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Abstract: A floorplan is a partition (dissection) of a rectangle into small rectangles, called blocks, by horizontal and
vertical line segments such that no four rectangles meet at the same point. Floorplans are used to design the layout of
very-large-scale integration (VLSI) circuits. Since modern VLSI circuits are extremely large, it is necessary to design
a compact representation of floorplans. Slicing floorplans are one of important classes of floorplans. It is also desirable
to design a compact representation of the slicing floorplans. We therefore address a problem of designing compact
code for the slicing floorplans. We first propose a code for a slicing floorplan of 3n − 3 bits. We then propose a more
compact code for a slicing floorplan. Finally, we experimentally compare the two codes.
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1. Introduction
A floorplan is a partition (dissection) of a rectangle into small

rectangles, called blocks, by horizontal and vertical line seg-
ments such that no four rectangles meet at the same point. Floor-
plans are used to design the layout of very-large-scale integration
(VLSI) circuits. Since modern VLSI circuits are extremely large,
it is necessary to design a compact representation of floorplans.
Slicing floorplans are one of important classes of floorplans. It
is also desirable to design a compact representation of the slicing
floorplans. We therefore address a problem of designing compact
code for the slicing floorplans.

Recently, compact codes for floorplans have been proposed.
Table 1 shows some results on compact codes for floorplans and
their information-theoretic lower bounds. A (normal) floorplan
represents adjacency relations among blocks. On the other hand,
a mosaic floorplan represents adjacency relations among maxi-
mal line segments. For example, the two floorplans in Fig.1 (a)
and (b) are non-isomorphic as floorplans, but are isomorphic as
mosaic floorplans. See [1] for formal definitions of floorplans and
mosaic floorplans. To the best of our knowledge, the most com-
pact code for a (normal) floorplan was proposed by Takahashi et
al. [6]. The length of their code is 4n−4 bits, where n is the num-
ber of blocks of a floorplan. For mosaic floorplans, He [1] and
Talahashi [7] proposed codes of 3n − O(1) bits, independently.
Since the information-theoretic lower bounds of mosaic floorplan
is 3n − o(n) bits, both codes are asymptotically optimal.

(a) (b) (c) (d)

Fig. 1 Examples of floorplans.
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Table 1 Existing results on coding floorplans.

The lengths of the Information-theoretic
existing codes (bits) lower bounds (bits)

Floorplan [6] 4n − 4 3.53n
Mosaic floorplan [1],[7] 3n − 3 3n − o(n)
Slicing floorplan [This paper] 5n/2 + m1 − p10 − 4 2.543n − o(n)

A floorplan is a slicing floorplan if it is obtained by recursively
cutting a rectangle into two blocks by a vertical line or horizontal
line. We will give a definition of the slicing floorplan in Section
2. The class of slicing floorplans is a proper subset of the class of
mosaic floorplans. Since a slicing floorplan has the simple struc-
ture, it is important from mathematical and application points of
views. For example, a bijection between separable permutations
and slicing floorplans are known [4], and slicing floorplans are
used in VLSI layout design [3].

In this paper, we address a problem of designing a compact
code for slicing floorplans. It is known that the information-
theoretic lower bound of slicing floorplans with n blocks is
2.543n − o(n) bits [8]. Thus, any code of slicing floorplan with n
blocks needs at least 2.543n bits on average.

The paper is organized as follows. Section 2 gives definitions.
In Sections 3, we propose a code of 3n bits for a slicing floorplan
with n blocks. In Section 4, we improve the code. In Section 5,
we compare two codes by experiments. Finally, Section 6 is the
conclusion and future work.

2. Definition
In this section, we give some definitions.

2.1 Slicing floorplan
We recursively define a slicing floorplan as follows.

( 1 ) The floorplan with exactly one block is a slicing floorplan.
( 2 ) Let F1, F2 be any two slicing floorplans. The floorplan ob-

tained by merging the rightmost line segment of F1, and the
leftmost vertical line segment of F2 is a slicing floorplan.
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Similarly, the floorplan obtained by merging the uppermost
line segment of F1, and the lowermost horizontal line seg-
ment of F2 is a slicing floorplan.

Fig.2 (a), illustrates a recursive structure of the floorplan in Fig.1
(a). Note that the floorplan in Fig.1 (d) has no recursive structure,
and hence it is a non-slicing floorplan.
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Fig. 2 Illustration for recursive structure of a slicing floorplan.

The base of a slicing floorplan is the lowermost horizontal line
segment. In this paper, we draw the base of a slicing floorplan as
the lowermost horizontal line segment.

Now we explain isomorphism of slicing floorplans. Two slic-
ing floorplan F1 and F2 are isomorphic if there exist a one-to-one
correspondence between maximal vertical line segments and a
one-to-one correspondence between maximal horizontal line seg-
ments such that the set of blocks located to the top and the bottom
of each maximal horizontal line segment, and the set of blocks to
the left and the right of each maximal vertical line segment are
preserved, respectively. Intuitively, slicing floorplan are isomor-
phic if and only if they can be converted to each other by sliding
some maximal horizontal and vertical line segments, preserving
the sets of blocks located to the top, bottom, left and right of each
maximal line segment. For example, the slicing floorplan in Fig.1
(a) is obtained from the slicing floorplan in Fig.1 (b) by sliding
one horizontal line segment and hence the two slicing floorplans
are isomorphic.

2.2 Slicing tree
A slicing tree is a binary tree and represents the recursive struc-

ture of slicing floorplan. Each vertex of a slicing tree has a label
‘+’, ‘*’, or ‘L’. ‘+’ represents a horizontal merge and ‘*’ rep-
resents vertical merge in a recursive structure. ‘L’ represents a
single block. Note that the label of a vertex is ‘L’ if and only if
the vertex is a leaf of a slicing tree. For example, the recursive
structure of the slicing floorplan in Fig.1 (a) is shown in Fig.2 (a),
and its slicing tree is shown in Fig.2 (b).

A slicing floorplan has one or more corresponding slicing tree.
For example, the slicing trees in Figs.2 (b) and (c) correspond to
the same slicing floorplan. Thus, a relation between slicing floor-
plans and slicing trees is not bijective. On the other hand, Wang
and Lui [1] defined skewed slicing trees such that they have a bi-
jection to slicing floorplans. A slicing tree is a skewed slicing tree
if the label of each inner vertex of the slicing floorplan is different
from the label of its right child. For example,the slicing tree in

Fig.2 (b) is the skewed slicing tree of the slicing floorplan in Fig.1
(a).

2.3 Slicing string
Let F be a slicing floorplan with n blocks, and let T (F) be

a skewed slicing tree of F. We traverse T (F) with breadth-first
manner. In the traverse, we output the label of each vertex when
the vertex is visited. We call the obtained string the slicing string
of F. For example, the slicing string of the slicing flooorplan in
Fig.1 (a) is “**+L+LLLL”.

It is obvious that we can construct the slicing string from a
skewed slicing tree, and reconstruct the skewed slicing tree from
a slicing string. We therefore from now on address to code the
slicing string of a skewed slicing tree.

3. Breadth-first code
In this section, we propose the code of 3n − O(1) bits for a

slicing floorplan with n blocks.

3.1 Coding
A label appeared in a slicing string is ‘+’, ‘*’, or ‘L’. We code

the three labels with 00, 01, and 1, respectively. Table 2 shows
the correspondence between the labels and their codes. We code
each label in a slicing string according to Table 2. We call the ob-
tained code a breadth-first code of a slicing floorplan F, denoted
by B(F).

Table 2 Correspondence between the labels and their codes.

label code
+ 00

* 01

L 1

3.2 Decoding
We can reconstruct a slicing string from the breadth-first code

straightforwardly. If we first read 0, then we read the next bit. If
the next bit is 0, then the current two bits represent the label ‘+.’
Otherwise, if the next bit is 1, then the current two bits represent
the label ‘*.’ If we first read 1, then this bit represents the la-
bel ‘L.’ By repeating this process, we can reconstruct the original
slicing string.

3.3 Estimation of the length of breadth-first code
Let F be a slicing floorplan with n blocks, and let B(F) be the

breadth-first code of F. We denote by |B(F)| the length of B(F).
Since the skewed slicing tree of F has n − 1 inner vertices and n
leaves, we have

|B(F)| = n + 2(n − 1) = 3n − 2. (1)

Therefore, we have the following theorem.
Theorem 1 Given a slicing floorplan with n blocks and its

skewed slicing tree, we can code the slicing floorplan by 3n − 2
bits. Each of coding and decoding takes O(n) time.
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4. Slicing-pair code
In this section, we improve the breadth-first code. The idea of

our improvement is to code a pair of vertices in a skewed slicing
tree. The same approach is appeared in [7] to code an unordered
binary tree.

4.1 Coding
Let F be a slicing floorplan with n blocks, and let S (F) =

(s1, s2, . . . , s2n−1) be the slicing string of F. S ′(F) =

(s′1, s
′
2, . . . , s

′
2n−2) is the string obtained by removing s1 in S (F).

A slicing-pair is a pair (s′i , s
′
i+1) for each i = 1, 3, . . . , 2n − 3.

Note that two vertices corresponding s′i and s′i+1 in a slicing-pair
(s′i , s

′
i+1) have the same parent. See Fig.3 for an example. Let

Pi be the parent of s′i , and s′i+1 in a slicing-pair (s′i , s
′
i+1). If the

label of Pi is ‘+’, then si+1 ,‘+’ holds. In this case, the possi-
ble patterns of labels of (s′i , s

′
i+1) are six patterns. Table 3 shows

the possible patterns. Otherwise, the label of Pi is ‘*’, then the
possible patterns of (s′i , s

′
i+1) is the six patterns as shown in Table

3. We assign two or three bits to each pattern of a slicing-pair, as
shown in Table 3. The label of root is either ‘+’ or ‘*’, and hence
we can encode it by one bit. The last slicing-pair is always (L,L),
and hence no bits is assigned to it. We call the slicing-pair code
the code obtained by the above assignment of bits.

*
+*

+ LL L

L L

Fig. 3 Slicing-pair in a skewed slicing tree.

Table 3 Patterns of slicing-pair and their codes.

Label of parent Label of slicing-pair pair Assigned bits
+ (+,*) 000

(+,L) 001

(*,*) 010

(*,L) 011

(L,*) 10

(L,L) 11

* (+,+) 000

(+,L) 001

(*,+) 010

(*,L) 011

(L,+) 10

(L,L) 11

4.2 Decoding
Now we show how to reconstruct the original slicing string

from the slicing-pair code. Basic idea is to reconstruct each
slicing-pair using Table 3. The detail is as follows. Let SP(F)
be a slicing-pair code for a slicing floorplan F. The first bit of
SP(F) represents whether the label of the root is ‘+’ or ‘*’. Sup-
pose that a slicing-pair (s′i , s

′
i+1) for each i = 1, 3, . . . , j − 2 is

reconstructed then the slicing-pair (s′j, s
′
j+1) is reconstructed us-

ing Table 3, because we know the label of the parent of (s′j, s
′
j+1).

We repeat this process, and we finally insert the omitted (L,L).
By the above process, we obtain a sequence of slicing-pairs in
the order of a slicing string and hence we can obtain the original
slicing string.

4.3 Estimation of the length of slicing-pair code
In this section, we estimate the length of the slicing pair code.

We first give some definitions. Let F be a slicing floorplan with n
blocks, and let m be the number of inner vertices of a slicing tree
of F. We denote by mi(i = 0, 1, 2) the number of vertices each
of which has i leaves as its children. Then we have the following
two equations:

m = m0 + m1 + m2, (2)

n = m + 1 = 2m2 + m1. (3)

By Eqs. (2) and (3), we have

m0 = m2 − 1. (4)

Let p00 be the number of slicing-pairs in which both labels corre-
spond to inner vertices, let p01 be the number of slicing-pairs in
which the left label corresponds to an inner vertex and the right
label corresponds to a leaf, let p10 be the number of slicing-pairs
in which the left label corresponds to a leaf and the right label cor-
responds to an inner vertex, and let p11 be the number of slicing-
pairs in which both labels correspond to leaves. We immediately
obtain the following three equations:

p00 = m0 = m2 − 1, (5)

p01 + p10 = m1, (6)

p11 = m2. (7)

Now we estimate the length of the slicing-pair code SP(F) of
F, denoted by |SP(F)|. From Table 3, we can observe that each
label for p00 uses three bits; each label for p01 uses three bits;
each label for p10 uses two bits; each label for p11 uses two bits.
We therefore obtain the following equation:

|SP(F)| = 3p00 + 3p01 + 2p10 + 2(p11 − 1) + 1

Recall that the label of the root uses one bit and the code for the
last slicing-pair is saved. By Eqs.(3), (5), (6), and (7), we obtain
the following estimation:

|SP(F)| = 3p00 + 3p01 + 2p10 + 2(p11 − 1) + 1
= 3(m2 −1)+3(m1 − p10)+2(m1 − p01)+2(m2 −1)+1
= 5m2 + 5m1 − 3p10 − 2p01 − 4
= 5/2(2m2 + m1) + 5m1/2 − 2(p01 + p10) − p10 − 4
= 5n/2 + 5m1/2 − 2m1 − p10 − 4
= 5n/2 + m1/2 − p10 − 4.

This gives our main result as in the following theorem.
Theorem 2 Given a slicing floorplan with n blocks and its

skewed slicing tree, we can code the slicing floorplan by 5n/2 +
m1/2− p10−4 bits. Each of coding and decoding takes O(n) time.

3ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-AL-148 No.6
2014/6/13



4.4 Range of length
We proposed two codes for slicing floorplans: breadth-first

code and slicing-pair code. Which code is more compact? We
now estimate the range of the length of SP(F) of a slicing floor-
plan F. We first consider the best case of |SP(F)|. If the skewed
slicing tree has n − 2 inner vertices each of which has a leaf as
its left child and has an inner vertex as its right child. Fig.4 (a)
shows an example of such a skewed slicing tree. In this case, we
have

|SP(F)| = 5n/2 + (n − 2)/2 − (n − 2) − 4
= 2n − 3.

On the other hand, if a skewed slicing tree has n − 2 vertices
each of which has an inner vertex as its left child and has a leaf as
its right child (See Fig.4 (b) for an example), then |SP(F)| takes
the maximum number of bits:

|SP(F)| = 5n/2 + (n − 2)/2 − 0 − 4.
= 3n − 5

We therefore obtain the following inequality:

2n − 3 ≤ |SP(F)| ≤ 3n − 5. (8)

Eq.(8) implies that in worst case the lengths of the breadth-first
code and the slicing-pair code are almost equal if we ignore con-
stant terms. In the next section, we experimentally compare the
average length of the two codes.
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Fig. 4 Minimum and maximum saved slicing tree.

5. Computational experiment
In this section, we compare the average length of the breadth-

first code and the slicing-pair code. We first generate 10,000 slic-
ing floorplans with n blocks for each n = 1, 2, . . . , 100 uniformly
at random. We code each slicing floorplan; then calculate the
average length for each n = 1, 2, . . . , 100. Table 4 shows the en-
vironment of our experiment.

For each n = 1, 2, . . . , 100, the average lengths of the two codes
are shown in Fig.5 which shows a graph with the average lengths
on the y-axis and the number of blocks on the x-axis. For ev-
ery n, the slicing-pair code is more compact than the breadth-first
code. Fig.6 shows a graph with reduction ratio on the y-axis and
the number of blocks on the x-axis. From the graph, it can be
conjectured that the reduction ratio courerges to roughly 14 %.

Fig. 5 Comparison of the two codes.

Fig. 6 Reduction rate of slicing-pair code.

Table 4 Experiment environment.

CPU Intel Core i7-4770S(3.1GHz/4C8T)
Memory DDR3-1333 8GBx2
OS FreeBSD 9.1-RELEASE amd64
Language Haskell
Compiler GHCi version 7.6.3

6. Conclusion
In this paper, we first proposed a breadth-first code. The

breadth-first code represents a slicing floorplan with n blocks by
3n − 2 bits. We then proposed a slicing-pair code by improving
the breadth-first code. The length of the slicing-pair code satis-
fies the inequality 2n − 3 ≤ |SP(F)| ≤ 3n − 5, where |SP(F)| is
the length of the slicing-pair code of a slicing floorplan F. In our
computational experiments, we investigated the average lengths
of the two codes. The experiment showed that the slicing-pair
code is more compact than the breadth-first code. Reduction ra-
tio of the two codes was roughly 14% for n = 100, where n is the
number of blocks.

In this paper, we suppose a slicing floorplan and its skewed
slicing tree are given. Thus, our analysis of coding time and de-
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coding time contain no running time for constructing the skewed
slicing tree from a given slicing floorplan. It can be observed that
a naive method can construct the skewed slicing tree of a slicing
floorplan with n blocks in O(n2) time. Our future works includes
to improve this running time to be linear time. One of other fur-
ture works is to design an asymptotically optimal code.
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