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We propose a novel framework called StochasticSIFT for detecting inter-
est points (IPs) in video sequences. The proposed framework incorporates a
stochastic model considering the temporal dynamics of videos into the SIFT
detector to improve robustness against fluctuations inherent to video signals.
Instead of detecting IPs and then removing unstable or inconsistent IP can-
didates, we introduce IP stability derived from a stochastic model of inherent
fluctuations to detect more stable IPs. The experimental results show that the
proposed IP detector outperforms the SIFT detector in terms of repeatability
and matching rates.

1. Introduction

Recently, local features based on interest point (IP) detection have been suc-
cessfully used in many computer vision tasks, such as image indexing 1),2), stereo
matching 3) and object recognition 4),5). The advantages of using IPs are that they
are robust against partial occlusions and do not require a segmentation process.
Many researchers have proposed methods for extracting IPs from a still image,
e.g., Lindeberg 6), Mikolajczyk and Schmid 7) and Lowe 8). Among current IP
detectors, the Scale-invariant Feature Transform (SIFT) detector 8) is the most
appealing. The SIFT detector was designed to be robust against changes in scale
and rotation, and partially tolerant to changes in illumination conditions and
viewpoints.

We are interested in recognizing objects in video sequences, namely detecting

†1 NTT Communication Science Laboratories, NTT Corporation
†2 International College, King Mongkut’s Institute of Technology Ladkrabang
†3 University of British Columbia

an object appearing in a video sequence when given a query image of that object.
The SIFT detector is effective in detecting IPs in many cases; however, it was
designed for still images, not video sequences. That means the SIFT detector
localizes IPs frame by frame and does not use any motion information or temporal
smoothing, which might be useful for IP detection.

Various methods for detecting IPs in a video sequence have been proposed 9),10).
These methods explore singular points (or discriminative points) in the spatio-
temporal domain; consequently, they would be useful for certain tasks such as
event detection or behavior/gait recognition. In contrast, this article focuses on
detecting IPs that are discriminative in the spatial domain, but smooth in the
temporal domain, which would be useful for object recognition and video retrieval
tasks. For this purpose, various post-processing techniques have been proposed.
The most widely used approach employs geometrical consistency among detected
IPs in the spatial domain based on RANdom SAmpling Consensus (RANSAC) 11)

or Least Median of Squares (LMeds) 12). Tracking-based approaches are also
widely employed 13),14) for IP detection in a video sequence. However, the use
of geometrical consistency alone may be insufficient to appropriately extract IPs
from a video sequence, and tracking-based methods are not robust against oc-
clusions, sudden illumination changes and noise.

To this end, we propose a new framework called StochasticSIFT for detecting
IPs from video signals. The proposed framework incorporates a stochastic model
that simulates temporal dynamics inherently included in video signals into the
SIFT detector. This approach enables us to simultaneously deal with both inher-
ent fluctuations and the temporal smoothness of video signals in natural ways.
Instead of independently detecting IPs from each frame followed by a process for
removing unstable or inconsistent IPs, we perform IP detection after evaluating
the stability of IPs derived from the stochastic model, resulting in IP detection
that would be robust against noise or illumination changes. In contrast with ap-
proaches that localize IPs in the spatio-temporal domain as described in9),10), our
approach detects points that are discriminative in the spatial domain but smooth
in the temporal domain. Therefore, the proposed method is more suitable for
object recognition tasks.

Another feature of the proposed framework is that it enables us to incorporate

186 c© 2011 Information Processing Society of Japan



187 Interest Point Detection Based on Stochastically Derived Stability

some constraints before performing IP detection. Most previous IP detectors for
video signal applications firstly detect IP candidates, and then remove unstable
candidates by using point tracking and/or geometrical constraints. However,
this kind of approach sometimes fails to track or select appropriate IPs because
temporal and/or geometrical constraints can be applied only to the detected IPs.
On the other hand, our approach can naturally introduce such constraints before
detecting IP candidates, resulting in point detection that would be robust against
certain kinds of noise or distortion.

The rest of this article is organized as follows. Section 2 briefly describes the
SIFT method. Section 3 explains the proposed method, i.e., StochasticSIFT.
Section 4 presents our datasets, experimental setup and results. Section 5 pro-
vides our conclusion.

2. Scale-invariant Feature Transform

SIFT 8) can be divided into two main steps, i.e., (1) IP localization and (2) de-
scriptor construction. In the first step, IPs are localized in both scale and spatial
domains. In the second step, rotation-invariant descriptors are constructed and
added to the detected IPs.

2.1 Interest Point Localization
The IP localization process in SIFT is illustrated in Fig. 1. This process can

be briefly explained as follows:
( 1 ) Creating pyramids of difference of Gaussian (DoG) images: Firstly, an in-

put image is repeatedly convolved by a Gaussian filter to create a set of
scale-space images, called the first octave. Each filtered image is character-
ized by the scale, i.e., the number of Gaussian filtering. Then, two filtered
images with adjacent scales are subtracted to obtain a DoG image. The
next octave is then created by down-sampling a filtered image (the third
image in the figure) of the current octave, and repeating the same process
several times.

( 2 ) Finding local extrema in both spatial and scale domains: Every pixel value
in all the DoG images is compared with eight neighbors of the same scale,
nine neighbors of the upper scale, and nine neighbors of the lower scale,
making a total of 26 neighbors. The position and scale of the local extrema

Fig. 1 Creating difference of Gaussian (DoG) pyramid.

are reserved as an IP candidate.
( 3 ) Performing post-processing to remove inaccurate IPs: In this step, the

contrast of the IP candidates is calculated. If the contrast of a candidate is
less than a threshold value Thcontrast, it will be removed from the candidate
set. In this work, the threshold value Thcontrast is set at 0.04. Then, the
remaining IPs are checked to determine whether they are edge-like IPs,
i.e., IPs located on an edge. Edge-like IPs will be removed, and the IPs
remaining in the candidate set are considered detected IPs. Post-processing
is described in detail in Ref. 8).
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Fig. 2 Example of interest points, scales and their principal directions detected by SIFT.

2.2 Descriptor Construction
( 1 ) Assigning orientation: The magnitude and orientation of gradients at each

IP and its neighbors are calculated from a Gaussian filtered image with the
same scale as that IP. Then, an orientation histogram (36 bins covering 360
degrees) is constructed. Here a Gaussian-weighted circular window is used
to emphasize the features near the IP. The highest peak of the histogram
is assigned as the principal orientation of the IP (Fig. 2).

( 2 ) Creating descriptors: An IP descriptor is created from the orientation his-
togram. The descriptor coordinate is rotated relative to the principal IP
orientation to make it invariant to rotation changes. Neighboring pixels
are divided into 4 × 4 subregions to create a local histogram of eight ori-
entation bins. These are used to construct a feature vector with a size of
4 × 4 × 8 = 128. Then the feature vector is normalized to unit-length to
make it partially tolerant to affine and illumination changes.

3. Proposed Method: StochasticSIFT

3.1 Overview
As described in Section 1, the SIFT detector is not very robust against sudden

illumination changes and pulse noise, even if appropriate post-processing is exe-
cuted. Considering mechanisms in which such kinds of clutter arise, they can be
modeled as stochastic events. The proposed method, StochasticSIFT, introduces
a stochastic framework including those mechanisms.

Figure 3 shows the framework of StochasticSIFT, which consists of five layers
connected hierarchically. We briefly describe each layer in the following para-
graphs.

S̄(t) = {s(ω, t)}ω∈Ω is a set of DoG images calculated from the t-th video frame
i(t), where ω represents a scale, Ω is a set of scales, and s(ω, t) is the DoG image
at scale ω and time t. Details of how to extract DoG images are provided in
Section 2.

S(t) = {s(ω, t)}ω∈Ω is a stochastic representation of DoG images at the t-th
frame, each of which s(ω, t) is called a stochastic DoG image with scale ω and
time t. We would like to note that the introduction of a stochastic representation
of DoG images is the first contribution of our proposed method. Stochastic
DoG images S(t) are calculated from the current DoG images S̄(t) and previous
stochastic DoG images S(t − 1), where temporal dynamics induced by noise or
illumination changes are introduced. More details will be described in Section 3.2.

F (t) = {f(ω, t)}ω∈Ω is a set of discriminant maps at time t. Each pixel value
f(ω, t,x) of a discriminant map f(ω, t) represents the discriminative degree of
this pixel x in the stochastic DoG image s(ω, t). This value can be viewed as IP
stability, which determines whether or not the pixel should be regarded as an IP.
An evaluation of the IP stability based on the stochastic representation of DoG
images is the second contribution of StochasticSIFT. A set of IPs, denoted by
X(t), is extracted from the discriminant maps. We discuss how to select IPs in
Section 3.3.

3.2 Stochastic DoG Images
The presence of noise, illumination changes and viewpoint changes means that

the observed DoG image might be corrupted, and different from its true state,
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Fig. 3 Framework of StochasticSIFT.

resulting in missed or spurious IPs. To this end, we introduce a stochastic repre-
sentation of DoG images, which we call stochastic DoG images, to enable us to
handle such fluctuations.

A stochastic DoG image s(ω, t) is defined as a set of Gaussian random variables,
each of which corresponds to a pixel x = (x, y). We denote a random variable
at pixel x, time t and scale ω as s(x, ω, t), assuming the following state space
model 15):

Fig. 4 Calculation of optical flow pyramid.

s(x, ω, t) = s(x̃, ω, t − 1) + ε1, (1)
s(x, ω, t) = s(x, ω, t) + ε2, (2)
x̃ = (x̃, ỹ) = (x − Δx(x), y − Δy(x)), (3)

where εi (i = 1, 2) is a Gaussian random variable with zero mean and variance
σ2

i , s(x, ω, t) is the pixel value of the DoG image s(ω, t) at pixel x, and x̃ is the
position after compensating for the optical flow (Δx(x),Δy(y)) (the movement
during time t − 1 and t) at pixel x. Eq. (1) simulates the temporal dynamics of
the DoG images, whereas Eq. (2) models observation noise.

We must compensate for the optical flow because objects in the video sequence
do not necessarily remain in the same position. If the estimation model does not
include any compensation for motion information, it will estimate the value of the
stochastic feature from different locations, resulting in poor performance. Here
we calculate optical flow based on the method proposed by Lucas and Kanade 13),
and create a pyramid of optical flow images as shown in Fig. 4. In particular,
optical flow components ΔX(t) and ΔY (t) are calculated from the current and
previous video frames (i(t) and i(t− 1), respectively). Gaussian filtering is used
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to smooth the optical flow. Then, each component is down-sampled by two and
each pixel value multiplied by 0.5 to obtain the next higher level flow component
(for the lower level, if any, we perform image doubling and multiply each pixel
value by two instead). Note that the number of levels in the pyramid equals the
number of octaves of the pyramid of DoG images, and the optical flow of each
level is used for all scales in the corresponding octave.

We can recursively estimate the mean ŝ(x, ω, t) and variance σ2
s(x, ω, t) of a

random variable s(x, ω, t) as follows:

ŝ(x, ω, t) =
σ2

2

σ2
1 + σ2

2 + σ2
s(x̃, ω, t − 1)

ŝ(x̃, ω, t − 1)

+
σ2

1 + σ2
s(x̃, ω, t − 1)

σ2
1 + σ2

2 + σ2
s(x̃, ω, t − 1)

s̄(x, ω, t), (4)

σ2
s(x, ω, t) =

σ2
2 · (σ2

1 + σ2
s(x̃, ω, t − 1))

σ2
1 + σ2

2 + σ2
s(x̃, ω, t − 1)

, (5)

We introduce an adaptation of the variance parameter σ2
1 of the observed noise

to estimate the nature of the input videos. σ2
1 is updated based on the following

equation.

σ2
1(x, ω, t) =

(t − 1)
t

σ2
1(x, ω, t − 1) +

1
t
(s̄(x, ω, t) − ŝ(x, ω, t|t))2 (6)

Note that the variance parameter σ2
2 is a constant. The initial values of σ2

1 and
σ2

2 are = 3.331 × 10−2 and 3.825 × 10−2 �1, respectively.
Sometimes, it is possible that we may obtain unreasonable optical flows, which

would lead to an inaccurate estimation of stochastic DoG images. In such cases,
the estimation step should be re-initialized to avoid any cumulative errors caused
by such unreasonable optical flows. Here, we introduce the following two criteria
to re-initialize the estimation when at least one criterion is satisfied:
( 1 ) Unreasonably large optical flow: |Δx| > θ or |Δy| > θ, where θ is a thresh-

old value. Here we set the threshold θ = H/8, where H is the image height.
This means the threshold value is different in each octave.

( 2 ) Impossible optical flow: x̃ is outside of image.

�1 They are heuristically selected and the same values are used for all tests.

Fig. 5 Intuitive description of “discriminability”.

3.3 Discriminant Maps
As described in Section 3.1, a discrimination map represents the discriminative

degree at each pixel of stochastic DoG images against those at neighboring pixels.
Figure 5 intuitively depicts the importance of “discriminability” when detect-

ing IPs. The traditional SIFT detector looks for local extrema in DoG images
as IP candidates. However, when the pixel values of a local extremum and its
neighbors are very close to each other (Fig. 5 bottom left), the extremum may
disappear by just a little amount of fluctuations of pixel values. Also, the ex-
tremum may be lost when there is a large amount of fluctuation (Fig. 5 top left).
The above discussion implies that the “discriminability” of local extrema in DoG
images is directly related to the “stability” of IPs.

From this viewpoint, we newly introduce a measure that evaluates IP stability
based on a stochastic representation of DoG images. If the density of a pixel
is sufficiently discriminative and its average is a local extremum, we regard the
pixel as a stable IP candidate. As a measure for evaluating stability, we utilize
the sum of two-class Fisher linear discriminants 16):

f(x, t, ω) =
∑

(x̃,ω̃)∈N(x,ω)

|ŝ(x, t, ω) − ŝ(x̃, t, ω̃)|√
σ2

s(x, t, ω) + σ2
s(x̃, t, ω̃)

, (7)

where N(x, ω) stands for a set of neighboring pixels and scales of (x, ω). In
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Eq. (7), we compute two quantities: 1) the absolute difference of the mean be-
tween an extremum and one of its neighbors, and 2) the square root of the sum
of the variance of the extremum and that neighbor. We then calculate the ratio
between these two quantities. This ratio would reflect the “discriminability” be-
tween the extremum and that neighbor (as illustrated in Fig. 5). Consequently,
we use the sum of this ratio over all neighbors to determine the “discriminability”
of the considered extremum.

3.4 IP Selection
Then, we determine whether a pixel should be regarded as an IP based on the

following processes:
( 1 ) Find the points that are local extrema in both the DoG images and the

average of the stochastic DoG images, and include these points in the set
of IP candidates.

( 2 ) Remove the candidates with low stability scores calculated by Eq. (7).
( 3 ) Remove the remaining candidates with low intensities in the average of the

stochastic DoG images.
( 4 ) Remove the remaining candidates that seem to be at the edges.
Note that the last two processes are similar to the post-processing techniques of
the SIFT detector (see Section 2).

4. Evaluations

4.1 Datasets
To evaluate the performance of the proposed IP detector, we performed ex-

periments with five datasets: Proximity card, Yurica, Calendar, Bus card, and
Perfume box datasets. Each dataset consists of one query image and one video
sequence, and the name of each dataset comes from the planar object presented
in the dataset (see Fig. 6). In the evaluation, we localize IPs in the query image
and in each frame of the video sequence, and then perform IP matching based
on their descriptors. The size of the query images is 320 × 240 pixels. Each
video sequence consists of 100 frames that are the same size as the query images.
We used only planar objects because we needed a ground truth of point corre-
spondence to perform numerical evaluations. Note that our approach can also
function properly for non-planar objects.

Fig. 6 Examples of datasets used in experiments.

As shown in Fig. 6, four markers were stuck each object to define an interest
area (rectangular area with four markers as its corners) and extract a homography
matrix of every pair of a query image and a video frame to obtain the ground
truth. We considered only IPs located in the interest areas, and discarded the
rest. Note that the complete interest area of objects can be seen in each frame
without any occlusion; however, there are some changes in positions, rotations,
scales, and/or viewpoints, as shown in Fig. 6.

We added artificial Gaussian noise with different variances (25, 50, 75, and
100 �1) to every video sequence to observe the robustness of the proposed IP
detectors against noise. Note that no extra noise is added to the query image.

4.2 Evaluation Measures
We adopt two measures for evaluating IP detectors. One is known as the

repeatability rate 17), which evaluates only positional matches. In particular, once
an IP of a query image is mapped into a video frame, based on the homography

�1 The variance of the noise intensity added to each pixel.
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matrix, we say that the mapped IP positionally matches an IP in the video frame
if the distance �1 between the mapped IP from a query and the actual IP of a
video frame is less than the threshold ε = 1.5. The repeatability rate is defined
as

R =
1
T

T∑
t=1

pmt

min(n0, nt)
, (8)

where pmt is the number positional matches at the t-th frame, n0 and nt respec-
tively are the number of IPs in the query image and the t-th frame, and T is the
total number of frames (in the experiments, T = 100).

The other evaluation measure is called the matching rate, which considers both
positional and descriptor matches. In particular, we first match the descriptor
of an IP in the query image with IPs in the video frame, and find the best and
second best matches. Then we use the following criterion to check whether we
should accept this descriptor match.

d0 < TH ∗ d1, (9)
where d0 and d1 are the distances between the descriptors of the best and second
best matches, respectively, and TH is a constant (here TH = 0.49). If the above
criterion is satisfied, we say that their descriptors are matched. After that, we
check their positions to determine whether they are positionally matched. If they
are also positionally matched, we say that they are correctly matched; otherwise,
they are falsely matched. The matching rate is defined as follows:

MR =
∑T

t=1 cmt∑T
t=1(cmt + fmt)

, (10)

where cmt and fmt respectively are the numbers of correct and false matches at
the t-th frame.

4.3 Results
We compared our proposed IP detector, i.e., StochasticSIFT, with the SIFT

detector implemented by Hess �2. The common parameters of SIFT and Stochas-
ticSIFT were set as follows: The number of octaves was six, the number of scales
in each octave was five, the variance of Gaussian filter was 1.6.

�1 The distance is measured in the original scale image.
�2 http://web.engr.oregonstate.edu/˜hess/

Fig. 7 Results by repeatability rates.

The evaluation results with the repeatability rate are shown in Fig. 7. The re-
sults indicate that StochasticSIFT provides better repeatability rates than SIFT
for all the five datasets. Although the repeatability rates decrease according to
increases in Gaussian noise, StochasticSIFT outperformed the original SIFT for
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Fig. 8 Results by matching rates.

any noise levels. And for some datasets, the differences in the repeatability rates
became larger as the noise increased.

The evaluation results with the matching rate are shown in Fig. 8. The match-
ing method we used was the same for both of the IP detectors, and is described

Fig. 9 Several fluctuations found in the “bus card” dataset that the proposed method could
not handle.

Table 1 Comparison of the average numbers of detected IPs for some datasets.

SIFT
Noise Proximity Yurica Bus
level query video query video query video

NONE 103 111.2 199 150.3 276 200.2
25 103 113.6 199 148.4 276 188.9
50 103 108.6 199 137.9 276 162.9
75 103 94.1 199 123.4 276 131.8
100 103 74.4 199 106.4 276 109.0

StochasticSIFT
Noise Proximity Yurica Bus
level query video query video query video

NONE 67 62.2 104 78.3 128 89.7
25 67 60.8 104 75.9 128 84.3
50 67 57.9 104 68.5 128 73.2
75 67 50.6 104 60.3 128 58.6
100 67 40.1 104 49.3 128 44.3

in Ref. 18). The results indicate that StochasticSIFT provided better matching
rates for all but one dataset (Bus card). Figure 9 shows several fluctuations
found in the “Bus card” dataset that the proposed method could not mitigate.
The proposed method achieved worse matching rates than SIFT with this dataset
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Fig. 10 Results by repeatability rates. The threshold used for removing low-contrast IPs with
the SIFT detector was adjusted so that the number of detected IPs was almost the
same as that with StochasticSIFT.

Fig. 11 Results by matching rates. The threshold used for removing low-contrast IPs with
the SIFT detector was adjusted so that the number of detected IPs was almost the
same as that with StochasticSIFT.
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Table 2 Comparison of average computation cost (msec. per frame).

SIFT StochasticSIFT StochasticSIFT / SIFT
284.09 651.51 2.29

because it includes a lot of fluctuations throughout the frame, and therefore un-
reasonable optical flows often occurred.

Table 1 provides additional information about the number of detected IPs.
Generally, StochasticSIFT detects fewer IPs than the original SIFT detector.
This is because StochasticSIFT takes account of the temporal dynamics needed
to remove spurious IPs that might be caused by noise.

This information might raise the following questions. Does the number of IPs
affect the repeatability and matching rates? What happens if we compare the
two methods when they give the same number of IPs? To answer these questions,
we conducted another experiment by adjusting the threshold Thcontrast

�1 of the
SIFT detector so that SIFT will give (almost) the same number of IPs (detected
from the query image) as StochasticSIFT for each dataset. We then compare
the repeatability and matching rates of the two methods. The results are shown
in Fig. 10 and Fig. 11. The results show that the repeatability rate of SIFT
is greatly improved. In this case, the repeatability rates of the two methods
are comparable, except as regards the Yurica dataset where StochasticSIFT is
clearly better. However, the matching rate obtained with SIFT is not greatly
improved and is even worse in some cases. The result indicates that IPs detected
by StochasticSIFT are more stable than those detected with SIFT even if the
two methods generate the same numbers of IPs.

We have measured the computation costs of the proposed method and the
SIFT detector (not include the matching process). The costs were measured on
a Core2Duo 2.2 GHz PC, and the average values are shown in Table 2. The
computation time with the proposed method was around 2–3 times (average 2.29
times) of the SIFT detector, depending on the number of IPs in each dataset.
One of the most intense processes is the calculation of optical flow. The results

�1 This threshold is used for removing low contrast IPs. It is a major factor affecting the
stability of IPs detected with the SIFT detector (see Section 2.1).

suggest that an efficient way to estimate optical flow is needed to improve the
calculation cost of the proposed method.

5. Concluding Remarks

We proposed a new stochastic framework for interest point detection that
we called StochasticSIFT, which extends the SIFT detector. It incorporates a
stochastic representation of DoG images, which takes into account the temporal
dynamics inherent to video signals into the SIFT detector. Experimental results
suggest that the proposed method has certain advantages over the SIFT detector
in terms of both repeatability and matching rate. We have not yet used any
geometrical constraints to remove unreliable IPs, which might help improve the
performance of StochasticSIFT.
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