the authors’ knowl-
edge.

Depth-d commitments for larger d are more costly. Naively,
to find if there is a depth-d commitment from state S , we need
an exhaustive search of depth d from S . In most practical sit-
uations, this cost is much greater than the gain we obtain from
reducing the search space. There may be, however, some lower-
cost heuristics that can be used to detect deep commitments not
always but often enough to be useful. Our experiments on depth-d
commitments for d ≥ 2 give a ground for evaluating such heuris-
tic potential of commitments. In the experiments, we assume an
oracle that, given a search state S , detects a commitment from S
within specified depth if one exists. If the reduction of the search
space is found significant in these experiments, then it would be
worthwhile to look for heuristic implementations of these ora-
cles. Our experiments on TreewidthLIB instances show, how-
ever, that the space reduction effect of depth-d commitments for
2 ≤ d ≤ 10 is rather limited and suggest that there is little hope of
improvements by such heuristics over the algorithm with depth-1
commitments.

A byproduct of our experiments is a finding that the gap
between the pathwidth and the treewidth may be dramatically
smaller on practical instances than theoretically possible. See

Subsection 4.5 for details.
The rest of this paper is organized as follows. Section 2 gives

definitions and notation used in this paper. Section 3 describes the
general principle of commitments together with necessary defini-
tions. Section 4 describes our experiments. We conclude the pa-
per with Section 5. A significantly more detailed version of this
paper appears in [15].

2. Preliminaries
Let G be an undirected graph with vertex set V(G) and edge

set E(G). For v ∈ V(G), the set of neighbors of v is denoted
by N(v) and the number of them is denoted by d(v). We extend
this notation to sets: for X ⊆ V(G), N(X) =

⋃
v∈X N(v) \ X and

d(X) = |N(X)|.
A path decomposition of G is a sequence of subsets

(X1, X2, . . . , Xt) of V(G) satisfying the following conditions:
(1)
⋃

1≤i≤t Xi = V(G),
(2) for each {u, v} ∈ E(G), there is an index i such that {u, v} ⊆ Xi,

and
(3) for each v ∈ V(G), the set of indices i such that v ∈ Xi forms

a single interval.
The width of a path decomposition (X1, X2, . . . , Xt) is
max1≤i≤t |Xi| − 1. The pathwidth pw(G) of G is the small-
est k such that G has a path decomposition of width k. In this
paper, we use an alternative characterization of pathwidth, known
as the vertex separation number, which we define below.

Let σ be a sequence of vertices. We assume all the sequences
of vertices in this paper are without repetitions, i.e., all the el-
ements in σ are distinct from each other. We denote by V(σ)
the set of vertices in σ and the length |V(σ)| of σ by |σ|. When
V(σ) = V(G), we call σ a permutation of V(G). Suppose σ and
η are sequences with V(σ) ∩ V(η) = ∅ and τ is the result of con-
catenating η after σ. Then, σ is a prefix of τ (a proper prefix if
η is nonempty) and τ is an extension of σ (a proper extension if
η is nonempty). For a non-negative integer k, σ is k-feasible if
d(V(σ′)) ≤ k for each prefix σ′ of σ and is strongly k-feasible if
there is a k-feasible extension of σ that is a permutation of V(G).
These notions are extended for sets: a set S ⊆ V(G) is (strongly)
k-feasible if there is some (strongly) k-feasible sequence σ such
that V(σ) = S .

The vertex separation number of G is the minimum integer k
such that V(G) is k-feasible. It is known that the pathwidth of
G equals the vertex separation number of G [13]. Our algorithm
works on the vertex separation number, rather than directly on the
pathwidth. We also note that our algorithm outputs a k-feasible
sequence for k = pw(G), from which it is straightforward to con-
struct a path decomposition of G of width k.

3. Commitments
Fix G and k. Our algorithm looks for k-feasible permutations

working on the search tree whose nodes are k-feasible sets. To
prune the search tree, we use the following notion of commit-
ments introduced in [20].

Let σ be a k-feasible sequence. Following [20], we say that
an extension τ of σ is a k-committable extension of σ if τ is a
proper extension of σ, τ is k-feasible, and d(X) ≥ d(V(τ)) for

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.15
2014/6/14

IPSJ SIG Technical Report

every X with V(σ) ⊆ X ⊆ V(τ). We also use the set version of
this definition: T is a k-committable extension of S if there is a
k-feasible sequence σ and a k-committable extension τ of σ such
that V(σ) = S and V(τ) = T .

Lemma 1 ([20]) Suppose sequence σ is strongly k-feasible
and τ is a k-committable extension of σ. Then τ is also strongly
k-feasible.

Corollary 3.1 Suppose S ⊂ V(G) is strongly k-feasible and
T is a k-committable extension of S . Then T is also strongly
k-feasible.

Thus, if a search-tree node S has a k-committable extension T
then we may commit to T : all the descendants of S but T and its
descendants may be ignored without losing the completeness of
the search.

Although the use of commitments is a powerful pruning strat-
egy leading to theoretical results in [14], [20], our preliminary ex-
periments showed that the use of commitments in their full gener-
ality does not result in practically efficient algorithms. The reason
of this is the huge overhead of finding k-committable extensions.
A naive method of finding a k-committable extension of a given
search node S is to do an exhaustive search through the descen-
dants of S and the cost of this auxiliary search overweighs the
gain in the reduction of the main search space.

However, in practical algorithms, it is not necessary to use a
method that finds a k-committable extension whenever one ex-
ists. It is possible that a less costly heuristic method is effective if
it succeeds in finding k-committable extensions often enough.

The goal of the current paper is not to evaluate the effective-
ness of various heuristics in finding committable extensions but
to evaluate the potential of the heuristic approach itself. For this
goal, we assume oracles that, given a k-feasible set S , return ei-
ther S itself or a k-committable extension of S . In this manner,
we decouple the effect of search space reduction enabled by com-
mitments from the cost of finding commitments. Only after we
confirm significant reduction in the search space size, we may
pursue efficient, but probably partial, implementations of those
oracles. The details of the oracles we use in our experiments are
described in the next section.

4. Experiments
4.1 Algorithm

The pseudocode listed below describes our recursive search
procedure. For a fixed pair of graph G and positive integer k, it
decides if the input vertex set S is strongly k-feasible or not. This
procedure implements a standard backtrack search with memo-
ization: it uses a table, called a failure table, which stores sets
that are found not-strongly k-feasible in order to avoid duplicated
search from such sets. It also uses an oracle f , an additional pa-
rameter given to the algorithm, for finding k-committable exten-
sions: f can be an arbitrary function such that, for each k-feasible
vertex set S , f (S) is either a k-committable extension of S or is
equal to S itself. We denote by f ∗ the limit of this function: for
each S , f ∗(S) = f m(S) where m is such that f m(S) = f m+1(S).

The input for the initial call of this procedure is the empty set:
the empty set is strongly k-feasible if and only if the vertex sepa-
ration number of G is k or smaller.

Algorithm 1 Decides whether S is strongly k-feasible or not.
1: procedure Strongly-Feasible(S)
2: T ← f ∗(S).
3: if T is in the failure table then
4: return false
5: end if
6: if T = V(G) then
7: return true
8: end if
9: for all v ∈ V \ T such that d(T ∪ {v}) ≤ k do

10: if Strongly-Feasible(T ∪ {v}, k) then
11: return true
12: end if
13: end for
14: Store T in the failure table.
15: return false
16: end procedure

4.2 Oracles
In the experiments reported here, we use the following oracles.

We say that a k-committable extension T of S is of depth d where
d = |T | − |S |. For each non-negative integer d, we define function
fd as follows: fd(S) is a k-committable extension of the smallest
depth d′ with 1 ≤ d′ ≤ d if one exists; fd(S) = S otherwise. For
convenience, we are allowing d to be 0: f0 is an “empty oracle”
that, given S , always returns S itself.

In our experiments, the oracle fd is implemented by an exhaus-
tive search that costs O(nd) time. Recall that the purpose of the
experiments is not to evaluate the overall efficiency of the search
incorporating these oracles but to measure the search space re-
duction enabled by free uses of those oracles.

4.3 Search space reduction
The first part of our experiments measures the size of the search

space in terms of the number of vertex sets stored in the failure
table. Note that the number of successful vertex sets is at most
the number of vertices of the graph and is negligibly smaller than
that of unsuccessful ones in typical situations. We use the oracles
f0, f1, f5 and f10 in these experiments.

We have performed this experiment on 108 instances of
TreewidthLIB. Remaining roughly 100 instances, for which run-
ning the algorithm with the empty oracle f0 is already pro-
hibitively time- or space-consuming, are excluded.

The parameter k given to the algorithm is exactly the pathwidth
minus one. This is usually the last and the most time consuming
step in the pathwidth computation: we know that the instance is
k + 1-feasible from the previous steps and have to confirm the
infeasibility for the current k.

Table 1 shows the size of the search space generated by our
algorithm with oracles f0, f1, f5, and f10, in terms of the num-
ber of sets stored in the failure table, for some sample instances.
Columns ltw and utw are the lower and upper bounds on the
treewidth.The numbers for other instances show similar tenden-
cies.

There are instances for which the reduction is small. For some
of them, such as queen9 9 listed in Table 1, we know the rea-
son: they are full of large cliques. For example, queen9 9, which

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.15
2014/6/14

IPSJ SIG Technical Report

Table 1 Search space size of sample instances

instance |V(G)| |E(G)| pw(G) ltw utw f0 f1 f5 f10

1bx7 41 195 11 11 11 898 63 59 56
1g6x 52 405 19 19 19 1572 148 130 129
1bbz 57 543 25 25 25 5700 546 516 516
1a8o 64 536 25 23 25 33522 1350 1155 1149
queen9 9 81 1056 58 50 58 372842 256364 253980 253980
1aba 85 886 28 28 29 73212 1561 1456 1429
1d4t 102 1145 34 32 35 625556 8170 7159 7090
1f9m 109 1349 43 38 45 13299246 68317 59588 59062
ch150.tsp 150 432 13 8 15 663258 24236 22213 21814
u159.tsp 159 431 12 8 12 7801396 20231 17413 16434
kroA200.tsp 200 586 13 9 14 1371893 33807 32129 31870
tsp225.tsp 225 622 13 11 15 12079238 85824 80728 78654
diabetes 413 819 6 4 4 125888 95224 84718 84571

consists of 81 vertices, contains 20 cliques with 9 vertices.
See [15] for more details on the effect of search space reduc-

tion.

4.4 Performance of the algorithm with depth-1 commit-
ments

The second part of our experiments focuses more on the ac-
tual performance of our algorithm with depth-1 commitments, in
contrast to the first part which is concerned only with the size of
the search space. Here, we are concerned with the actual run-
ning time, memory usage, and whether the algorithm is capable
of solving each instance in a reasonable amount of time.

This part of the experiment is run on a machine with Intel
Xeon E5606 (2.14GHz × 4) processor, 5.8GB RAM, and Ubuntu
Linux. We do not use multi-thread for the execution of our algo-
rithms. The heap space allocated for the Java VM is 1GB for all
instances.

For each instance, we first compute an upper bound on the
pathwidth by a simple greedy heuristic, set initial value of k to
this upper bound, and repeat our algorithm for k-feasibility, de-
creasing k one by one until we find the instance not k-feasible:
the final value of k is the pathwidth minus one. If this process is
not completed in 30 minutes, we stop the execution and report the
current upper bound on the pathwidth.

In the description of the experimental results below, when
we say upper or lower bounds on the treewidth, they mean
those bounds listed in TreewidthLIB. We also say that the ex-
act treewidth is known for some instance, if the listed upper and
lower bounds for the instance match.

We have run our algorithms on basically all instances in
TreewidthLIB, for which the upper and lower bounds on the
treewidth are listed. We have excluded, however, those instances
that are the result of preprocessing, which simplifies the graph
without changing the treewidth (but possibly changing the path-
width). We have also excluded 3 weighted instances. We have
selected 207 instances from TreewidthLIB by these criteria.

Table 2 summarizes the number of instances for which the
pathwidth computation was successful, in the sense the exact
pathwidth was obtained in 30 minutes, with oracle f0 or f1. Col-
umn ’total’ shows the total number of tested instances in the spec-
ified range. The basic algorithm with the empty oracle is already
effective for small instances. For instances with over 100 ver-
tices, however, the algorithm with the depth-1 oracle clearly out-

Table 2 The number of instances for which the exact pathwidth computa-
tion is successful

|V(G)| total f0 f1 treewidth known
1 – 50 17 17 17 17
51 – 100 81 70 80 32
101 – 200 56 19 42 15
201 – 300 7 1 5 3
301 – 46 1 2 24

performs the basic algorithm.
For comparison, Table 2 also lists the number of instances for

which the exact treewidth is known. Note that this comparison
is not meant for exactly measuring the relative difficulty of com-
puting the exact pathwidth and the exact treewidth: the amount
of time spent for the bounds listed in TreewidthLIB is typically
smaller while the amount of time spent for unsuccessful efforts
for improving the bounds is not known.

Table 3 lists more computational details of some selected in-
stances. Columns ltw and utw are the lower and upper bounds on
the treewidth; ipw is the pathwidth achieved by the initial greedy
solution; pwd, for d = 0, 1 is the upper bound on the pathwidth
obtained by the iteration using Algorithm 1 with oracle fd, which
is the exact pathwidth unless the computation is aborted; td, for
d = 0, 1 is the time, in seconds, consumed by oracle fd. TLE
means that the computation is aborted with the time limit of 30
minutes and MLE means that the computation is aborted because
the heap space is exhausted.

From the results for larger instances in this list, we can see
that the search space reduction effect of depth-1 commitments
observed in the first part of the experiments indeed leads to dra-
matic improvements on the running time.

The largest two instances in this list are in contrast to each
other: even though the exact pathwidth is not obtained for either
of the instances, the upper bound obtained for u2319.tsp still im-
proves the upper bound on the treewidth, while for BN 26 the
computed upper bound on the pathwidth is far above the upper
bound on the treewidth.

4.5 Comparisons between the pathwidth and the treewidth
Table 4 compares the pathwidth and the treewidth of the tested

instances. For each range of the number of vertices, column ’to-
tal’ shows the number of instances in the range for which the ex-
act treewidth is known and moreover the exact pathwidth is ob-
tained by our computation; other columns show the breakdown

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.15
2014/6/14

IPSJ SIG Technical Report

Table 3 Computational details for some selected instances

G |V(G)| |E(G)| ltw utw ipw pw0 pw1 t0 t1
1g6x 52 405 19 19 23 19 19 0.13 0.12
1bbz 57 543 25 25 26 25 25 0.13 0.21
1a8o 64 536 23 25 27 25 25 0.24 0.46
1cc8 70 813 27 32 33 32 32 0.20 0.89
queen9 9 81 1056 50 58 61 58 58 2.5 94
1aba 85 886 28 29 30 28 28 0.56 0.96
1c5e 95 1148 33 36 38 34 34 1.3 2.4
1d4t 102 1145 32 35 41 34 34 4.4 4.3
1f9m 109 1349 38 45 47 43 43 251 60
bier127.tsp 127 368 8 15 22 15 15 39 4.4
ch150.tsp 150 432 8 15 17 13 13 7.5 1.5
u159.tsp 159 431 8 12 19 12 12 111 1.5
kroA200.tsp 200 586 9 14 25 13 13 25 2.3
tsp225.tsp 225 622 11 15 21 13 13 685 5.1
diabetes 413 819 4 4 31 6 6 5.6 2.6
celar06 100 350 11 11 18 11 11 TLE 5.1
graph01 100 358 21 24 38 23 23 TLE 1272
1bkb 131 1485 26 30 31 29 29 MLE 1.4
anna 138 493 12 12 24 15 14 TLE TLE
a280.tsp 280 788 12 14 19 14 14 TLE 28
fpsol2.i.1 496 11654 66 66 79 75 67 TLE 323
u2319.tsp 2319 6869 41 56 70 50 47 TLE TLE
BN 26 3025 14075 9 9 1005 103 103 TLE TLE

Table 4 Classifying the instances based on the comparison between the pathwidth and the treewidth

|V(G)| total pw = tw pw = tw + 1 pw = tw + 2 pw ≥ tw + 3
1 – 50 17 12 5(3, 3, 4, 9, 19) 0 0
51 – 100 32 31 1(9) 0 0
101 – 200 10 8 2(6, 9) 0 0
201 – 300 3 3 0 0 0
300 – 2 0 1(66) 1(4) 0

of this total number according to the difference between the path-
width and the treewidth. For the columns with pw = tw + 1 and
pw = tw + 2, the numbers in the parentheses show the treewidth
of the individual instances counted in that column. Among all
the tested instances, there are 16 instances with treewidth smaller
than 10, 10 of which have 50 or fewer vertices. It is surprising that
the two width parameters are identical for most of the instances
in this category.

5. Conclusion
The results of our experiments show that depth-1 commitments

are quite effective in reducing the search space and lead to dra-
matic improvements of the performance of the vertex ordering
approach for pathwidth. On the other hand, the results on deeper
commitments are negative. Even assuming the oracles that detect
those commitments without any cost, the improvement over the
depth-1 commitments would be slim. This suggests that looking
for heuristics for detecting deeper commitments is probably not
worth the effort. This conclusion, however, is not final, as exper-
iments are done only for commitments of depth up to 10. There
still remains a small possibility that commitments of much larger
depth are useful in heuristic algorithms.

References
[1] Arnborg, S., Corneil, D., Proskurowski A.: Complexity of finding em-

beddings in a k-tree. SIAM Journal on Matrix Analysis and Applica-
tions 8(2), 277–284, (1987)

[2] Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for
exact, upper, and lower bounds on treewidth, In: AAIM 2006, LNCS,
vol. 4041, pp. 255–266. Springer, Heidelberg (2006)

[3] van den Broek, J., Bodlaender, H.L.: TreewidthLIB. http://www.
cs.uu.nl/research/projects/treewidthlib/, accessed Feb 9
2014.

[4] Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for
the pathwidth and treewidth of graphs. Journal of Algorithms 21, 358–
402 (1996)

[5] Bodlaender, H.L.: A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing
25(6), 1305–1317 (1996)

[6] Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thi-
likos, D.M.: A note on exact algorithms for vertex ordering problems
on graphs. Theory of Computing Systems 50(3), 420-432 (2012)

[7] Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thi-
likos, D.M.: On exact algorithms for treewidth. ACM Transactions on
Algorithms 9(1): 12, 2012

[8] Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower
bounds with brambles. Algorithmica 51(1), 81–98 (2008)

[9] Bodlaender, H.L., Koster, A.M.C.A.: Treewidth Computations II.
Lower Bounds. Information and Computtation, 209(7), 1103–1119,
(2011).

[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
algorithms. The MIT press, Boston (2001)

[11] Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer,
Berlin (1998)

[12] Kashiwabara, T., Fujisawa T.: NP-completeness of the problem of
finding a minimum-clique-number interval graph containing a given
graph as a subgraph. In: Proceedings of International Symposium on
Circuits and Systems, pp. 657–660 (1979)

[13] Kinnersley, G.N.: The vertex separation number of a graph equals its
path-width. Information Processing Letters 42(6), 345–350 (1992)

[14] Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Com-
puting directed pathwidth in O(1.89n) time. In: IPEC 2012, LNCS,
vol. 7535, pp. 182–193. Springer, Heidelberg (2012)

[15] Kobayashi, Y., Komuro, K., Tamaki H.: Search Space Reduction
through Commitments in Pathwidth Computation: An Experimental
Study. In: SEA 2014 To appear

[16] Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.: Treewidth:
computational experiments. Electronic Notes in Discrete Mathemat-
ics 8, 54–57 (2001)

[17] Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest.
Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)

[18] Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.15
2014/6/14

IPSJ SIG Technical Report

of tree-width. Journal of Algorithms 7(3), 309–322, (1984)
[19] Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n. In:

IWPEC 2009, LNCS, vol. 5917, pp. 324–335. Springer, Heidelberg
(2009)

[20] Tamaki, H.: A polynomial time algorithm for bounded directed path-
width. In: WG 2011, LNCS, vol. 6986, pp. 331–342. Springer, Hei-
delberg (2011)

6ⓒ 2014 Information Processing Society of Japan

Vol.2014-AL-148 No.15
2014/6/14

