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Abstract: This paper presents a real-time incremental mosaicing method that generates a large seamless 2D image
by stitching video key-frames as soon as they are detected. There are four main contributions: (1) we propose a
“fast” key-frame selection procedure based solely on the distribution of the distance of matched feature descriptors.
This procedure automatically selects key-frames that are used to expand the mosaics while achieving real-time per-
formance; (2) we register key-frame images by using a non-rigid deformation model based on a triangular mesh in
order to “smoothly” stitch images when scene transformations can not be expressed by homography; (3) we add a new
constraint on the non-rigid deformation model that penalizes over-deformation in order to create mosaics with natural
appearance; (4) we propose a fast image stitching algorithm for real-time mosaic rendering modeled as an instance
of the minimum graph cut problem, applied to mesh triangles instead of the image pixels. The performance of the
proposed method is validated by experiments in non-controlled conditions and by comparison with a state-of-the-art
method.

Keywords: non-rigid registration, image stitching, graph cut

1. Introduction

Mosaicing is a classical application of image registration. Typ-
ically, a set of images is stitched together to simulate a camera
with a larger field of view. Real-time mosaicing can be useful
for medical imaging, augmented reality, digital camera panorama
generation, etc. [12].

Classical mosaicing methods work under the assumption that
the input images are related to each other by homography (pro-

jective transformation). This assumption holds true when the im-
ages are acquired under some limited conditions (camera rotation
around its optical center or scene lying on a planar surface). Un-
less these conditions are satisfied, the images can not be perfectly
aligned by registration and the results may be very poor. This
problem may be alleviated by the application of non-rigid regis-
tration [10]. In this work, we propose a method of online mo-
saicing that can generate 2D mosaics from video inputs acquired
beyond homography assumptions.

A naive approach to online mosaicing is to register and stitch
the current video key-frame into the previously selected key-
frame. The process will accumulate registration error which will
grow with each new image added to the sequence causing the final
mosaic to look over-deformed. Also, when using non-rigid regis-
tration, not all regions of the image being registered will have the
same alignment precision. It is necessary to apply some robust
method of image stitching capable of creating the final mosaic
using only the well aligned parts of the registered image while
ignoring the misaligned regions. This method must also run in
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real-time.
This paper presents a method which uses a very efficient fea-

ture based non-rigid registration model in order to align images
with high precision. At the same time, the over-deformation of
the mosaic is avoided during the online mosaic creation. These
two objectives are achieved by formulating the registration prob-
lem enforcing smoothness while keeping the original proportions
of the captured key-frame. Additionally, in order to achieve real-
time processing, the key-frames are efficiently extracted from
the video by a procedure which uses the distance distribution
of matched feature descriptors. This paper also presents a fast
image stitching method tailored for feature-based image regis-
tration. After the images are registered, they must be stitched
together to create a mosaic. Pixel selection is one of the main
steps in image stitching. Given a sequence where the key-frames
may have many regions of overlap, image stitching consists of de-
ciding which pixels will be used to compose the final mosaic. A
common method of pixel selection is the graph cut algorithm [16].
Generally, image stitching with graph cut uses a formulation in
which the vertices represent pixels of the images being stitched
together. However, this approach is infeasible for a real-time
method working with high-resolution images because of the great
number of vertices in the resulting graph cut model. In the pro-
posed stitching method, vertices represent triangles of the mesh
model used to represent the non-rigid transformations. By these
means, since the number of triangles in the mesh model is much
smaller than the number of pixels, real-time processing can be
achieved in spite of the complex image stitching algorithm.

The paper is organized as follows. In Section 2, related meth-
ods are presented. Section 3 presents the proposed method. Sec-
tion 4 shows the result of the experimental validations. Finally,
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Section 5 presents the conclusions of this work and future re-
search subjects.

2. Related Work

For the reader who is not familiar with mosaicing, Szeliski [12]
presents a comprehensive tutorial about a variety of methods of
registration and mosaic composition.

Since image mosaicing is a well studied area of computer vi-
sion, there are many approaches to this problem. They can be
grouped in 3 classes: offline methods that use homography or
lower degree transformations, offline methods that use higher
degree transformations, and online methods. The first group
includes the works Refs. [1], [3], [5], [9], which are based on
global transformations such as homography. The second group
includes the works Refs. [4], [6], which model the deformation as
quadratic functions. The third group, which is the most related to
the proposed method, includes the works of Refs. [7], [11]. The
work in Ref. [7] uses 3D information for registering aerial images
using a non real-time algorithm. The method in Ref. [11] is on-
line and avoids the problem of over-deformation by using fixed
camera movements (translation, forward motion, etc.).

Although most of the works dealing with mosaicing make
use of global transformations such as homography, there are
more general registration methods that use non-rigid deformation.
Some of them use feature based methods, e.g., Refs. [2], [8], [10].
Feature based methods are generally more computationally effi-
cient than area based methods [12], specially in the case of non-
rigid registration. The method in Ref. [8] can register images in
real-time even in the presence of a large ratio of outliers. How-
ever, this method is designed for pairs of images only.

Therefore, on top of the state of the art, the contributions of
the proposed work are: real-time performance, use of non-rigid
registration, prevention of over-deformation of the mosaic, less
restrictions on camera movement, and a fast implementation of
graph cut for image stitching.

3. Proposed Method

The mosaicing procedure consists of four steps: key-frame
selection, feature matching, registration, and mosaic displaying.
The key-frame selection module reads the input video and selects
which key-frames will be used to create the mosaic. The fea-
ture matching module matches the feature points in the last and
the previous selected key-frames. The pairwise registration mod-
ule receives the set of matched features and registers the newly
selected key-frame into the previously selected key-frame. The
registered key-frame is then sent to the mosaic creation module
where it is stitched to the mosaic and displayed. The procedure is
repeated again, until the end of the video is reached. The modules
are explained in more details in the following sections.

3.1 Key-frame Selection
In order to create mosaics efficiently, only a small subset of

the video frames must be selected as key-frames. This key-frame
set must be as sparse as possible, to reduce the number of regis-
trations performed. However, at the same time, it must contain
enough overlapping key-frames so that a complete mosaic can

be composed. To find key-frames with these characteristics, it is
necessary to be able to estimate the overlap between two frames.
The following procedure can perform this estimation: (1) the fea-
tures in both frames being compared are detected using SURF
descriptors [14]); (2) the nearest-neighbor matching of the fea-
tures is computed (for efficiency reasons, no outlier rejection is
done during this step); (3) a histogram of the distance between the
matched descriptors is computed; (4) the overlap measure (OM)
is computed.

The OM is a function that estimates the overlap between two
images. It is defined as follows:

OM(H) =
nBin∑

j=1

G(( j − 0.5)hsize, ς)Hj, (1)

where H is the descriptor distance histogram, nBin is the number
of bins in H, hsize is the size of each bin, ( j − 0.5)hsize is the av-
erage range of the bin j, G is a Gaussian weighting function with
0 mean and standard deviation ς. This weighting function as-
signs larger weights to distances near zero, and the weight decays
quickly, so that the bins which probably contain correct matches
receive a larger weight than the bins with wrong matches.

Making use of OM, the key-frames are selected by the follow-
ing algorithm: (1) the first video frame is selected and used as
reference; (2) if the next frame has an OM (regarding the refer-
ence frame) which is smaller than a given threshold, it is selected
and becomes the new reference. Step (2) is repeated until the end
of the video.

It was experimentally observed that the probability distribution
of the descriptor distances changes according to the intersection
size between the image pair. Figure 1 (a) shows two frames with
a small overlap. The descriptor distance has unimodal distribu-
tion (Fig. 1 (c), red histogram). Figure 1 (b) shows two frames
with a larger overlap. In this case, the left tail of the distribu-
tion increases (Fig. 1 (c), blue histogram). This happens due to

(a) (b)

(c) (d)

Fig. 1 Key-frame selection. (a) Pair of frames with a small overlap. (b)
Pair of frames with a large overlap. (c) Histogram of the distance of
matched descriptors: the red bars represent pair (a) and the blue bars
the pair (b). (d) Variation of the overlap measure over time.
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the greater proportion of inliers among the matched features. Fig-
ure 1 shows the variation of OM over time, in a video recorded by
a translating camera. The value of OM decreases as the intersec-
tion becomes smaller and rises again when a new key-frame is se-
lected. In this algorithm, the parameter ϑ is a threshold that, in the
current implementation, is selected manually (see Section 4.1).

3.2 Feature Matching
The feature matches found during key-frame selection can not

be used as-is since most of the matches are outliers. A pruning of
these outliers is necessary before the matches can be used by the
registration procedure. Let M be the set of matches of a consecu-
tive pair key-frames. The set M is initialized by a simple method
(presented in Ref. [17]), which is as follows. The set M is initially
empty. Each feature in one key-frame is paired with the two most
similar features of the other key-frame (the features were already
computed during key-frame selection). The descriptor distances
of these two matches are calculated. Features whose variation in
the distances is large (the smaller distance is less than 60% of
the larger distance) are considered inliers and the closest match is
added to M.

The idea behind this method is that inlier matches generally
present distances much smaller than false matches. Despite of
being simple, this pruning method is very efficient, producing a
set M with few false positives. However, this method may con-
sider many correct matches as outliers (false negatives). In order
to increase the number of matches, epipolar geometry can be used
to do a guided matching [15]. The fundamental matrix F is es-
timated using M by the 8-point algorithm, using the previously
selected inlier matches as initialization. After F is estimated, the
remaining pairs of matched features c = c0, c1 � M which satisfy
cT

0F c1 < εMatch, where εMatch is a small value, are considered
inliers and added to M.

3.3 Registration
This section explains the registration model used in the pro-

posed method. Two constraints must be met: the mosaic must be
as seamless as possible and over-deformation must be avoided.
For doing so, the proposed method applies a non-rigid deforma-
tion model that uses triangle meshes and a registration algorithm
that uses the feature matchings previously computed.
3.3.1 Deformation Model for Image Registration

A 2D mesh model is used to implement the non-rigid transfor-
mations. Each vertex (or control point) v j is represented by its
coordinates (x j, y j). The entire mesh is written as S = [X,Y]T,
where X is a vector containing the x coordinates of the control
points and Y the vector containing the y coordinates. The warp of
any point p, which is inside a mesh triangle defined by the ver-
tices vi, v j, and vk, can be calculated using the barycentric coor-
dinates of p: w(p, S ) =

∑
l∈{i, j,k} B(p, vl)[xl, yl]T, where B(p, vl) is

the barycentric coordinate of p in relation to vl ∈ {vi, v j, vk} (com-
puted in relation to the identity mesh S 0). Figure 2 illustrates the
basic principle of this kind of transformation.
3.3.2 Problem Formulation

The initial model of pairwise non-rigid registration was drawn
from Zhu et al.’s work [8], which was based on Pilet et al.’s

(a) (b)

Fig. 2 Deformation using a mesh model. (a) Identity mesh S 0. (b) Mesh S
warped to reduce the projection error of the matched features.

(a) (b)

Fig. 3 Error accumulation using homography. (a) Rendered mosaic. (b)
Projected key-frame borders. The last key-frame is the most de-
formed.

work [2]. It is summarized by the equation below:

E(S ) = EC(S ) + λES m(S ), (2)

where EC is the correspondence energy function and ES m is the
smoothness energy. The constant λ balances the compromise be-
tween precision and mesh smoothness. The registration is solved
by finding the mesh S which minimizes E(S ). The correspon-
dence energy is proportional to the projection error of warped fea-
tures, while the smoothness energy measures the discontinuities
on S ; this energy is important to remove outlier feature match-
ings. However, the initial formulation described by Eq. (2) was
designed for pairwise image registration only. Registration of
sequences of images poses some additional problems. If only
pairwise registration is used to align a sequence of images, over-
deformation may occur due to error accumulation (Fig. 3).

To avoid error accumulation, a modified version of the previ-
ous energy function is presented. The new term, ERe f (S −S Re f ) is
named reference mesh energy. The mesh S Re f represents a model
of how the mesh S should look like without over-deformation.
Alternatively, it is how the user of the mosaic system would ex-
pect the image (warped by S ) to look like. The constant μ regu-
lates the reference mesh energy weight. The new formulation is
presented below:

E′(S ) = EC(S ) + λES m(S ) + μERe f (S − S Re f ). (3)

The next sections present the energy functions in more detail.
3.3.3 Correspondence Energy

The correspondence energy EC(S ) is a function of the projec-
tion error of the matched features. The matched feature set is
represented by M. The matched feature pair c ∈ M is composed
of two features (c0, c1), where c0 is a feature found in the target
image and c1 is a feature found in the image being warped. Let
w(c1, S ) be the warping function. The function υ is the same ro-
bust estimator used by Zhu et al. [8]. Its definition is given below:

υ(δ, σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

||δ||2
σγ

if ||δ|| ≤ σ

σ2−γ otherwise

(4)

EC(S ) =
∑

c∈M

υ(c0 − w(c1, S ), σ) (5)

The function υ has two parameters: the projection error δ and
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the radius of tolerance σ. The matches whose projection error
is greater than the radius of tolerance are considered outliers and
penalized. The radius of tolerance σ dictates which matched fea-
ture pairs will be considered outliers. The objective of σ is to
remove outliers from the energy calculation.
3.3.4 Smoothness Energy

The correspondence energy, if used alone, can not handle a
great number of outliers among the matched features. Also, since
the non-rigid deformation model is high-dimensional, the opti-
mization method may very easily get trapped in a local optimum.
A smoothness constraint is added to the model in order to avoid
these problems. The proposed method uses the same smoothness
constraint found in Zhu et al. [8] and Pilet et al. [2]. It is explained
as follows.

The smoothness energy ES m of the mesh S is the sum of the ap-
proximate second derivative of S . Let E be the set of all collinear
control points in S that define two adjacent edges. The definition
of ES m is given below:

ES m(S ) =
∑

i, j,k∈E(−xi + 2x j − xk)2 + (−yi + 2y j − yk)2

= XTKX + YTKY,
(6)

where K = K′TK′, and K′ is a matrix containing one row per
triplet in E and one column per mesh vertex. The matrix K′ gives
the matrix form of the terms (−xi + 2x j − xk) and(−yi + 2y j − yk).
The row corresponding to the triplet (i, j, k) has all of its values
zero except in columns i, j, and k, that have values −1, 2, and −1,
respectively.
3.3.5 Reference Mesh Energy

The registration using the energy function in Eq. (2) is only
suited for pairwise registration, because alignment error may ac-
cumulate, as shown in Fig. 3. The role of the reference mesh
energy is to alleviate this problem. This energy is proportional to
the L2 distance between the mesh S and the reference mesh S Re f .
The former is the registration solution and the latter is an approx-
imation of how S should be if it has no over-deformation. The
criteria selected to generate S Re f was to make S Re f look similar
to the original captured image. S Re f is defined as the similarity
transformation (i.e., rotation, translation and scaling) that mini-
mizes the correspondence energy. This mesh can be computed
efficiently by reducing the projection error using the similarity
transformations combined with RANSAC. The reference mesh
energy is defined below:

ERe f (S − S Re f ) = ||S − S Re f ||2. (7)

During the optimization process, the reference mesh energy is
stronger in the regions of the mesh S where there are no fea-
tures. While the region with features is deformed to minimize the
projection error, the region without features is deformed by simi-
larity transformations. These local differences in the deformation
are not possible for global registration models.
3.3.6 Optimization Routine

In this section we will demonstrate that, as pointed in Ref. [8],
the projection error δ can be solved as a sparse linear system. Let
c0 and c1 be matched feature coordinates belonging to a pair of
images being registered. They are defined as c0 = (c0x, c0y) and
c1 = (c1x, c1y). The feature c1 belongs to the image being warped.

Let N be the number of control points in the mesh. The feature c1

lies inside the triangle defined by the control points vi, v j, vk ∈ S 0,
(calculated regarding the identity mesh). The indexes i, j, and k

are in the range [1,N]. Also, let tc1 ∈ RN be a vector representing
the barycentric coordinates of the feature point c1. The vector tc1

has all its values 0, except in the coordinates i, j, and k, where
the barycentric coordinates of c1 in relation to vi, v j, and vk are
set, respectively. With these definitions, the projection error can
be defined as:

||δ||2 = (c0x − tT
c1

X)2 + (c0y − tT
c1

Y)2, (8)

where X and Y are the coordinates of the mesh control points.
The Eq. (8) can be expanded as:

||δ||2 = c2
0x + c2

0y − 2(c0xtT
c1

X + c0ytT
c1

Y)

+ XTtc1 tT
c1

X + YTtc1 tT
c1

Y
(9)

Using Eqs. (6), (7), and (9), the energy E′(S ) in Eq. (3) can be
rewritten as:

E′(S ) =

1
σγ

∑

c∈MInl

⎛⎜⎜⎜⎜⎜⎜⎝c2
0x + c2

0y − 2

⎡⎢⎢⎢⎢⎣
c0xtc1

c0ytc1

⎤⎥⎥⎥⎥⎦
T

S

⎞⎟⎟⎟⎟⎟⎟⎠+

1
σγ

∑

c∈MInl

⎛⎜⎜⎜⎜⎝S T

⎡⎢⎢⎢⎢⎣
tc1 tT

c1
0

0 tc1 tT
c1

⎤⎥⎥⎥⎥⎦ S
⎞⎟⎟⎟⎟⎠+

|MOut |σ2−γ + λ(XTKX + YTKY) + μ||S − S Re f ||2,

(10)

where MInl is the set of inlier matches, MOut is the set of outlier
matches. The following definitions are done for simplification:

A = 1
σγ
∑

c∈MInl
tc1 tT

c1
, and b =

⎡⎢⎢⎢⎢⎣
bx

by

⎤⎥⎥⎥⎥⎦ = 1
σγ
∑

c∈MInl

⎡⎢⎢⎢⎢⎣
c0xtc1

c0ytc1

⎤⎥⎥⎥⎥⎦ .

Computing the gradient of E′ and setting it to zero, the mesh S

can be found by solving a linear system:

S =

⎡⎢⎢⎢⎢⎣
λK + A + μI 0

0 λK + A + μI

⎤⎥⎥⎥⎥⎦
−1

(b + μS Re f ). (11)

The optimization routine is summarized in Algorithm 1.
The optimization is repeated varying the value of σ from σ0 to

εPro jErr. At each iteration, σ is multiplied by η, a real value in the
range (0, 1). At the beginning, σ is large, allowing many possible
outliers to influence the result of the optimization process. How-
ever, since the module of the derivative of the EC is small when
σ is large, ES m and ERe f have a larger weight and they initially
guide the optimization. As the value of σ decreases, the weight
of EC increases, guiding the optimization to minimize the projec-
tion error of the remaining inliers. In this way, this registration
method is robust to outliers. The process stops when σ is smaller
than εPro jErr.

3.4 Triangle-wise Graph Cut
It is generally impossible to guarantee that the alignment of

all regions of an image will be equally good. This is specially
true in the particular case of non-rigid registration, where regions
with few features are often misaligned. For this reason, the key-
frames must be carefully stitched into the mosaic. The standard
approaches for this problem consist of selecting which pixels of
the new image will be used in the mosaic. This is generally done
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input : S 0, λ, μ, σ0, η, M

output: S = { X, Y}
Pre-compute λK, μI

Pre-compute S Re f = (XRe f ,YRe f ) using M

for c = (c0, c1) ∈ M do
Pre-compute the baricentric coordinates of c0

end

σ← σ0

while σ > εPro jErr do
Compute A, b

X ← [λK + A + μI]−1(bx + μXRe f )

Y ← [λK + A + μI]−1(by + μYRe f )

σ⇐ ησ
end

Algorithm 1: Image registration algorithm. The parame-
ter S 0 is the identity mesh, εPro jErr is the error tolerance
for inlier matchings, λ is the smoothness strength param-
eter, μ is the reference mesh similarity parameter, M is
the set of matched features, σ0 is the initial radius of tol-
erance, and η is the radius of tolerance decay rate. The
parameter values are shown in Section 4.1.

by defining a stitching line. Pixels in one side of the stitching
line are added to the mosaic, and the pixels in the other side are
ignored. A common criteria for selecting the stitching line is to
make it pass through pixels which are well aligned to the mosaic.
By this, the pixels in both sides of the stitch (the pixels of the
new registered key-frame and the pixels already in the mosaic)
will be similar and the final composite mosaic will be seamless.
The methods in Ref. [13], for example, use this approach. How-
ever, pixel selection is too slow for a real time method, specially
dealing with high resolution images.

Our proposed solution to this problem is to select mesh trian-
gles instead of pixels. Even in a mesh with a high degree of free-
dom, there are much fewer triangles than pixels in the key-frame.
In our approach, we define a stitching line that passes through tri-
angles that are well aligned. The number of inlier features (i.e.,
feature points correctly aligned to the mosaic) inside a triangle
was used to evaluate its alignment. It was observed that triangles
with inlier features inside are much better aligned than triangles
without them. The stitching line is selected by solving a graph
cut formulation, which is presented below.

Let S 0, S 1, S 2, ..., S n−1 be the meshes already added to the
mosaic. They are represented in gray in Fig. 4 (a). Let
T0,T1, T2, ...,Tn−1 be the set of triangles that compose these
meshes. Each one of these sets is defined as Ti = {τ0

i , τ
1
i , ..., τ

m
i },

where m is the number of triangles inside each mesh (m is con-
stant). Each triangle is defined by three non-identical control
points: τ j

i = {va, vb, vc}; va, vb, vc ∈ S i. Now, let T ′0, T
′
1, T

′
2, ..., T

′
n−1

be the set of triangles, for all previously added meshes, which
were selected to be included into the mosaic. Therefore, T ′i ⊆ Ti.

Let S n be the next mesh to be inserted into the mosaic (repre-
sented in red in Fig. 4 (a), and Cn the matched features of the last
key-frame Fn. Let ω : Tn → N be a function that receives as
parameter a triangle τ j

n from the mesh S n and returns the number
of aligned features which lie inside τ j

n.

(a)

(b)

(c)

Fig. 4 Proposed triangle-wise graph cut algorithm. (a) New mesh being
added into the mosaic. (b) A graph is created to represent the new
mesh; the vertices representing the border triangles which overlap
with the mosaic receive a s edge and the other vertices represent-
ing border triangles receive a t edge; the weight of each vertex is
inversely proportional to the number of aligned features inside its
corresponding triangle. (c) The minimum cut is computed; the tri-
angles whose vertices are in the side of s will not be added to the
mosaic, while the other triangles will.

To use graph cut, a graph and an edge-weight function must be
defined. The graph {U, E} is constructed based on S n. The set of
vertices U has one vertex u j for each triangle τ j

n in S n. The set
of edges E has one edge for each pair of adjacent triangles in S n

(two triangles are adjacent if they share an edge). To follow the
graph cut formulation, two special vertices, s and t (source and
sink) are added. Let Tbn be the set of triangles that are on the
borders of S n. For each one of the triangles in Tbn one extra edge
is added to E: if a triangle τb ∈ Tbn, represented in U by the
vertex u j, has at least one intersection with one of the triangles
already in the mosaic, the edge (s, u j) is added. These triangles
will definitely not be added to the mosaic. Otherwise, the edge
(u j, t) is added to E. It means that the border triangles that do
not intersect the mosaic will definitely be added to the mosaic.
Now let w : E → R be an edge-weight function. This function is
defined as follows:

w(ui, u j) =

⎧⎪⎪⎨⎪⎪⎩
(ω(τi

n) + ω(τ j
n) + ε)−1 ui � s, u j � t

∞ otherwise
(12)

where ε is a small value used to avoid divisions by zero. This
function gives weights that are inversely proportional to the num-
ber of inlier features inside the adjacent triangles, enforcing that
the minimum cut must pass through the triangles with the most
inlier features. The edges from the sink and source vertices are
given infinite weight.

The graph generated by this process is illustrated in Fig. 4 (b).
Using these definitions, the optimal stitching can be computed
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using the max-flow min-cut algorithm as defined in Ref. [16], for
example. The triangles τ j

n whose vertices u j end up in the side
of s (regarding the optimal cut) are not added to the mosaic. The
other triangles are selected and added to T ′n. Figure 4 (c) shows
the minimum cut obtained by the graph-cut algorithm.

4. Experiments

The objective of the experiments is to demonstrate four points:
the proposed method has a smaller projection error comparing
to the classical approaches, the mosaics created by the proposed
method have less over-deformation, the proposed method can run
in real-time, and that the results obtained by the proposed method
are more robust than the results obtained by classical approaches
in the kind of video considered.

4.1 Experimental Setup
The project was run in a computer with Intel(R) Core(TM) i7

CPU (2.93 GHz) and 4 GB of RAM. The proposed method was
implemented using the OpenCV library. The parameter setting is
presented in Table 1.

For the reference mesh computation, the precision of RANSAC

is set to 99% in the presence of 70% of outliers. The size of the
mesh was 19 × 28 control points. The videos used on the experi-
ments had a resolution of 720 × 480.

4.2 Registration Precision
This experiment presents the comparison between homography

and non-rigid transformations concerning precision by means of
mean appearance error, defined as the mean absolute difference
between all aligned pixels. The experiments were conducted by
registering pairs of images. Figure 5 (a) shows the results of
the average error of pair-wise registration over different video
sequences. Figure 6 shows a detail of a pair of registered key-
frames (the averaged image). As can be seen, the results achieved
by the registration procedure used by the proposed method are al-
ways more precise than the results using homography. This hap-
pens because the deformation field between the pairs of images
can not be precisely described by a global transformation like
projection, since the displacement field depends on the geometry
of the scene.

4.3 Over-deformation Avoidance
This set of experiments compares mosaics done by the pro-

posed method and non-rigid registration as described by Ref. [8].
The comparisons are done regarding over-deformation. Figure 7

Table 1 Parameter settings for the proposed method.

Description Param. Value

Key-frame selection threshold. ϑ 0.4
Key-frame selection weight function std. deviation. ς 1.0
Feature matching epipolar constraint threshold εMatch 10−2

Smoothness energy parameter. λ 10−6

Reference mesh energy parameter. μ 10−4

Correspondence energy parameter. γ 4
Registration parameter; initial radius of tolerance. σ0 32
Minimum radius of tolerance; i.e., projection error. σmin 3
Radius of tolerance decay rate. η 0.5

shows the results. Both methods use the same set of key-frames.
As previously shown in Fig. 3, using homography, the registration
error tends to build up and cause the key-frames to over-deform.
When using only non-rigid registration, without the reference
mesh energy, error accumulation also happens, even though the
alignment error is smaller compared to homography. The pro-
posed method, using the reference mesh energy, minimizes the
amount of over-deformation. This result may be achieved by re-
lated methods using bundle adjustment, but the proposed method
achieves the same by only doing pair-wise registration.

(a)

(b)

Fig. 5 (a): Appearance error with homography and non-rigid transforma-
tions. The error is measured as the mean absolute difference between
pixel gray-scale values of aligned pixels, in a set of videos. The red
boxes show the results obtained by homography, and the green boxes
represent the results of the proposed method; (b): Execution time
(seconds) in relation to number of control points.

(a) (b) (c)

Fig. 6 Detail of a pair of registered key-frames, showing the average of
the superposition of the key-frames. (a) Original video key-frame.
(b) Key-frame aligned by the proposed method. (c) Key-frame
aligned by homography.

(a) (b) (c)

Fig. 7 Mosaicing results, regarding over-deformation. (a) City model used
in the experiments, showing the expected undeformed key-frame. (b)
Results obtained by the proposed method. (c) Results obtained us-
ing only non-rigid registration without the reference mesh energy.
The mosaic generated by the proposed method presents less over-
deformation.
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(a)

(b)

Fig. 8 Mosaic stitching results. (a) Results of the proposed image stitch-
ing method. (b) Results obtained by overlapping the selected key-
frames. The mosaic generated by the proposed method presents
much less seam marks.

(a)

(b)

Fig. 9 Mosaic stitching results. (a) Results of the proposed image stitching
method. (b) Results of just overlapping the selected key-frames. The
mosaic generated by the proposed method presents much less seam
marks.

4.4 Mosaic Stitching
This set of experiments is done to evaluate the improvements

in the final mosaic when applying the triangle-wise graph cut al-
gorithm presented in Section 3.4. The comparisons were done
using two input videos. The proposed stitching method was com-
pared to the mosaics created overlapping consecutively selected
key-frames. Both results use the same set of input images and
the same registered feature points. Figure 8 shows the results
from the first video, and Fig. 9 shows the results for the second
video. Figure 8 (a) and Fig. 9 (a) show the results of the proposed
method, while Fig. 8 (b) and Fig. 9 (b) show the results of mosaic
created by overlapping the key-frames. Figure 10 and 11 show
details of these mosaics. Figure 12 shows the triangles selected
by the proposed method to be included into the final mosaics. As
can be seen in these results, the proposed stitching scheme can ig-
nore most registration errors which occur in regions without inlier
matched features.

(a) (b) (c)

Fig. 10 Details of the mosaic in Fig. 8. (a) Video key-frame. (b) Result of
the proposed stitching method. (c) Result of overlapping the key-
frames.

(a) (b) (c)

Fig. 11 Details of the mosaic in Fig. 9. (a) Video key-frame. (b) Result of
the proposed stitching method. (c) Result of overlapping the key-
frames.

(a)

(b)

Fig. 12 Triangles selected by the proposed stitching method in (a) Fig. 8
and (b) Fig. 9.

4.5 Comparison with a Standard Method
In this set of experiments, the proposed method was compared

to a standard method, implemented by Microsoft Image Compos-
ite Editor (ICE), version 1.3.5. Using ICE, the user can choose
different camera movements. The one which yielded the best re-
sult was selected. The proposed method used the parameters de-
scribed in Section 4.1. ICE and the proposed method used the
same set of key-frames. Figure 13 shows the mosaic created from
a video taken by a camera moving over a city model.

Figure 13 (a) shows the results obtained by the proposed
method. Figure 13 (b) shows the results obtained by ICE. As can
be seen, the results obtained by the proposed method are more
complete than the results given by ICE. This happens because of
the complex camera movement and the non-planar surface, which
violate the homography constraints used by ICE.

4.6 Computational Complexity
The current implementation of the proposed method runs in

about 32 frames per second with a tax of 2 key-frames selected
per second, what is reasonable for videos where the camera move-
ment is not excessively fast.
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(a)

(b)

Fig. 13 Comparison between the proposed method and a standard method.
(a) Results of the proposed method. (b) Results of a standard
method (Microsoft ICE). The proposed method created a more
complete mosaic since it can handle more complex camera move-
ments.

Each iteration of key-frame selection takes approximately
0.031 seconds, about 32 frames per second, enough for most
videos. Figure 5 (b) shows runtime regarding only the registration
procedure. It was executed 10 times for each quantity of con-
trol points (the computation of the reference mesh is included).
As can be seen from the experiments, registration runtime grows
slowly. This happens because of the implementation that uses
sparse matrices to represent the registration model. The runtime
of the key-frame selection and mosaic creation procedure were
also computed. Using approximately 1,000 triangles, the regis-
tration can be done in about 3 frames per second. Regarding mo-
saic creation, each key-frame takes on average 0.28 seconds to be
stitched by graph cut and rendered, a tax of nearly 3 frames per
second.

The conclusion is that the proposed method can run in real
time, given that the frame selection rate is about 3 frames per sec-
ond, reasonable when camera movement is not too fast. Further
optimization on the method may be performed in the future.

5. Conclusions

This paper presented a new mosaicing technique based on fea-
ture based non-rigid registration. The proposed method can be
used to create mosaics of non-planar surfaces in real-time. This
model deals with the problem of over-deformation using only
pairwise registration, and creates mosaics with smaller alignment
error compared to standard approaches. For this purpose, the ref-
erence mesh energy was presented. An efficient method of key-
frame selection designed to achieve real-time performance was
proposed. Also, a triangle-wise graph cut algorithm capable of
reducing the error in the final mosaic was presented.

The proposed method has some restrictions. First, since there
is no bundle adjustment, the generated mosaic is prone to error if
a region of the scene is recorded twice (loop). This will require
an efficient global registration method able to run in real-time.
The proposed method also fails when sharp discontinuities in the

optical flow are present, due to the mesh smoothness constraint.
This limitation could be solved by detecting these discontinuities
and segmenting the image into patches which can be aligned by
a smooth warping function. This will be the target of our future
research.
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