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Human detection and action recognition form the basis for understanding
human behaviors. Human detection is used to detect the positions of humans,
and action recognition is able to recognize the action of specific humans. How-
ever, numerous approaches have been used to handle action recognition and
human detection separately. Therefore, three main issues still exist when inde-
pendent methods of human detection and action recognition are combined, 1)
intrinsic errors in object detection impact the performance of action recogni-
tion, 2) features common to action recognition and object detection are missed,
3) the combination also has an impact on processing speed. We propose a sin-
gle framework for human detection and action recognition to solve these issues.
It is based on a hierarchical structure called Boosted Randomized Trees. The
nodes are trained such that the upper nodes detect humans from the back-
ground, while the lower nodes recognize action. We were able to improve both
human detection and action recognition rates over earlier hierarchical structure
approaches with the proposed method.

1. Introduction

Human detection and action recognition form the basis for understanding hu-
man behaviors and human detection is an important function for action recogni-
tion. By detecting the position of humans, action recognition is able to recognize
the actions of specific humans.

Human detection in an image sequence can be achieved by subtracting the
background or by sliding a detector into the whole frame 1),4). Background sub-
traction approaches that are robust toward illumination or changes in appearance
have been proposed, but they only detect moving objects and cannot differen-
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tiate humans from other objects such as vehicles or animals. Detector based
approaches are robust toward changes in illumination; however, detection is lim-
ited to standing poses 9),13),14).

Methods of action recognition can be broadly classified into two categories, the
first identifies actions by using global changes in the scene and the second by
local motion in invariant features. Methods that are based on global changes
rely on inter-frame differences 3),10),17),23). There are two major problems with
existing methods. First, the inter-frame differences are measured as global mo-
tion, and detect the positions of humans are not possible. When an object in
the background also moves, the method cannot differentiate between motion by
the foreground object from that by the background object. Action recognition
by local motion extracts invariant features and motion by matching the features
between frames 15),16),19),22),26). It achieves better performance by implicitly sep-
arating humans from the background. It is also difficult for these methods to
detect humans in cluttered backgrounds or when there are other moving objects
in the background.

As previously mentioned, most of the former approaches handle action recog-
nition and human detection separately. There is a need to combine human detec-
tion and subsequent action recognition to recognize action in a particular image.
Three of the main issues when human detection and action recognition are com-
bined are: 1) intrinsic errors in object detection impact the performance of action
recognition, 2) features common to action recognition and object detection are
missed, 3) the combination also has an impact on the processing speed. We
propose a single framework for human detection and action recognition to over-
come some of these issues. A hierarchical framework accomplishes this within
a single framework, where the upper nodes differentiate humans from the back-
ground, and lower nodes classify specific actions. A single framework also means
that features can be shared across human detection and action recognition, thus
resulting in a simple and optimized framework.

All nodes of Randomized Trees are created from weak classifiers that are trained
from pre-selected features candidates to achieve the framework. Candidate fea-
tures in the proposed method are trained by Joint Boosting and effective weak
classifiers are selected as the nodes of decision trees by training Randomized
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Trees.
Some related work is discussed in Section 2 and the proposed approach is

explained in Section 3. We compare the performance of the new method with
others for human detection and action recognition in Section 4. There is a brief
discussion in Section 5 and we conclude the paper in Section 6.

2. Related Works

Many methods of action recognition have been proposed to enable human
behaviors to be understood and they can be broadly classified into two cate-
gories based on global changes 3),10),17),23) and local motion with invariant fea-
tures 15),16),19),22),26). Blank et al. proposed a method called ST-Patch for detect-
ing inter-frame spatial and time differences 10). Neibles and Fei-Fei proposed a
multi-layered model for detecting changes in appearance and motion 15). Oshin
et al. proposed a model that extracts Speeded Up Robust Features (SURF) for
modeling temporal changes 26). Almost all the action recognition based on de-
tecting local changes in the target object, used changes in the directions and
poses of the target object.

Action recognition is a multi-class classification problem, on the other hand,
for which various multi-class classification methods have been proposed. Joint
Boosting 5) can detect the positions and actions of the target object. It trains
weak classifiers that are shared between classes, and hence it is unnecessary to
train classifiers for specific classes, enabling multi-class classifiers to be trained
with fewer weak classifiers. However, it involves huge computational cost because
weak classifiers of all classes are necessary to classify specific classes.

This can be solved with a hierarchical structure such as that with decision
trees 11),24),25). The processing time for a particular class with a tree structure
depends on the tree depth. AdaTree 7) trains classifiers in a hierarchical structure
and each node consists of many weak classifiers. Training samples are divided
into subsets with samples that are positively classified in the parent nodes. Lower
nodes are trained with subsets that contain few samples. Therefore, generaliza-
tion is affected and it overfits the training samples. Randomized Trees represent a
tree structure for multi-class recognition 2),8),12),18). An ensemble of decision trees
that outputs the likelihood for each of the classes is trained to avoid overfitting.

Classification is carried out by summing the likelihoods of all classes from all the
decision trees. However, the effectiveness of the features is not guaranteed as the
features for each node are selected from those that are randomly prepared.

Candidate features with the proposed method are pre-selected using Joint
Boosting, and the features for each of the nodes are randomly selected from
the candidates. This enables us to select features from a candidate pool of ef-
fectively pre-selected features, while retaining randomness. The background is
trained as a particular class that classifies target objects from the background,
enabling objects to be detected. This framework enables both human detection
and action recognition.

3. Proposed Method and Related Methods

3.1 Randomized Trees
Randomized Trees 2) is a method of multi-class recognition learning that is used

in keypoint detection 8) and image classification 18). It is robust against noise in
the training samples, and computational parallelization is possible as all decision
trees are independent. It consists of multiple decision trees, T , with branch nodes
and terminating leaves. When recognizing C individual classes, each leaf has a
probability distribution for each of the classes, c = 1, 2, ..., C, and branching at
each node is based on a split function. The split function determines if feature
I(x) on the left child node is less than the threshold, θ, or if that on the right
child node is larger, as shown in Eq. (1)

I(x) =

{
< θ branch to the left child node

≥ θ branch to the right child node
(1)

The training consists of three processes: creating subsets, generating nodes,
and partitioning the subsets. First, subset Xs of the training sample, X =
xi, cj ; i ∈ [1, N ], j ∈ [1, C], is created to train the decision trees. The subset is a
randomly selected set of S sample images. Nodes are made of a split function, a
feature and a threshold. For prepared features, fm;m ∈ [1,M ] and thresholds,
θm,k; k ∈ [1,K], the best combination is selected based on information entropy
as in Eq. (2).
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�E = −|Il|
|I| E(Il) − |Ir|

|I| E(Ir) (2)

Note that E(Il) and E(Ir) are the Shannon entropy for the samples in each
class when taking the left or right branch for a given combination of features and
thresholds. The Shannon entropy is computed as in Eq. (3).

E(I) = −
C∑

j=1

P (cj) log P (cj) (3)

P (cj) is the probability distribution for class cj at the node.
Subsets are partitioned by using the features that were selected as was described

above. Feature values less than the threshold form the subset for the left child
node, and values larger than the threshold form the subset for the right child
node. This process is repeated on each child node using the new subsets.

Node generation is terminated when the number of training samples is less
than a pre-determined depth, or when the training samples comprise only a
single class, or when the nodes have reached a certain depth. Terminating leaves
have a probability distribution, P (c), for each class. The probability distribution
for class cj can be computed as in Eq. (4).

P (cj |l) =
|Icj

|
|I| (4)

|I| is the number of samples for all classes, and |Icj
| is the number of samples

for class cj .
The input image reaches a single leaf node in each of the decision trees.

Then, the probability distributions, P (C|Lt), for each of these leaf nodes,
L = Lt; t ∈ [1, T ], are accumulated for each class as in Eq. (5) and the average is
obtained. The class with the highest average probability in Eq. (5) is output as
the recognition class.

P (C|L) =
1
T

T∑
t=1

P (C|Lt) (5)

3.2 Joint Boosting
Joint Boosting 5) is a multi-class learning algorithm that enables features to

be selected shared between classes. As shown in Eq. (6), Joint Boosting trains

Algorithm 1 Joint Boosting Algorithm
Initialization:
1. Inizialize training sample weight wc

i

For i = 1..N //No. of samples
For c = 1..C //No. of classes

initialize training sample weightwc
i

Training:
2. m = 1, 2, .., M //No. of weak classifier selected

(a) n = 1, 2, .., 2C − 1 //For all combination of classes
(i)Compute error for all weak classifier candidates

(b)Select class combination S(n), with minimal error and the weak classifier candi-
date

h
S(n)
m (v, c)

(c)Update weight wc
i

3. Integrate the selected weak classifier with each combination, n, to GS(n)(v)

Fig. 1 Learning example of Joint Boosting.

strong classifiers for the partial sets, S(n), of all classes.

GS(n)(v) =
M∑

m=1

hS(n)
m (v, c) (6)

Here, h
S(n)
m (v, c) is the mth weak classifier, and v is the feature vector. The

training process consists of changing the combinations of positive classes and
selecting the best weak classifiers as shown in Algorithm 1. Weak classifier
h

S(n)
m (v, c) with minimum error from all 2C −1 is selected. For S(n) = {1, 2, 3}, a

weak classifier for all positive classes is trained as shown in Fig. 1 (a). Similarly,
for S(n) = {1, 2}, a weak classifier for classes 1 and 2 is trained as shown in
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Fig. 2 Training of node of decision tree.

Fig. 1 (b). For S(n) = {1}, a weak classifier that classifies class 1 is trained as
seen in Fig. 1 (c). The weight of samples in S(n) are updated with Eq. (7).

wc
i = wc

i e
−zc

i hS(n)
m (v,c) (7)

Note that zc
i ∈ {+1,−1} represents the labels of class c. The response of

h
S(n)
m (v, c) for classes not included in S(n) is 0; hence, the weight is updated

for samples in these classes.
3.3 Boosted Randomized Trees
The flow for generating the nodes of Randomized Trees and Boosted Random-

ized Trees is outlined in Fig. 2. As shown in Fig. 2 (a), the generating the nodes
for Randomized Trees consists of three steps: preparing random features and the
threshold, selecting the best combination of features and thresholds, and evalu-
ating sample images to generate child node subsets. Child nodes are generated
in four steps with the proposed method, first by defining training classes, second
by preselecting features through Joint Boosting, third by optimizing features,
and fourth by generating child node subsets. Node generation for the proposed
method is shown in Algorithm 2. Each of the steps is discussed in the following
sections.

3.3.1 Defining Class Set
Joint Boosting selects a weak classifier for a specific class subset, hence it is not

possible to pre-define class sets. The decision trees in the proposed method have
a hierarchical structure, with upper nodes handling multiple classes and lower

Algorithm 2 Node Generation Process
Initialization:
1. Inizialize training sample weight wc

i

For i = 1..N //No. of samples
For c = 1..C //No. of classes

initialize training sample weightwc
i

Training:
2. Defining a set of classes

S(n) ∈ {n1, n2, ..., ni : L(ni) > τ, i ∈ I}
3. Preliminary feature selection

3.1. m = 1, 2, .., M //No. of weak classifier selected
(a) combination of classes : S(n)

(i)Compute error for all weak classifier candidates
(b)Select the weak classifier candidate of S(n) with minimal error
(c)Update the weight of samples wc

i

Repeat to obtain weak classifiers, M ,
4. Feature Optimization

Optimize the size and position of weak classifier,
and select best one, h

S(n)
m (v, c), with random threshold as the node

nodes handling specific classes. Thus, weak classifiers for class sets with multiple
classes are selected for the upper nodes, and class sets with a specific class are
selected for the lower nodes. The best class sets for each node are selected based
on the class likelihood as shown in step-2 of Algorithm 2. The class likelihoods for
all classes are computed from the probability for each class as shown in Eq. (4).
For a given node, we define the class set, S(n), as a combination of classes n in
all class combinations with a total of class likelihoods L, as in Eq. (8), greater
than threshold τ .

S(n) ∈ {n1, n2, ..., ni : L(ni) > τ, i ∈ I} (8)
Note that ni is a class element, I is the number of total class elements, and τ

is the threshold. The combination with the least number of classes is selected.
Upper nodes have more classes with the likelihood for each class being lower and
lower nodes tend toward a specific class with the likelihood for the specific class
being higher. This removes the need to consider classes with low likelihood for
recognition, and class sets only consist of specific classes.
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Fig. 3 Feature selection by Joint Boosting.

3.3.2 Feature Pre-selection using Joint Boosting
The best features in Joint Boosting are trained from all combinations of given

classes as described in Section 3.2. Because of this, features specific to a particular
class might be selected for lower nodes rather than features that are common to
multiple classes. In step-3 of Algorithm 2 with the proposed method, feature
candidates are trained for limited class sets pre-defined based on class likelihoods
as described in Section 3.3.1. The case of three classes in Fig. 3 in the upper
nodes as the training dataset includes many classes, because each class has a high
class likelihood. Therefore, features related with many classes are selected, such
as S(n) = {1, 2, 3}. Lower nodes, on the other hand, are trained for a specific
class and features specific to a class are selected such as S(n) = {1}. Thus, by
constraining the method of feature selection in Joint Boosting using class sets,
hierarchical features can be efficiently selected.

3.3.3 Local Features
We extract features based on a histogram of gradients, which is effective for

detecting human bodies. There is an outline of the features in Fig. 4. As seen
in Eq. (9), the feature is the difference between the values, gr1,t1(i) and gr2,t2(j),
which are bins in the gradient histograms of two localized regions, i.e., r1 in the
t1 frame and r2 in the t2 frame.

F = gr1,t1(i) − gr2,t2(j) (9)
We can capture both changes in gradient differences in a single frame and differ-

Fig. 4 Features expanded to image sequences.

Fig. 5 Optimization of features by Joint Boosting and Randomized Trees.

ences across frames.
3.3.4 Optimization of Features
Let us focus on the differences between two local regions, and there are a very

large number of combinations of regions. Features are selected in the two steps
shown in Fig. 5 by pre-selecting feature candidates trained by Joint Boosting,
and optimizing features for a node. First, candidate features are trained in step-
3 of Algorithm 2 with features generated by grid sampling. Then, the size and
position of the features pre-selected with Joint Boosting are randomly adjusted.
The threshold for the split function of nodes is also randomly set. The best
combination of features with random adjustment and threshold are selected by
using Eq. (3) in step-4 of Algorithm 2.

3.3.5 Human Detection by BRTs
When Boosted Randomized Trees are trained, the training samples have a

separate class label for the background class apart from the classes for each of
the actions. Each one of the decision trees output likelihoods for each action and
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also for the background. This indicates that a high likelihood for the background
class is recognized as a background region, and a high likelihood for a particular
action is detected as human position. Hence, the proposed method not only
recognizes human actions but also detects human position. The BRTs search
window is made to slide over the image to detect humans at any position in the
image.

4. Experiments

4.1 Experiment Overview
Experiments to compare the performance of human detection and action recog-

nition were carried out. The existing public database for action recognition con-
tains several actions and scenarios. Even though the database includes many
actions, it can be confined to a few based on the application. For example,
“walking”, “bending” and “picking” are important actions for analyzing the pur-
chasing behavior of customers, where “jogging”, “boxing” or “jumping” are not
necessary. Hence, we evaluated performance in a specific scenario. In these ex-
periments, 1) the performance of action recognition was compared with popular
methods using the KTH database, 2) human detection and action recognition
were compared by using our specific database, which was for purposes of ana-
lyzing customer behaviors, 3) and part of the Weizmann database was used to
compare performance within the context of analyzing customer behaviors. The
performance of human detection with the proposed method was compared with
Joint Boosting, Randomized Trees, and AdaTree. Human detection was based on
a sliding window approach to search within frames. False positive rates included
false detection of backgrounds and misclassifications of actions.

Ten decision trees were trained for Randomized Trees and Boosted Randomized
Trees until the training samples were exhausted or the tree depth reached 15.
Randomized Trees prepared 100 candidate features randomly in the whole human
region and 100 thresholds were also prepared randomly for all candidate features.
Boosted Randomized Trees prepared 100 candidate features from 10 pre-selected
features trained by Joint Boosting with random shift and scaling. Three frame
snippets normalized to 48 × 48 pixels were used to train each of the classes.

Table 1 Action recognition in KTH.

Method Training Method Accuracy

Kim et al. LOOCV 95.33%
Wong et al. LOOCV 91.60%
Fathi et al. Splits 90.50%

Gilbert et al. Splits 89.92%
Nowozin et al. Splits 87.04%
Niebles et al. LOOCV 81.50%
Dollar et al. LOOCV 81.20%
Schuldt et al. Splits 71.72%

Ke et al. Splits 62.97%
Oshin Splits 89.10%

Our Method Splits 88.50%
Our Method Splits 90.80%

(Action Recognition only)

4.2 Experimental Results in KTH Database
Experiments to compare the performance of action recognition were undertaken

using the KTH database, which contained the six actions of boxing, clapping,
waving, jogging, running, and walking in four different scenarios. All actions
were performed by 25 different people. There were two training methods of Leave-
one-out Cross Validation (LOOCV) and Splits. We employed the Splits training
method as Shuldt et al. had done 6), using a training set with eight people, a
validation set with eight people, and the remaining nine people for testing. Two
hundred snippets were prepared for each class. The action recognition results
are summarized in Table 1. The methods based on LOOCV were better than
Splits based methods, because only one test dataset was evaluated by the rest
of similar training datasets. Compared with methods that employed the Split
training method, ours performed comparably with state-of-the-art methods. In
addition, it only recognized action for detected humans. When we tested all
human regions in the test data, our method outperformed the others.

4.3 Experimental Results from Our Database
The proposed method, which was a combination of Randomized Trees and

Joint Boosting, efficiently selected features and trained classifiers. First, the per-
formance of human detection was compared with Joint Boosting and Randomized
Trees based approaches for various human poses to demonstrate improvements
in detection. Action recognition was compared with AdaTree, which is a hier-
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Fig. 6 Example of our database: (a) walking, (b) taking object down from high shelf, and
(c) picking object up from low shelf.

Fig. 7 ROC curve of human detection results.

archical tree-based approach. Action recognition in customer behavior analysis
was chosen for the evaluation. The action set consisted of walking, taking ob-
jects down from an upper shelf, and picking objects up from a lower shelf in the
cluttered background shown in Fig. 6. Each action was a 4-sec video sequence
for 10 different people. Three hundred snippets were selected for each class, and
the background class was trained using 1,000 images selected at random from a
10,000-image background image database. The rates for human detection by all
the methods are plotted in Fig. 7. Compared to Joint Boosting (JB), Random-

ized Trees (RTs) and AdaTree (AT), Boosted Randomized Trees (BRTs) achieved
better detection rates for all poses.

The walking data set contained frontal and side view poses, and even though
there were differences in appearance, there were few variations in poses, hence
detection rates were high for all the methods. However, subjects picking up
objects from the lower shelf had a variety of body postures, creating greater
variations in poses. Similarly, subjects taking objects down from the upper shelf
also had wider variations in arm inclinations. Joint Boosting selected features
that were biased towards a particular class since combinations of classes could not
be pre-defined; hence, detection rates for these poses were lower. Randomized
Trees selected features at random and features that could best detect these pose
variations might have been ignored. However, as class combinations for the nodes
were pre-defined with the proposed method, effective features common between
classes were preselected. Also, since it had a tree structure, there could have
been multiple leaf nodes for a given class thus allowing variations within a class.
The proposed approach was able to improve detection rates for walking, taking
down, and picking up actions using Boosted Randomized Trees in this way.

We also conducted experiments comparing the performance of action recogni-
tion, and the results for our database are summarized in Tables 2, 3 and 4.
Clearly, Boosted Randomized Trees achieved better recognition rates than Ran-
domized Trees and AdaTree. The other approaches recognized some actions in-
correctly, but the proposed classified un-recognizable actions as “not-recognized”
and not as incorrect classification. The proposed method was able to efficiently
pre-select features that captured changes between frames, which may be related
to the improved action recognition.

4.4 Action Recognition in Part of Weizmann Database
We selected actions from the Weizmann database for purposes of analyzing

customer behaviors. Three actions of “walk”, “bend”, and “wave” were similar
to taking objects down from a higher shelf and picking them up from a lower shelf
as shown in Fig. 8. We broke down “bend” and “wave” into more specific actions,
recognizing “bend” as either “bend down” or “bend up”, and “wave” as either up
or down hands. Two hundred forty snippets in each class and 2,000 snippets from
background images were trained. The snippets of eight people were trained and
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Table 2 Action recognition rate for RTs. Table 3 Action recognition rate for AT.

Table 4 Action recognition rate for BRTs.

Fig. 8 Example of experiment images; (a) walk, (b) bend, (c) wave.

Table 5 Action recognition rate for RTs. Table 6 Action recognition rate for AT.

Table 7 Action recognition rate for BRTs.

the remaining one person was used for evaluating cross validation. The action
recognition results are listed in Tables 5, 6 and 7. The results revealed that
Boosted Randomized Trees performed better than the other methods.

5. Discussion

5.1 Relation to Number of Trees
We investigated what effect the number of decision trees would have on perfor-

mance, and the ROC curve for the number of decision trees is plotted in Fig. 9.
The rate of human detection in our database was calculated as the average of
three actions with a 2% false positive rate, where detection error included errors
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Fig. 9 Performance of human detection with numbers of trees.

in action recognition. This indicated that the detection rate improved with in-
creased numbers of decision trees. As the detection rate saturated at around a
tree count of 10, this indicated that the optimal tree count was around 10 for the
present scenario.

5.2 Relation to Number of Features
Features in the proposed method were randomly pre-selected with Joint Boost-

ing and candidate features were generated from them. The thresholds for all gen-
erated candidate features were also randomly prepared. Performance with our
database was based on the number of candidates features and thresholds. Candi-
date features were generated from 10 pre-selected features from Joint Boosting.
The results of human detection for 50, 100 and 150 candidate features are plotted
in Fig. 10. The thresholds were changed to 50, 100, and 150 and the number of
decision trees was set to 10. As a result, the number of candidate features and
thresholds were directly proportional to performance, but there were no marked
improvements in performance between 100 and 150 features.

The average rate for action recognition for the number of candidate features
is listed in Table 8. There were 10 decision trees and 100 thresholds. As a

Fig. 10 Performance of human detection with numbers of features.

Table 8 Performance of action recognition with numbers of features.

Candidate Feature No. Recognition Rate
50 80.5%
100 95.0%
150 95.3%

RTs (Feature No. = 100) 88.5%

result, performance with fewer features was worse than that with Randomized
Trees, where there was little randomness and poor generalization because few
candidate features were randomly generated from effective pre-selected features.
Conversely, performance with many features that were randomly generated was
better than with Randomized Trees. This means many candidate features gen-
erated from effective pre-selected features yielded better generalization.

5.3 Tree Visualization
The tree was visualized in the part of the Weizmann database shown in Fig. 11

to analyze how effective the proposed method was. Joint Boosting at the root
node selected a feature shared by three of the poses, capturing the foot region (a).
The training samples were divided into two subsets by the feature selected for
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Fig. 11 Visualization of Leaf node of Boosted Randomized Trees.

the root node (b). One partition included bending and background classes, while
another included mainly walk and wave classes. Samples at the root node were
split into walk and wave, which appeared similar. Bend and background classes
have been selected at the left node in the first layer (c), while on the right side
(d), walk and wave classes have been selected. Almost all the classes have been
separated from the background in the second layer. This means that human
bodies in various poses have been separated from the background in the first
few layers, which is equivalent to human detection. As various poses have also
been differentiated, we can also say that overall poses have simultaneously been
estimated. Classes that recognize actions have been separated into finer detail by
conducting further training for several layers. The node at (f) accounts for most of
the bending samples, and features common to the bending class, which represent
the bent areas of the subject’s back (e), were pre-learned through Joint Boosting.
The node at (h) has classified most of walk class, and walk and wave have been
differentiated by pre-learned features (g) representing the arm and leg positions
that are common to walk class. Many features that differentiated various action
classes were selected in the lower nodes in this way. Our pre-selection of features
allowed them to be selected hierarchically, with features common to many classes
selected for the upper nodes and features specific to individual classes selected

for the lower nodes, thus achieving a single hierarchical framework from human
detection to action recognition.

6. Conclusion

We proposed Boosted Randomized Trees for action recognition, which defined
recognition classes based on the likelihood of each class when the nodes of a deci-
sion tree were generated. By pre-selecting the effective features of these classes by
Joint Boosting, shared features were selected for upper nodes, and specific class
features were selected for lower nodes. As a result, the nodes were trained such
that the upper nodes detected humans from the background, while the lower
nodes recognized specific actions from human detection to action recognition
within a single framework. The experimental results demonstrated action recog-
nition matched some of the earlier methods that have been proposed. We also
achieved better performance when we compared our approach with similar meth-
ods such as AdaTree and Randomized Trees. We also investigated what effect
the number of trees and candidate features had on performance. We found that
many candidate features generated from effective pre-selected features yielded
better generalization.
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