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When a camera moves during its exposure time, the captured image is de-
graded by the motion. Despite the several decades of researches, image decon-
volution to restore a blurred image still remains an issue, particularly in blind
deconvolution cases in which the actual shape of the blur is unknown. The
cepstral approaches have been used to estimate a linear motion. In this paper,
we propose a Point Spread Function (PSF) estimation method from a single
blurred image. We extend the classical cepstral approaches that have been used
for Uniform Linear motion PSF estimation. Focusing on Uniform Non-Linear
motion (UNLM) that goes one direction and potentially weakly curves, we solve
the PSF estimation problem as a camera path estimation problem. To solve
the ill-posed problem, we derive a constraint on the behavior of the cepstra of
UNLM PSFs. In a first step, we estimate several PSF candidates from the cep-
strum of a blurred image. Then, we select the best PSF candidate by evaluating
the candidates based on the ringing artifacts on the restored images obtained
using the candidates. The performance of the proposed method is verified using
both synthetic images and real images.

1. Introduction

Camera motion during exposure time blurs the captured image. A blurred
image g can be represented by a convolution of a latent image f and a function
h as

g = f ⊗ h, (1)
where ⊗ denotes a convolution operator. Since the function h represents how
a point light source is observed in a blurred image, it is called Point Spread
Function (PSF).

Image deblurring, recovering a latent image given a blurred image, is called

†1 Graduate School of Science and Technology, Keio University
∗1 Presently with Sony Corporation

deconvolution because it is an inverse operation of convolution. Especially, when
h is unknown, the problem is called blind deconvolution 17). Since the problem is
an ill-posed problem, there is infinite set of pairs of (f, h) that satisfies Eq. (1).

To solve the ill-posed problem, additional assumptions on f or h are required.
A classical assumption for solving the ill-posed problem is constraints on camera
motion. A uniform linear motion (ULM) can be represented by two parameters,
motion direction and length. Thus, PSF estimation problem can be solved as
parameters estimation problem. Since the features of ULM PSF is obviously
observed in spectrum/cepstrum domain not image domain, there exist several
approaches estimating a ULM PSF from spectrum 5),6),12),13),22),25),29),32) or cep-
strum 3),16),24),26),31) of a blurred image. Ding, et al. analyzes the spectral be-
havior of parametric motions including uniform linear motion, accelerated linear
motion, and linear harmonic motion 10). Introducing a flutter shutter camera,
they estimate the PSF by analyzing image power spectrum statistics. Another
type of assumption is constraint on target scenes captured in the blurred image.
This assumes that target scene consists of two regions, fore-ground and back-
ground. For such scene, motion blur smears alpha matte of the scene originally
should be binary. Using this constraint, an energy function minimization finds a
PSF well-representing the relation between multi-valued alpha matte of a blurred
image and corresponding binary one of an unknown latent image 1),7),8),14),28).
Recently, methods that constrain unknown latent images based on the natural
image statistics have got attention to estimate a non-uniform and non-linear
motion (NUNLM). The methods put assumption on histogram of a gradient im-
age 11),18),27) and motion blur effect on edges of latent images 15) and solve the
problem by following Bayesian inference manner.

Each of these constraints has both merits and demerits. Constraint on PSF
can provides analytical solution for the deconvolution problem, thus it should
provide stable results. However, it strongly limits the target camera motion
because of its parametric model. Constraint on scene relaxes the constraint
on PSF shape. Energy minimizations on alpha matte allow us to deal with
affine motion including rotation. However, target scene is limited and manual
operations such as matting are required. In terms of complexity of PSF shape,
constraint on unknown latent images is the best. However, Bayesian inference

32 c© 2011 Information Processing Society of Japan



33 Blind Deconvolution for a Curved Motion Based on Cepstral Analysis

severely required that blurred images follow the natural image statistics and there
are many parameters to tune carefully.

1.1 Overview of Proposed Method
In this paper, we propose to relax the limitation of the traditional cepstral

analysis based PSF estimation methods that have been used for ULM PSF esti-
mation. Specifically, we propose a single image blind deconvolution for uniform
non-linear motion that goes one direction and potentially weakly curves. Since
we limit target camera motion as uniform motion, PSF estimation problem can
be done by the camera path estimation problem. Preliminary results of this
work were presented by Asai, et al. 2). The main contributions of this paper are:
Analyzing the cepstral behavior of both ULM and UNLM PSFs and propose
a path integral based PSF estimation method; Evaluating the performance of
both sub-processes and entire process of the proposed method; Investigating the
performance of the proposed method for PSFs not supposed by our assumption,
i.e., non-uniform motion and heavy curved motion; Demonstrating the results of
various real world scenes to validate the effectiveness of the proposed method.

We first overview the classical cepstral approaches both theory and the ULM
PSF estimation method in Section 2. Next, Section 3 clarifies the features of the
cepstrum of blurred image degraded by UNLM and then propose a UNLM PSF
estimation method based on the features. To evaluate the effectiveness of our
method, we show the experimental result by using both synthesized data and
real-world scenes in Section 4. Finally, Section 5 summarizes the contents of the
paper.

2. Cepstral Analysis

In this section, we describe the behavior of the cepstrum of blurred images
degraded by a ULM PSF.

2.1 Cepstrum
The cepstrum of an image is the inverse Fourier transform of the log power

spectrum of the image as
C(image) = F−1 (log |F (image) |) , (2)

where C and F denote the cepstrum transform and the Fourier transform re-
spectively. Since the cepstrum is the log power spectrum of a spectrum, cepstra

have same features as spectra, e.g. a cepstrum has a positive peak at the center
and is symmetrical about the peak. The important property of the cepstrum for
image deconvolution is that the convolution of two images can be represented by
the addition of their cepstra. Therefore the cepstrum of a blurred image Cg is
represented by the addition of the cepstrum of a latent image Cf and one of a
PSF Ch as

Cg = C(g)
= F−1 (log |F(g)|)
= F−1 (log |F (f ⊗ h) |)
= Cf + Ch. (3)

Note that Ch has much bigger values than Cf which means that Ch dominates
Cg. Since the distribution of spectrum of PSF is relatively smaller than that of a
latent image, Ch converges on the positive peak while Cf is distributed from low
quefrency to high quefrency. Therefore, Cg can be considered as approximated
Ch around the positive peak.

2.2 Cepstrum of a Blurred Image Degraded by ULM PSF
A ULM PSF is parameterized by two parameters, motion length L and motion

direction θ. Rom 26) noted that the cepstrum of a ULM PSF has strong values
along the motion direction θ and has periodic negative valleys of period L along
the direction. Figure 1 compares the cepstrum of a ULM PSF Ch and that of
the blurred image Cg. Red pixels in the right figures show that Ch has periodic
negative valleys along the motion direction while Cg has additional negative
valleys around the positive peak. These additional valleys in Cg is derived from
Cf . Blue pixels in the right figures show that Ch has strong values along the
motion direction while Cg has additional horizontal and vertical lines. These
lines are caused by an assumption on periodicity of images.

Prior works use these cepstral features to estimate a ULM PSF. One method
simultaneously estimate blur motion θ and blur length L by finding a periodic
negative valley nearest to the positive peak in the cepstrum of a blurred im-
age Cg

16),31). However, when the latent image component Cf severely smears
the periodic negative valleys, the simultaneous estimation mis-detects another
negative valley that derived from Cf . For more stable detection, Moghaddam
and Jamzad 24) eliminates potential directions that don’t have strong values to
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34 Blind Deconvolution for a Curved Motion Based on Cepstral Analysis

Fig. 1 Comparison of the cepstrum of a ULM PSF (top) and one of the blurred image (bot-
tom). From left to right, image, cepstrum, and plotted values are shown. In the right
figure, the positive peak of ceptrum, negative valleys, and strong values are plotted as
white, red, and blue pixels respectively.

prevent such mis-detection. The method first estimates θ by finding a line that
has strong values. Then, blur length L is estimated by finding a negative val-
ley along the estimated direction θ. By separating the process, the method can
stably estimate the parameters.

We consider such sequential ULM PSF estimation method 24) from another
aspect. Suppose we detect several negative valleys from Cg and check lines each
of which connects the positive peak and one of the negative valleys. A detected
valley on a line that has strong values should be equivalent to one of the periodic
valleys. Thus, the ULM PSF can be estimated by finding a line that maximizes
the path integral between the positive peak and a negative valley. This path
integral based PSF estimation can be formulated as

L̂ = arg max
L

∫
L

Cg(p, q)ds, (4)

ĥ(x, y) =

{
1 (x, y) ∈ L̂
0 otherwise

,

where L denote a set of lines, each of which connects the positive peak and one of

negative valleys and ds denotes an elementary arc length of lines. The estimated
line L̂ has same shape as the PSF and also the position of the corresponding
valley tells us the parameters of the ULM PSF.

3. Our Approach

This section proposes a UNLM PSF estimation method based on cepstral anal-
ysis. First of all, we analyze the behavior of the cepstrum of a blurred image
degraded by UNLM PSF in Section 3.1. Next, Section 3.2 re-formulates path
integral based PSF estimation Eq. (4) to deal with a UNLM PSF, and then
Section 3.3 describes the solution method.

As an input, our method takes a single blurred image obtained by a normal
camera. We put some assumptions on a camera motion: the motion is uniform
on a blurred image, a PSF for a blurred image; the motion is one-way, meaning a
unidirectional PSF; the motion is under constant speed, meaning a binary PSF.

3.1 Cepstrum of a Blurred Image Degraded by UNLM PSF
Here, we analyze the behavior of the cepstrum of a UNLM PSF. Experience

shows that the cepstrum of a UNLM PSF has strong values along the blur di-
rection and that the cepstrum has distributed negative valleys along the motion
direction. Figure 2 compares the cepstrum of a UNLM PSF Ch and that of
the blurred image Cg. Red pixels in the right figures show that Ch has negative
valleys along the motion direction but they are not periodic. Same as a ULM
PSF, Cg has additional negative valleys around the positive peak. Blue pixels
in the right figures show that Ch has strong values along the motion direction.
Different from a ULM PSF, the strong values are distributed not located on a
line.

3.2 UNLM PSF Estimation Based on Cepstral Analysis
From the discussion above, we derive an assumption that the cepstrum of a

UNLM PSF has unclear PSF shape that lies between the positive peak and one
of negative valleys. In this section, we re-formulate the path integral based PSF
estimation Eq. (4) based on the assumption. Basic strategy is same as ULM PSFs
described above. We find a curve, not a line, that maximizes the path integral
between the positive peak and a negative valley. The difference between ULM
PSFs and UNLM PSFs is the way of comparison of path integral. In the case
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Fig. 2 Comparison of the cepstrum of a UNLM PSF (top) and one of the blurred image
(bottom). From left to right, image, cepstrum, and plotted values are shown. In
the right figure, the positive peak of ceptrum, negative valleys, and strong values are
plotted as white, red, and blue pixels respectively.

of ULM PSF, Eq. (4) compares the values of path integral of detected negative
valleys. However, such direct comparison can not be applied to the UNLM PSF
because the strong values on Cg are not exactly on the PSF shape as shown
in Fig. 2. Thus, the equation does not guarantee that the estimated path is
equivalent to the PSF shape. Alternatively, we separate the problem into two
sub-problems. Given N negative valleys of Cg, we first estimate paths as PSF
candidates, and then choose the most likely candidate as final estimate.

The path integral equation Eq. (4) is re-formulated for UNLM PSFs as

Ĉi = arg max
Ci

∫
Ci

Cg(p, q)ds, (5)

ĥint
i (x, y) =

{
1 (x, y) ∈ Ĉi

0 otherwise
,

where Ci denotes a curve connecting the positive peak and one of the negative
valleys Ri. Since a cepstrum is symmetric about the positive peak, the symmetric
shape of an estimated path may be another candidate of the correct PSF. Thus,
we regard both N estimated paths ĥint and their symmetric paths ĥsym as PSF

candidates. Totally, we obtain 2N PSF candidates ĥcan = {ĥcan
j | j = 1, . . . , 2N}

from N negative valleys.
Then, we estimate a PSF among the estimated candidates. The most likely

PSF should satisfy the imaging equation Eq. (1). Thus, our method evaluates
the candidates as

ĥ = arg min
ĥcan

j

∣∣∣g − f ⊗ ĥcan
j

∣∣∣ . (6)

By separating the problem into sub-problems, we finally obtain the most likely
PSF ĥ.

3.3 Implementation
This section describes the implementation of the proposed method: make the

cepstrum of a blurred image more tractable; the detail of the path integral based
PSF estimation of Eq. (5); the detail of the PSF candidates evaluation of Eq. (6).

Cf component reduction
The proposed PSF estimation algorithm tries to find a hidden PSF shape in the
cepstrum of a blurred image Cg. For this purpose, the latent image component
Cf is obstacle. To make Ch more clear, we reduce Cf by following the traditional
works 16),20). We take an average of cepstra of partitioned blurred image gk as

Cg =
1
K

K∑
k=1

Cgk
=

1
K

K∑
k=1

(Cfk
+ Chk

) =
(
Cf + Ch

) ≈ Ch, (7)

where K denotes the number of partition. As previously mentioned, we assume
uniform PSF on a blurred image while f varies by region. In this case, Cfk

differs
according to region while Chk

is constant. Thus, averaging of Eq. (7) reduces the
contribution of Cf while keeps Ch. PSF shape estimation algorithm uses Cg as
an input.

Path integral based PSF shape estimation
Here, we describe the detail of PSF shape estimation Eq. (5). Since we assume
a unidirectional camera motion, PSF should be a one-way path connecting the
positive peak R0 and a negative valley Ri. Thus, solving Eq. (5) is equivalent to
finding a path maximizing path integral along a one-way curve. We regard this
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problem as a kind of shortest path searching problem. Thus, we solve the prob-
lem by dynamic programming. Specifically, we apply the Dijkstra’s algorithm 9).
Given an average cepstrum Cg, we assign the value of Cg as a graph where each
position rk = (pk, qk) corresponds to a node. An edge is defined to connect 3
neighboring nodes rk+Δk ∈ {(pk, qk + 1), (pk + 1, qk), (pk + 1, qk + 1)} given the
positions of the negative valley Ri = (Pi, Qi) and the positive peak R0 = (0, 0)
as

cost (rk+Δk) =
〈−−−−−−→R0rk+Δk,

−−−→
R0Ri〉

‖−−−−−−→R0rk+Δk‖ · ‖−−−→R0Ri‖
. (8)

The cost function represents the cosine of the angle formed by Ri, R0, and rk+Δk.
Since the cost function enforces a path to connect the peak and the valley with
shorter length, the estimated path tends to be a smooth curve rather than a
zigzag line. After taking integral from Ri to R0, we find a path maximizing the
path integral between the positive peak and the negative valley.

PSF candidates evaluation
Here, we describe the detail of PSF candidates evaluation. Equation (6) the-
oretically chooses the best PSF among PSF candidates but in practice it does
not work because Eq. (6) uses unknown latent image f . Instead of f , we use a
recovered image f̂j , deconvolution of ĥcan

j , for the evaluation as

ĥ = arg min
ĥcan

j

∣∣∣g − f̂j ⊗ ĥcan
j

∣∣∣ . (9)

One may consider that Eq. (9) can not evaluate the PSF candidates because the
term f̂j ⊗ ĥcan

j is theoretically same as g. However, the ringing artifacts caused
by deconvolution algorithms make the term different from g in practice except
when ĥcan

j is a delta function. When a deconvolution algorithm uses wrong PSF,
ringing artifacts appear. Even if a deconvolution algorithm uses the correct PSF,
the ill-posedness of deconvolution increases ringing artifacts in proportion to the
PSF size. Thus, we design an evaluation function that mainly evaluates the
ringing artifacts derived from PSF mis-estimation and regularizes by the PSF
size as

ĥ = arg max
ĥcan

j

(
Shape

(
ĥcan

j

)
+ λSize

(
ĥcan

j

))
, (10)

Shape
(
ĥcan

j

)
= NCC

(
g, f̂j ⊗ ĥcan

j

)
,

Size
(
ĥcan

j

)
=

Width2
(
ĥcan

j

)
+ Height2

(
ĥcan

j

)
∥∥∥ĥcan

j

∥∥∥
0

,

where ‖·‖0 denotes L0 norm. Division by the L0 norm makes the evaluation
function to favor a smooth curve over a zigzag line. The error term Shape()
evaluates PSF candidates based on Eq. (9) and the regularization term Size()
considers the PSF candidate’s size.

To well-evaluate the PSF candidates, we should use an optimum deconvolution
algorithm to compute f̂j . From the description above, we understand Eq. (10)
evaluates the ringing artifacts caused by deconvolution algorithm while Eq. (6)
evaluates how the PSF candidate satisfies the imaging equation. In this sense, the
deconvolution algorithm should provide ringing artifacts according to PSF mis-
estimation. This implicitly rejects state-of-the art deconvolution algorithms that
usually include deringing process. Thus, we use Wiener filtering 30) to compute
f̂j .

4. Experimental Results

This section validates the proposed method by using both synthesized images
and real world images. Synthesized images are used to evaluate the performance
of both each process and entire process of the proposed method. Then, we apply
the proposed method to real world images. We further show the comparisons
with other blind deconvolution methods. Through the experiments, the number
of image partition K of Eq. (7) is set to 4 and the number of detected negative
valleys N is set to 10.

4.1 Synthetic Experiments
In these synthetic experiments, we use 200 images from Berkley Segmentation

Dataset as latent images and randomly generated PSFs to synthesize blurred
images. We first assess sub processes of the proposed method, which are PSF
shape estimation process and PSF candidates evaluation process. Next, we eval-
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Fig. 3 Experimental result: NCC histogram of the restored images f̂ and f̂best w.r.t. PSF
size.

uate the entire proposed method by applying to synthesized images. Finally, we
show the behavior of the proposed method for motion blurs which do not sat-
isfy our assumption. Since the synthesized images are noise-free, we use Wiener
filtering 30) as a deconvolution algorithm. To evaluate the estimated PSFs, we
compare a restored image using estimated PSF with a restored image using the
ground truth PSF not with the latent image because deconvolution algorithms
can not perfectly recover the latent image even with the ground truth PSF.

PSF shape estimation process
We first evaluate the PSF shape estimation process. In Section 3.2, we derived
an assumption that the cepstrum of a UNLM PSF has unclear PSF shape that
lies between the positive peak and one of negative valleys. To validate the as-
sumption, we input a correct negative valley, corresponding to a ground truth
PSF, to Eq. (5) so that the process can ideally estimate the correct PSF. Since
it is not easy to evaluate an estimated PSF by its shape, we compare the re-
stored image obtained by the estimated PSF f̂ with that by ground truth f̂best.
Figure 3 shows the histogram of NCC of the restored images f̂ and f̂best w.r.t.
PSF size. It is natural that the process recovers higher NCC images for smaller
size of PSFs. Empirically, NCCs below 0.9 are visually unacceptable. With this
threshold, more than 70 percent of the trials are successful for all the sizes of
PSFs. Figure 4 shows some of the restored images. From left to right, the size
of ground truth PSF is increasing. Red framed figures in f̂ show the estimated

Fig. 4 Examples of the PSF shape estimation experiment. From top to bottom, latent images,
blurred images, restored images by estimated PSFs, restored images by ground truth
PSFs, and zoomed up of the restored images are shown. Red framed figures in restored
images are PSFs used for deconvolution (for better visualization, we enlarge the PSFs
3 times the normal size). From left to right, PSF size is increasing.

PSFs while that in f̂best show the ground true PSFs. In both Penguin and Fish

cases, PSF is well-estimated, thus the restored images by estimated PSF recover
the detail of the latent images, e.g. penguin’s fur skin and fish skin. The Goat
case shows that the restored image is slightly damaged by even the ground truth
PSF because of the bigger PSF size. In such case, the estimated PSF is not
perfectly same as the ground truth. As a result, the ringing artifacts in f̂ is more
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Table 1 Experimental results of PSF candidates evaluation w.r.t. varying PSF size and λ of
Eq. (10).

λ (×10−5) 0 5 10 15 20 25 30 35 40 45
10×10∼ 20×20 176 192 191 186 179 172 160 152 142 131
20×20∼ 30×30 181 188 186 179 173 166 157 148 142 125
30×30∼ 40×40 174 179 178 176 169 165 152 147 137 127

obvious than that in f̂best.
PSF candidates evaluation

Next, we evaluate the performance of the PSF candidates evaluation process
Eq. (10). We synthesize 200 blurred images and 10 PSF candidates including the
ground truth PSF for each image. Then, we evaluate the PSF candidates by the
objective function. Table 1 shows the number of success of 200 blurred images
w.r.t. varying λ and varying PSF size. The cases λ = 0 denote that the objective
function evaluates the PSF candidates with only error term. The results show
that the objective function could successfully choose the ground truth PSF more
than 80 percent of the trials without the regularization term. All the failure cases
of λ = 0 chose the smaller size PSF than the ground truth. This result indicates
that the error term can discriminate the ground truth PSF, however, the ringing
artifacts caused by PSF size degrades the performance of the error term. With
λ = 5 ∼ 15 × 10−5, the objective function provides better results than that of
λ = 0. However, the cases λ > 15 × 10−5 provide worse results according to
λ. This result indicates that the regularization term assists the error term for
the evaluation but relatively bigger λ makes the regularization term dominant in
Eq. (10). In this experiment, the result has less correlation with PSF size. Thus,
we expect that the objective function works invariant to PSF size with optimum
λ value. In the latter experiments, λ is set to 5 ∼ 20 × 10−5.

Performance of entire method
Here, we validate the performance of the entire method by using 200 blurred
images. PSF size is set to 10× 10 ∼ 20× 20 pixels. For each image, we compute
the Peak Signal-to-Noise Ratio (PSNR) of the blurred image and the one of the
restored image and compare them. The case that PSNR(f ,f̂) is greater than
PSNR(f ,g) represents that the restored image f̂ is closer to the latent image f

Fig. 5 Experimental results: The plots of PSNR ratio. Red line denotes PSNR ratio
PSNR(f ,f̂)/PSNR(f ,g) equals 1. The ratio greater than 1 indicates that the restored
image f̂ is closer to the original image f than the blurred image g.

than the blurred image g. Figure 5 plots PSNR ratio PSNR(f ,f̂)/PSNR(f ,g) of
the results and a red line in the figure represents the ratio equals 1. In the experi-
ment, 159 of 200 cases result PSNR ratio greater than 1. Figure 6 shows some of
the success cases. Each caption of the blurred images and one of the restored im-
ages by estimated PSF represent PSNR(f ,g) and PSNR(f ,f̂) respectively. The
Mountain case is an example of higher PSNR(f ,g) cases, which denotes less
blurred case. Zoomed up figures show that wood area is well-recovered. Middle
column shows the result of the Woman case. The restored image by estimated
PSF is slightly damaged by more ringing artifacts than that by ground truth
PSF, however, the detail of the image, i.e., hair and eye, are recovered. Lower
PSNR(f ,g) case, the Ship case, is severely blurred than other two examples. The
estimated PSF is not perfectly same as the ground truth, however, the text on
the ship VIKING LINE gets much better than the blurred image.

Validation of non-uniform motion and high curvature motion
Then, we show the behavior of the proposed method when the camera motion
violates our assumption that the motion is uniform speed and the motion is one
direction and less curvature.

Figure 7 shows the effect of non-uniform camera speed by comparing a ULM
(top) and an NULM (bottom). In Cepstrum, the ULM has clear line along

IPSJ Transactions on Computer Vision and Applications Vol. 3 32–43 (June 2011) c© 2011 Information Processing Society of Japan
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Fig. 6 Experimental results: Restored images of the entire method. From left to right, Moun-

tain, Woman, Ship cases are shown with NCC values between the restored images.
From top to bottom, original images, blurred images, restored images by estimated
PSF, restored images by ground truth PSF, and zoomed up of the restored images are
shown. Red framed figures in restored images are PSFs used for deconvolution (for
better visualization, we enlarge the PSFs 3 times the normal size).

the motion direction while the line of the NULM is less clear. Plot also show
that strong values of the cepstrum of the NULM concentrates on the peak rather
than ones of the ULM. Estimated PSF images show how the non-uniform
camera speed affects the estimated PSF. Note that the estimated PSF by the
proposed method is uniform PSF even though the correct one is non-uniform.
Both the estimated PSF of the NULM are partially curved while the ones of the

(a) Comparison of the cepstrum of a ULM.

(b) Comparison of the cepstrum of an NULM.

Fig. 7 Experimental results: PSF estimation for different motion speed: a ULM (top) and an
NULM (bottom). From left to right, image, cepstrum, plotted values, and estimated
PSFs are shown. In the Plot, the positive peak of ceptrum, negative valleys, and
strong values are plotted as white, red, and blue pixels respectively.

ULM are correct straight line. These results indicate that non-uniform motion
ambiguates the strong values of the cepstrum, thus path integral based PSF
estimation provides poor result.

Figure 8 shows the performance of our method for multi directional motion
(V shape motion) and high curvature motion (C shape motion). For both V and
C shape motions, Cepstrum seem to have duplicated PSF shape. However, the
estimated PSF candidates are far from the correct PSF as shown in Estimated
PSF candidates. Thus, our proposed method can not estimate multi directional
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(a) Comparison of the cepstrum of a V shape motion.

(b) Comparison of the cepstrum of a C shape motion.

Fig. 8 Experimental results: PSF estimation for high curvature motion: a V shape motion
(top) and a C shape motion (bottom). From left to right, image, cepstrum, plotted
values, and estimated PSF candidates are shown. In the Plot, the positive peak of
ceptrum, negative valleys, and strong values are plotted as white, red, and blue pixels
respectively.

motion PSF and high curvature motion PSF.
As the above results indicate, the proposed method fails when the camera

motion violates the assumption. For such motions, Bayesian approaches 4),11) are
suitable.

4.2 Real World Experiments
In the real world experiment, we compare the proposed method with a max-

imum likelihood algorithm Ref. 21) (Matlab’s deconvblind function) and a
Bayesian approach Ref. 11) based on variational Bayes 23) to validate the pro-
posed method. To deal with the noise effect on blurred images, we use a Bayesian
deconvolution method 19) as a deconvolution algorithm.

Fig. 9 Experimental results: Restored images of the real world experiment. From left to right,
Doll, Orange, Sign board, and Text scenes are shown with the image resolution.
From top to bottom, blurred images, restored images by our method, restored images
by Fergus, et al. 11), restored images by deconvblind 21), and Zoom up of restored images
are shown. Red framed figures in restored images are PSFs used for deconvolution (for
better visualization, we enlarge the PSFs 3 times the normal size) and each caption of
restored images denotes the size of the estimated PSF. Other framed figures correspond
to zoomed up regions of restored images.

Figure 9 shows the results of four scenes, Doll, Orange, Sign board, and
Text scene. The red frame in a restored image shows the estimated PSF. The
caption of the restored image denotes size of the estimated PSF. The scenes
Doll and Orange are selected as examples of natural images. For such scenes,
both our method and Ref. 11) recover clearer images, i.e., doll’s eye and the text
ORANGE, while Ref. 21) provides the restored images damaged by heavy ringing
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artifacts. The other scenes are selected as examples of less-textured scenes: text
pattern in natural scene Sign board and text-pattern only scene Text. For
Sign board scene, both proposed method and Ref. 11) can recover satisfying
quality images. The reason why Ref. 11) can recover the satisfying image is that
the background area of text part in the blurred image obeys the statistics of
natural images in the case of text-pattern in natural scene. Contrast to above
scenes, Text scene has only text component in the image. For the scene, our
method recovers readable text even with ringing artifacts, while Refs. 21) and 11)
can not recover clearly readable images. These results indicate that our method
can estimate PSFs for various scenes.

5. Conclusion

In this paper, we focus on blind deconvolution for a single blurred image taken
by a standard camera undergoing a UNLM. To solve the ill-posed problem, we
derive a constraint on the cepstral behavior of UNLM PSFs. Proposed method
is based on the assumption that the cepstrum of a blurred image contains rough
shape of the PSF. Basic idea of the proposed method is that the PSF is estimated
by finding a path that maximizes path integral between the positive peak and a
negative valley corresponding to the PSF in the cepstrum domain. Our method
relies on dynamic programming to find these paths, yielding PSF candidates. The
candidates are evaluated from the ringing artifacts appearing on the restored
images. The proposed method is applied for both synthetic images and real
images for validation. With synthetic images, we first assess the proposed method
and then show the behavior of the proposed method when the camera motion
violates the assumption on the camera motion. With real images, the proposed
method is compared against other methods.

Although we limit the camera motion as uniform speed and less curvature curve,
cepstral analysis can provides as satisfying results as the Bayesian approach 11)

does when the camera motion follows our assumption. Moreover, the proposed
method outperforms the Bayesian approach when the latent image does not obey
the natural image statistics. The limitation of the proposed method caused by
the assumption on the target motion was investigated in the experiments of
Validation of non-uniform motion and high curvature motion. As we

concluded, Bayesian approaches are suitable for such motions. Possible future
work is to extend the cepstral approach to handle such motions. Even with such
motions, their cepstra contains duplicated PSF shape as shown in Fig. 7 and
Fig. 8, thus the cepstrum of a blurred image might be a clue for PSF estimation
even with such motions. Further investigation like the analysis by Ding, et al. 10),
which says that the spectra of some non-uniform motion have obvious features,
might provide useful information for PSF estimation.
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