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Ringing Detector for Deblurring
based on Frequency Analysis of PSF

CHIkA INosHITA,T! YASUHIRO MUKAIGAWAT!
and YASUSHI YAGIT!

Many deblurring techniques have been proposed to restore blurred images
resulting from camera motion. A major problem in the restoration process is
that the deblurred images often include wave-like artifacts called ringing. In
this paper, we propose a ringing detector that distinguishes the ringing artifacts
from natural textures included in images. In designing the ringing detector,
we focus on the fact that ringing artifacts are caused by the null frequency
of the point-spread function. Ringings are detected by evaluating whether the
deblurred image contains sine waves corresponding to the null frequencies across
the entire image with uniform phase. By combining the ringing detector with a
deblurring process, we can reduce ringing artifacts in the restored images. We
demonstrate the effectiveness of the proposed ringing detector in experiments
with synthetic and real images.

1. Introduction

Images are blurred by the camera or object motion during exposure. Despite
the inclusion of a vibration reduction function or highly sensitive imaging devices
in the latest conventional cameras to reduce the effect of motion, blurring cannot
be solved by camera settings alone. Hence, restoration through image processing
is frequently required. However, it is very difficult to restore the blurred image
when its blur kernel is unknown V. In theory, images can be deblurred if the blur
kernels of the camera or object motion are known. However, blurred images can-
not be completely even with the known blur kernel for various reasons, including
image noise and calculation error. As a result, deblurred images often include
wave-like artifacts known as ringing.

In previous studies on image deblurring, many researchers have tried reducing
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ringing in deblurred images. Shan et al.? evaluated smoothness in a textureless
area to reduce ringing. Yuan et al.® proposed a restoration technique using the
residual image in which the ringing amplitude is proportional to the amplitude
of the edges in the image. Almost all current deblurring methods use statistical
or empirical features of ringing, and therefore do not strictly address the reason
why ringing occurs. In fact, it is difficult to detect the ringing from the deblurred
image alone.

In previous studies, ringing artifacts have been analyzed in detail. Lagendijk et
al.®) analyzed ringing effects caused by the linear space-invariant image restora-
tion. They treated ringing specifically as restoration error such as noise and
regularization, however physical characteristics of ringing were not considered.
Several ringing detectors have been proposed to determine image quality. Na-
sonov and Krylov® proposed an estimation algorithm based on total variation
control. Zuo et al. ©") evaluated ringing artifacts using a Gabor filter. Although
these methods can detect ringing, the detectors sometimes react to edges or peri-
odic structures that are not ringing artifacts, since the methods do not consider
the frequency, direction, or spatial characteristics of the ringing.

In this paper, we propose a novel ringing detector that distinguishes ringing
artifacts from natural wave-like textures in images. To design the ringing de-
tector, we determine frequencies for the ringing and detect the ringing features
based on a frequency analysis of the point-spread function (PSF). Using the
ringing detector, it is possible to focus exclusively on the frequencies of the ring-
ing. Moreover, we demonstrate that the ringing detector can be used for image
deblurring without affecting the texture of the original image.

Contribution
The contributions of this work are as follows.

o We identify the features of ringing based on a frequency analysis of the PSF.
Our approach focuses on the physical features of ringing artifacts, and not
on statistical or empirical features.

e We have designed a novel ringing detector that clearly distinguishes ringing
artifacts from natural textures included in images.

e Our ringing detector can be combined with usual deblurring techniques as a
part of the energy function. The combination enables us to reduce ringing
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237 Ringing Detector for Deblurring based on Frequency Analysis of PSF
artifacts in deblurred images.
2. Related Work

Statistical or empirical features of images: It is known that the gradient
histogram of a natural image has a heavy-tailed distribution. Shan et al.? ap-
proximated this distribution using a polynomial function and applied it to the
maximum a posteriori (MAP) estimation. Fergus et al.® adopted this feature
in a Bayesian approach®. On the other hand, since the amplitude of ringing is
proportional to the amplitude of the edges in an image, several methods using

10, In these methods, ringing re-

the residual image have also been proposed
sulting from the deblurring process cannot be distinguished from the wave-like
textures in images, because these methods are unable to separate the ringing
frequencies from other frequencies. Since our approach is based on a physical
frequency analysis, it can identify the frequency of the ringing, and is thus able
to distinguish ringing artifacts from wave-like textures.

Using multiple images: If the PSF is unknown, restoration is difficult using
only the blurred image. Hence, restoration methods using multiple images have
been proposed. Ancuti et al.'?) estimated the PSF of a blurred image by com-
bining a non-blurred image that includes the same object that is to be restored
in the blurred image. Rav-Acha and Peleg*» proposed a dual-kernel estimation
algorithm that uses two blurred images, and the algorithm was later improved by
Chen et al. '®. Ben-Ezra and Nayar '* used a hybrid camera that combines a low-
resolution video camera for estimating the PSF and a high-resolution still camera.
Tai et al. '™ also used a hybrid camera. However, they used low-resolution video
images for estimating spatially varying PSF by optical flow.

L1-norm-based regularization: Regularization-based image deconvolution is
widely employed. In particular, L1-norm-based regularization is effective for pre-
cise image restoration. Various methods have been proposed for L.1 norm evalu-
ation such as total variation (TV) regularization 2»-2% | sparse regularization 2,

and wavelet regularization 27

. These methods can restore blurred images accu-
rately; however, these methods often contain errors because the approach does
not consider physical features.

Computational photography: In the field of computational photography,
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ringing is prevented by means of photographic techniques. A camera with an
encoded close-and-open shutter operation is used to reduce the effect of lost

16)-18) - Although these techniques can restore blurred im-

frequency components
ages accurately, they cannot be applied to images taken with a normal camera.
Agrawal et al.'® used multiple images taken with different exposures. Since
the frequency components of captured images complement each lost frequency
component, deblurred image restoration can be solved as a well posed problem.
However, this approach requires multiple images for restoration. Our method,
on the other hand, requires neither special camera settings nor multiple images.
Cepstrum: The cepstrum is defined as the logarithm of the frequency power
spectrum. As seen later in this paper, a blurred image is modeled by the con-
volution of the original image and the PSF, while the frequency power spectrum
of the blurred image is similar to that of the PSF. As a result, the cepstrum
of the blurred image has characteristics similar to that of the PSFs. Thus, the
cepstrum is used to estimate the PSF 2922, This method and our approach are
based on the same frequency analysis, however, the purpose of our method is
different from theirs. Whereas their method uses frequency analysis to estimate
the PSF, we use it for detecting ringing.

3. Ringing Detector

3.1 Principle of Blurred Image Restoration

First, we summarize the principle of deblurring based on a Fourier transforma-
tion when the PSF is known. If the blur kernel on the blurred image is uniform,
the blurred image [ can be modeled by the convolution of the image f and the
PSF b as

I=fxb, (1)
where ‘*’ denotes the convolution. In the frequency domain, the convolution is
represented by multiplication. Therefore, Eq. (1) is transformed using the Fourier
transformation given below.

F(1) = F(f)F (), (2)
where F() represents the Fourier transformation. The blurred image is restored
by the inverse Fourier transformation of the blurred image divided at each element
by the PSF in the frequency domain as
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(c) Deblurred image

(b) Original image

(a) Blurred image

Fig.1 An example of image restoration. The deblurred image has wave-like artifacts.

where F~1() represents the inverse Fourier transformation, and r represents the
deblurred image. This is the principle of deblurring when the PSF is known.

3.2 Ringing Resulting from Deblurring

In theory, it is possible to restore blurred images on the basis of Fourier trans-
formation as described in Section 3.1. However, we cannot completely restore
blurred images for a variety of reasons. Figure 1 shows an example of a de-
blurred image. The deblurred image in Fig.1 (c) has wave-like artifacts, which
are not present in the original image. The main reason is that the blurred im-
age loses its specific frequency component. We call this lost frequency the null
frequency.

The wave-like artifacts are caused by the null frequency of the PSF. The blurred
image modeled by Eq. (2) loses frequency components corresponding to the null
frequencies of the PSF. Since division of a small value by a similar small value
tends to be unstable, the frequency components of the blurred image are not
correctly restored. We call a frequency causing a large error a noninvertible
frequency.

Figure 2 illustrates blur restoration using a one-dimensional (1-D) signal.
Since the PSF in Fig.2 has two null frequencies, the deblurred signal has large
values corresponding to the noninvertible frequencies. As seen in Fig.2, the
deblurred signal is incorrectly restored at the noninvertible frequency. Thus, the
deblurred signal includes sine waves with uniform phases corresponding to the
null frequencies across the entire signal. These sine waves are components of
ringing.
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Fig.2 Deblurring for a 1-D signal. The PSF has null frequencies denoted by red circles. The
deblurred signal has incorrect frequency spectrums denoted by red ellipses.

Although several researchers have discussed various forms of ringing, we focus
on ringing caused by null frequencies of the PSF in this paper.

3.3 Model of Ringing

If the PSF is known, the frequency and direction of the sine waves comprising
the ringing (referred to as error waves) can be accurately predicted from the
frequency components of the PSF. In addition, since error waves appear in the
entire image with uniform phase, the deblurred image r(x,y) with ringing arti-
facts is expressed as the sum of the original image f(z,y) and the error waves
ei(z,y) as

r(z,y) = fz,y) + Zei(%y) (4)

Error waves are sine waves corresponding to the noninvertible frequencies as
ei(z,y) = ki cos(2m(a;x + biy) + ¢i), (5)

where a; and b; are the x- and y-axis frequencies, respectively, corresponding to
the noninvertible frequencies of the PSF, k; is the unknown amplitude, and ¢; is
the unknown phase. A deblurred image with reduced ringing can be obtained by
removing the error waves from the deblurred image.

3.4 Design of a Ringing Detector

3.4.1 Features of Ringing

We explained the cause of ringing in the preceding section. Although ringing
is expressed by the sum of error waves as shown in Eq.(4), it is difficult to
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(a) Ringing textures in deblurred image (b) Wave-like textures in natural image

Fig.3 Examples of wave textures. Each instance shows the full-size image, the clipped images,
and the intensity profiles of the clipped images. The orange broken lines depict sine
waves. (a) A deblurred image has ringing textures with uniform phase, direction and
frequency. The broken line, which is a sine wave with uniform phase, matches the
horizontal brightness profile. (b) A natural image has wave textures with varying
directions, phases, and frequencies. Thus, a sine wave with uniform phase is not
observed in the graph.

determine from the deblurring result alone whether ringing exists. Since some
images cousist of various sine waves such as the example in Fig. 3 (b), we cannot
distinguish the ringing artifacts from the natural textures in those images. Thus,
we need to analyze the characteristics of the physical features of ringing.

Figure 3 shows examples of wave-like textures in a variety of images. Each
example shows the original image, clipped images, and graphs showing the hori-
zontal intensity profile of the clipped images. Figure 3 (a) illustrates the deblurred
image, which has wave-like textures across the entire image resulting from the
ringing. Both graphs in Fig. 3 (a) show that the horizontal intensity can be ex-
pressed as a sine wave with uniform phase depicted by the orange broken line.
On the other hand, Fig.3(b) shows a natural image with wave-like textures.
It should be noted that, although we can observe a sine wave in the graphs in
Fig. 3 (b), the phase thereof is not uniform.

The intensity profile of the natural image of Fig.3 (b) does not have a sine
wave with uniform phase. In fact the orange broken line indicating a sine wave
does not correlate with the intensity profiles. Instead, natural images consist of
sine waves with varying frequencies, directions, and phases. Thus, it is rare that
specific sine waves with uniform phase are included in the images.
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As explained above, it is clear that ringing is included in deblurred images as a
sine wave with uniform phase. In addition, we explained that the ringing consists
of a sine wave with frequency equal to the noninvertible frequency of the PSF
in Section 3.3. Features of the error waves comprising the ringing artifacts are
summarized as follows.

(1) A frequency and direction correspond to the noninvertible frequency of the
PSF.

(2) Phases of error waves are uniform in a deblurred image.

The noninvertible frequencies are decided by the PSF’s frequency components

that have little power. However, it is necessary to analyze whether the phase of

the error waves is uniform or not. The ringing detector examines this feature.

Since images consist of sine waves with various frequencies and phases, we need
to extract the error wave before examining the phase condition. The ringing
detector executes the following two steps.

(a) Extraction of the error wave
( b ) Examination of the phase condition
Each step is described in detail in the following sections.

3.4.2 Extraction of the Error Wave

The Gabor transformation analyzes local frequency characteristics, and is ex-
pressed by the convolution as

gi(z,y) = Zr(x — s,y — thw;(s,t), (6)

s,t
1 2242
wi(z,y) = o2 ¢ 2a? cos(2m(a;x + biy)), (7)

where w;() is the Gabor filter, d is the variance, a; is the x-axis frequency, and b;
is the y-axis frequency. a; and b; are determined according to the noninvertible
frequencies. Inputs to the ringing detector are these frequencies and the deblurred
image 7(z,y). If the sine wave corresponding to the input frequency is included
in the input image with uniform phase, the Gabor transformation result almost
matches the sine wave with the given frequency and uniform phase.

Figure 4 illustrates examples of the Gabor transformation results of a 1-D
signal with and without error waves. The Gabor transformation results represent
the behavior of the frequency component that is assigned to the Gabor filter.
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3.4.3 Examination of the Phase Condition

After the Gabor transformation, we examine whether the phase of the error
wave is uniform or not. If ringing has occurred, the Gabor transformation result
has a periodic pattern that corresponds to the input frequency. Thus, we use
the correlation coefficient between the Gabor transformation result and the error
wave to examine whether the transformation result has uniform phase. However,
the phase ¢; and amplitude k; of the error wave e;(x,y) are unknown. Therefore,
k; is fixed to 1 and ¢; is estimated by seeking the phase that maximizes the
correlation coefficient C;(¢). The ringing detector outputs the maximum value
of C;(c), in the range 0 to 1. If the output is close to 1, the phases are uniform
in different areas. Thus, whether the sine wave in an image has a uniform phase
is ascertained from the output of the ringing detector.

Figure 4 illustrates that if error waves are included in the signal, the frequency
and phase of the Gabor transformation result almost match those of the error
waves. In contrast, if error waves are not included in the signal, the frequency
and phase of the transformation result have no correlation with those of the error

Wave (with ringing) Gabor filter

Gabor transform result

______ Sine wave corresponding to
input frequency

(a) A signal including ringing. If the error waves are included in the signal, the Gabor
transformation result has uniform phases.

Wave (without ringing) Gabor filter

— Gabor transform result

Sine wave corresponding to
input frequency

(b) A signal not including ringing. If the error waves are not included in the signal, the Gabor
transformation result has non-uniform phases.

Fig.4 Examples of Gabor transformation.
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waves. Thus, the error wave overlaps the Gabor transformation result as shown
in Fig. 4 (a), and the output of the ringing detector is close to 1.

4. Experimental Results

4.1 Validation of the Ringing Detector

First, we confirmed whether the ringing detector reacts to ringing artifacts.
We evaluated the output of the ringing detector using synthetic images based
on Eq.(4). The image used in the experiment is shown in Fig.3 (a). In the
experiment, k; in Eq. (4) was varied between —1 and 1 in 0.1 steps, while a; and
b; were varied between —0.4 and 0.4 in 0.1 steps. We input r(z,y) in Eq. (4) and
a; and b; in Eq. (5) into the ringing detector, and examined the output value.
Since k; represents the amplitude of ringing, we would expect the output of the
ringing detector to yield a minimum value as k; approaches zero.

Figure 5 (a) and (b) show the experimental results. The horizontal axis rep-
resents the ringing amplitude k;, while the vertical axis represents the output
of the ringing detector. For all b;, the ringing detector outputs the minimum
value when the ringing amplitude is close to zero. In addition, the value of 1
for k; is unperceivable in 8-bit format. Human eyes cannot distinguish the slight
difference. Although the ringing amplitude is slight, a certain amount of output

19 y-axis 11 y-axis
frequency frequency
bi bi

0,4

s (0,3

— -(),2

Output of ringing detector
Output of ringing detector

-0.4 -0.2 0 0.2 0.4

Amplitude of ringing ki
(b) a; =0.4

Amplitude of ringing ki
(a) a; =0.1
Fig.5 Outputs of the ringing detector. Both (a) and (b) have minimum output values for

x-axis values close to zero. We see that the ringing detector reacts to slight ringing
artifacts and does not react to natural textures.
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Fig.6 Histogram of ringing detector outputs. Since almost all outputs have small values, we
see that the ringing detector does not react to natural textures.

is obtained when the absolute value of the horizontal axis is 0.4. Therefore, we
can confirm that the ringing detector reacts if the image includes ringing, and
does not react if the image does not include ringing.

4.2 Feature Analysis of Texture Contained in a Natural Image

Having confirmed that the ringing detector does not react to textures in natural
images, we then applied the ringing detector to a variety of images with various
frequencies, and observed the output values. The frequencies in Eq. (7) are all
combinations of the x-axis frequency a; and y-axis frequency b; being set to
0,0.1,0.125,0.2,0.25 except when a; = b; = 0, as this implies no ringing. Here,
frequency is the inverse pixel number of the sine wave period. The data sets
are 600 images downloaded from flickr*! using various keywords such as scene,
flower, animal, building, and human.

Figure 6 (a) shows the histogram of the ringing detector outputs for the input
images with x-axis frequency a; = 0.125 and y-axis frequency b; = 0.125. The
ringing detector outputs small values for most input images. Figure 6 (b) shows
the histogram with the x-axis frequency a; = 0.25 and the y-axis frequency b; = 0.
Most outputs are less than 0.2.

Maximum output values of the ringing detector are shown in Table 1. Ac-

*1 http://www.flickr.com/
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Table 1 Maximum output values of the ringing detector with various x- and y-axis frequen-
cies. Almost output values are less than 0.25. Since almost all output values are
small, the ringing detector does not react to natural textures.

x-axis frequency a
0 0.1 | 0.125 0.2 | 0.25
0.000 - | 0.16 0.19 | 0.21 | 0.26
0.100 | 0.23 | 0.07 0.09 | 0.09 | 0.10
y-axis frequency | 0.125 | 0.34 | 0.10 0.23 | 0.11 | 0.22
b 0.20 | 0.23 | 0.07 0.09 | 0.06 | 0.10
0.250 | 0.27 | 0.10 0.23 | 0.10 | 0.07

cording to the table, it is clear that the ringing detector does not react to the
textures in natural images.

5. Application to Deblurring

5.1 Deblurring Using the Ringing Detector

A deblurred image based on the inverse Fourier transformation is the sum of the
original image and the error waves as expressed by Eq. (4). The frequencies and
directions of the error waves can be specified by frequency analysis of the PSF.

That is, we can reduce the ringing in a deblurred image by finding values for the

ringing amplitude and phase that minimize the output of the ringing detector.

However, the detector needs to know the noninvertible frequencies of the PSF,

since this deblurring method can be applied only when the PSF is known or can

be accurately estimated.
Figure 7 shows the restoration process flow using the ringing detector.

(1) Restore blurred image through inverse Fourier transformation as Eq. (3).

(2) Search for the noninvertible frequency with a small power value in the
frequency domain of the PSF.

(3) Input the deblurred image and noninvertible frequency to the ringing de-
tector. If the output is smaller than a threshold, return to step 2.

(4) Reduce the ringing from the deblurred image. Firstly, phase ¢; of the
error wave is estimated. When the phases of the error wave and ringing
correspond, the ringing detector outputs a maximum value. Hence, the
phase ¢; that maximizes the output of the ringing detector C;(c) is found
by shifting the phase from 0 to 27. Next, the ringing is reduced. We assume
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1. Image restoration in frequency domain

— Image domain

2. Search
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3. Apply
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transformation

Fourier Fourier
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4. Minimize ringing artlfact
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— F domain

Deblurred image

Refined image

Fig.7 Process flow to restore a blurred image using a ringing detector.

that the output of the ringing detector approaches zero when the ringing is
reduced. Hence, the amplitude k; that minimizes the output of the ringing
detector C;(c) is found by changing the amplitude. The estimated ¢; and k;
determine the error wave included in the deblurred image. By subtracting
the error wave from the deblurred image, the ringing is reduced.
Repeat steps from 2 to 4 until the search for the noninvertible frequency is com-
plete.
5.2 Restoration of Synthetic Images
We demonstrate that a deblurred image can be improved using the ringing
detector. The blurred images for the experiment were synthesized from orig-
inal images as shown in Fig.8 and known PSFs as shown in Fig.9(a) and
(d). Figure 9 (b) and (e) show the PSFs in the frequency domain, and Fig. 9 (c)
and (f) indicate the noninvertible frequencies with yellow points. We used the
peak signal-to-noise ratio (PSNR) to evaluate the restoration results. To confirm
the effectiveness of our approach, we compared it with several other restoration
methods including inverse Fourier transformation as in Eq. (3), Richardson-Lucy
, the Wiener filter?”, the method of Shan et al.?, TV regu-
larization ?® and wavelet regularization 27

deconvolution 28
). Tt is noted that all these restoration
methods other than that of Shan et al.? are non-blind deconvolution. For all
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(a) building (b) desk

Fig. 8 Images used in the restoration experiment.

II

(b) PSF1 in frequency domain

(e) PSF2 in frequency domain

) Noninvertible frequencies of PSF1

H' e ptberfo-

il

St 4 lu e

(d) PSF2

(f) Noninvertible frequencies of PSF2

Fig.9 PSFs for the restoration experiment. Yellow points in (c) and (f) show noninvertible
frequencies.

non-blind methods, we gave an accurate PSF.
Table 2
the restoration images.

and Table 3 present the PSNRs between the original image and
We see that the PSNR of our method is highest for
all experiments. Figure 10 shows the clipped restoration image for Fig. 8 (a).
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Table 2 PSNR (dB) of restoration results obtained using PSF1. Our method yields the
highest PSNR.

building | desk road

Our method using
ringing detector 53.62 54.07 | 53.62

Inverse Fourier

transformation 35.16 41.73 | 35.38
Richardson-Lucy 37.62 39.2 | 32.05
Wiener filter 37.75 40.73 | 37.21
Shan et al.?) 21.17 | 20.32 | 19.78
TV regularization 25 42.34 45.09 | 36.33
Wavelet regularization 27) 36.86 39.83 | 31.34

Table 3 PSNR (dB) of restoration results obtained using PSF2.

building | desk road

Our method using
ringing detector 45.29 46.13 | 44.07

Inverse Fourier

transformation 42.48 42.52 | 40.89
Richardson-Lucy 37.67 36.55 | 29.32
Wiener filter 38.06 37.62 | 33.25
Shan et al. ?) 21.88 | 21.44 | 19.53
TV regularization 25 42.38 42.87 | 33.42
Wayvelet regularization 27) 37.99 37.27 | 29.17

Although Fig. 10 (b) includes a wave-like diagonal texture, it has been reduced
in the restoration image obtained using our method as seen in Fig. 10 (c). Fig-
ure 10 (d) shows the removed ringing components. This component corresponds
to the diagonal texture in Fig. 10 (b). We can say that our method achieves better
restoration than other deblurring methods.

In this experiment, PSNRs achieved by the simple inverse Fourier transforma-
tion were sometimes larger than those achieved by regularization-based methods.
We believe that these unusual results were due to an absence of noise. While the
synthetic images are blurred, they do not include noise. This condition is advan-
tageous for simple deconvolution. On the other hand, regularization included in
RL and the method of Shan et al. affects the restoration result.
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(a) Synthetic blurred image (b) Inverse (¢) Our method

Fourier transformation using ringing detector

(d) Removed
ringing components

(e) RL?®) (f) Wiener filter?9)

(i) Shan et al.2)

(h) Wavelet regularization??)

(g) TV regularization2?)

Fig.10 Clipped restored images. Wave-like textures are observed in (b), but they are
reduced in (¢). Removed ringing components are shown in (d).

5.3 Restoration of Real Images

Finally, we present deblurring results for a real image. We captured a blurred
image using a Nikon D80 camera by fixing the camera on a tripod and rotating
it around the optical axis without horizontal or vertical rotation of the camera.
The camera function of optical vibration reduction was not used, the shutter
speed was set to 0.1s, and the gamma value was set to 1 to make the response
function linear.

Figure 11 shows the captured image. We estimated several PSFs by track-
ing point light sources placed on both sides of the target object (Fig.12), and
selected the one that restored the best result. Figure 13 shows the estimated
PSF. Figure 13 compares restoration results obtained using several methods. (b)
is the inverse Fourier transformation, (c¢) is the result obtained using our ap-
proach, (e) is the TV regularization?®, (f) is the wavelet regularization®” and
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(a) Left

)

(b) Right

Fig.11 Captured real image. Point light sources were
placed on either side of the subject to estimate
the PSF.

Fig.12 Trajectories of a point
light source. These re-
sults were used to esti-
mate the PSF.

(g) is the result of using the method of Shan et al.?. Figure 13 (b) ~ (e) have
sharper edges compared with (a), since these are deblurred. In addition, ringing
artifacts in (c) are reduced compared with those in (b). We show the removed
ringing component in Fig. 13 (d). Figure 13 (¢) has reduced ringing artifacts on
the scissors compared with other results. However, the ringing artifacts are not
completely removed in any of the restoration results. This may be the result of
an incorrectly estimated PSF.

5.4 Application of the Defocusing Problem

In this paper, we focused only on motion blur. Although defocus blur and
motion blur are similar because both are modeled as a convolution with the
blur kernel, their characteristics of noninvertible frequency are different. The
motion blur has specific noninvertible frequencies, while the defocus blur has an
area of noninvertible frequencies. Therefore, it is difficult to apply our restoration
method for the defocus blur because these are too many noninvertible frequencies.

Figure 14 shows an example of defocus blur. Figure 14 (a) is an original image
and the same as Fig. 9 (b), and (b) is the PSF of the Gaussian blur kernel. (c) is a
blurred image synthesized by convolution of (a) and (b). (d) is the result of simple
deconvolution by inverse Fourier transformation. Many artifacts are observed.
(e) shows the PSF in the frequency domain. Many noninvertible frequencies,
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Fig. 13 Experimental results obtained using a real blurred image. (a) is the blurred image,
(b) is the inverse Fourier transformation, (c) is the result obtained using our method,
(d) is removed ringing components with our method, (e) is TV regularization, (f) is
wavelet transformation, and (g) is the result obtained using the method of Shan et
al. Although the ringing artifacts are not reduced completely, (c) shows clearer book
textures than (b). Other restoration results also have the ringing effect.

regularization27>

which are indicated by yellow points, exist. Hence, we know that the deblurred
image includes ringing artifacts, which are difficult to reduce.
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(a) Original image (b) Gaussian kernel (c) Synthetic blurred image

=

(d) Deblurred image

(e) Gaussian kernel
in frequency domain

Fig.14 Application to a deblurring problem. (a) is the original image, (b) is the Gaussian blur
kernel, and (c) is the synthetic image blurred by the convolution of (a) and (b). (d)
is simple deconvolution, or which there are many artifacts. (e) is the Gaussian kernel
in the frequency domain. The ringing detector can detect ringing in (d); however, it
is difficult to reduce artifacts because of the many noninvertible frequencies.

6. Limitations

The limitations of the approach proposed in this paper are as follows.

e Since we analyze the null frequencies of the PSF for the ringing detector, the
PSF must be known.

e We cannot completely restore the blurred image if the given PSF has errors.
Since our approach deals only with the noninvertible frequencies of the PSF,
we cannot restore the other frequencies.

e Since we ignored the noise problem, we cannot reduce the ringing due to
noise. If the blurred image includes noise, the restoration result degrades.
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e We cannot recover the power of the noninvertible frequencies directly using a
ringing detector. The ringing detector only evaluates whether the features of
ringing are satisfied. Thus, in the process of reducing ringing artifacts, much
time is needed to compute the ringing amplitude.

e If natural images coincidentally include sine wave textures corresponding to
the noninvertible frequencies with uniform phases, the ringing detector will
react to these textures.

e In this paper, we assume that the blur kernel in the blurred image is entirely
uniform. Thus, we cannot apply the ringing detector to a blurred image with
spatially varying blur kernels.

e We cannot completely remove other ringing artifacts such as boundary ring-
ing or edge ringing. Because we focused only on the ringing artifact which is
included in blurred image entirely with uniform phase.

7. Conclusions and Discussion

In this paper, we proposed a ringing detector to distinguish ringing artifacts
from natural textures. Because the design of the ringing detector is based on a
frequency analysis of the PSF, we can focus independently on the frequencies of
the ringing. We confirmed the performance of the ringing detector in experiments.
Moreover, we modeled deblurred images as the sum of the original image and the
error waves, and proposed using the ringing detector for deblurring.

In this paper, we ignored image noise and focused only on the ringing artifacts
that arise even if images do not include noise. Noise also causes different types
of ringing problems that do not occur in the invertible Fourier transformation
of the PSF. As an extension, we need to consider the noise effect in the ringing
reduction.

Moreover, we assume that the PSF is uniform across the entire image. How-
ever, real blurs are often nonuniform. Some techniques have been proposed to
handle blurs resulting from general motions such as object motion®”, camera
shake 3132) non-uniform motion which is combined with some uniform blurred
regions*>. To handle spatially varying PSF, inertial sensors are used . We
intend to apply our ringing detector to more general blurred images by dividing
images to several subregions in which the PSF can be assumed as uniform. Fur-
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thermore, we aim to develop a new restoration method by combining our ringing
detector with state-of-the-art deblurring techniques.
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