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Interactive Removal of Shadows from a Single Image

Using Hierarchical Graph Cut

Daisuke Miyazaki,†1,∗1 Yasuyuki Matsushita†2

and Katsushi Ikeuchi†1

We propose a method for extracting a shadow matte from a single image. The
removal of shadows from a single image is a difficult problem to solve unless
additional information is available. We use user-supplied hints to solve the
problem. The proposed method estimates a fractional shadow matte using a
graph cut energy minimization approach. We present a new hierarchical graph
cut algorithm that efficiently solves the multi-labeling problems, allowing our
approach to run at interactive speeds. The effectiveness of the proposed shadow
removal method is demonstrated using various natural images, including aerial
photographs.

1. Introduction

Shadows in an image reduce the reliability of many computer vision algorithms,
such as shape-from-X, image segmentation, object recognition and tracking.
Also, shadows often degrade the visual quality of the images, e.g., causing in-
consistencies in a stitched aerial photograph. Shadow removal is therefore an
important pre-processing step for computer vision algorithms and image enhance-
ment.

Decomposition of a single image into a shadow image and a shadow-free image
is a difficult problem to solve unless additional prior knowledge is available. Al-
though various types of prior information have been used in previous approaches,
the task of shadow removal remains challenging. Because the previous techniques
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do not use a feedback loop to control the output, it has not been possible to refine
the output in the intended manner. As a result, it is still a time-consuming task
to remove the shadows, especially from the more difficult examples. To address
this problem, we developed an efficient computation method for the shadow re-
moval task. Unlike the previous shadow removal methods, our method allows
the user to interactively and incrementally refine the results. The interaction
speed is achieved by using a new formulation for shadow removal in a discrete
optimization framework.

The chief contributions of this paper are as follows:
MRF formulation for shadow removal We, like Nielsen and Madsen 1),

formulated the problem of shadow matte computation in a Markov random
field (MRF) framework. Unlike their approach, we used the user-supplied
hints fully as prior information, while discrete optimization techniques can
find the best solution using the prior information.

Hierarchical graph cut To achieve the interactive speed, we developed a hi-
erarchical optimization method for the multi-labeling problem. The method
produces a sub-optimal solution, and the number of applying max-flow/min-
cut algorithm for each iteration is 2 log2 n, while that of the α-expansion 2) is
n. Here, n represents the number of labels.

Interactive optimization Our system interactively and incrementally up-
dates the estimates of the shadow matte. The estimates are refined by the
user via a stroke-based user interface.

We validated the effectiveness of our technique quantitatively and qualitatively
using various different input images.

1.1 Prior Work
Shadow removal algorithms can be categorized into two classes: multiple-image

and single-image methods. Weiss 3) proposed a multiple-image method for de-
composing an input image sequence into multiple illumination images and a single
reflectance image. This method was extended by Matsushita, et al. 4) to produce
multiple illumination images and multiple reflectance images. These methods re-
quire several images taken from a fixed viewpoint, which limits their application.

Both automatic and interactive techniques have been proposed for the removal
of shadows from a single image. Finlayson, et al. 5) presented an automatic
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method that detects the shadow edge by entropy minimization. Fredembach
and Finlayson 6) extended that method to improve the computational efficiency.
These two methods aim to detect the shadow edges using physics-based methods,
but they require the illumination chromaticity of the shadow region to be different
to that of the non-shadow region. On the other hand, Tappen, et al. 7) took a
learning-based approach by creating a database of edge images to determine the
shadow edges robustly.

Instead of using the edge information, other works use the brightness informa-
tion. Baba, et al. 8) estimated gradually changing shadow opacities, assuming
that the scene does not contain complex textures. Conversely, the method pro-
posed by Arbel and Hel-Or 9) can handle scenes with complex textures, but it
does not handle gradual changes in the shadow opacity. Nielsen and Madsen 1)

proposed a method that can estimate gradually changing shadow opacities from
complex textured images. However, their method remains limited due to the
simple thresholding method used to detect the shadow edges.

Recently, interactive methods have been gaining attention, enabling the user to
supply hints to the system to remove shadows from difficult examples. Wu and
Tang’s method 10),11) removes shadows when given user-specified shadow and non-
shadow regions. It adopts a continuous optimization method that requires many
iterations to converge. As a result, it is not straightforward to use their method
in an interactive and incremental manner. Our method solves this problem by
formulating the problem in an MRF framework.

1.2 Overview of Our Approach
The overview of our shadow removal method is illustrated in Fig. 1. First, we

automatically over-segment the input image to produce a set of super-pixels. In
the next stage, region segmentation stage, the user specifies the shadow, non-
shadow, and background regions using a stroke-based interface such as Lazy
Snapping 12), and the regions are segmented by the GrabCut algorithm 13). Using
the likelihood of the non-shadow region as prior information, our method removes
the shadows by representing them as a multi-label Markov random field (MRF).
The shadow removal is performed using a hierarchical graph cut algorithm, and
the output is shown to the user at a responsive speed. The default parameters
of the hierarchical graph cut are used at this initial removal stage. To further

Fig. 1 Illustration of the shadow removal process. (a) The input is a single image. (b) The
image is segmented into small super-pixels that are used in steps (c) and (d). (c) The
user draws strokes to specify the shadow, non-shadow, and background regions. We
denote the region where the shadow appears in the input image as shadow region,
and the region which has no shadow and has the same texture as the shadow region
as non-shadow region. The background region is the area where our shadow removal
software is not applied. (d) The shadow, non-shadow, and background regions after
region segmentation stage. (e) Our graph cut shadow removal algorithm is applied
to the image using default parameters. (f) The user specifies any defective areas in
the results from step (d), and the graph cut shadow removal algorithm recalculates
a shadow-free image using the updated parameters. We denote the image where the
shadow is removed as shadow-free image, and the image which represents the shadow
opacity as shadow image. (g) The resulting shadow-free image. (h) The resulting
shadow image.

improve the results, the user can specify areas where the shadow was not perfectly
removed. The parameters of the hierarchical graph cut algorithm are updated by
additional user interaction at this interactive refinement stage, and the improved
output is displayed to the user rapidly.

2. MRF Formulation of Shadow Removal

This section describes our graph cut shadow removal algorithm. We begin with
the image formation model of Barrow and Tenenbaum 14). The input image I

can be expressed as a product of two intrinsic images, the reflectance image R

and the illumination image L, as
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I = RL. (1)
The illumination image L encapsulates the effects of illumination, shading, and
shadows. We can further decompose the illumination image into L = βL′, where
β represents the shadow image, defined as a function of the shadow opacity, and
L′ represents the other factors of L. Hence, Eq. (1) can be written as I = βRL′,
or more simply,

I = βF, (2)
as in Wu and Tang 10). Here, F represents the shadow-free image. β and F are
interdependent, i.e., if we know β, we also know F . Therefore, our problem is
the estimation of β from the input image.

We designed an energy function characterized by four properties:
( 1 ) the likelihood of the color histogram (Dt);
( 2 ) the likelihood of the umbra (Du);
( 3 ) the smoothness of the shadow-free image F (Df ); and
( 4 ) the smoothness of the shadow image β (V b).
The total energy E(β) of all nodes P and edges N are represented as follows:

E(β) =
∑
p∈P

{
λtD

t
p(βp) + λuDu

p (βp) + λfDf
p (βp)

}
+

∑
{p,q}∈N

λbV
b
p,q(βp, βq),

(3)

where the parameters λt, λu, λf , and λb are the weight factors of the correspond-
ing cost variables. p and q represent the node indices. The weight of each term
in Eq. (3) is automatically determined by the interactive parameter optimization
described in Section 3.

The likelihood cost of the color histogram Dt is related to the probability
density function (pdf) of the non-shadow region. Assuming that the likelihood P

of the non-shadow region is the same as the likelihood of the shadow-free image
F , the cost function can be formulated as

Dt
p(βp) = − log P (Ip/βp), p ∈ P, (4)

where I/β represents F . We represent the pdf P as a 1D histogram for each
1D color channel. We do not estimate all three of the color channels using a
3D pdf, since the solution space will be too large (e.g., 64 labels for 1D pdf and

64 × 64 × 64 labels for 3D pdf).
Dividing the average intensity of the non-shadow region by the average intensity

of the shadow region yields a good initial estimate for β, which we denote as β0.
At the initial removal stage, we, like Wu and Tang 10), use β0 as an initial value
for β. The inner part of the shadow region (the umbra) has a value which is close
to β0, while the shadow boundary (the penumbra) varies from β0 to 1, with 1
representing a non-shadow region. In order to express the above characteristics,
we introduce the following cost function for Du:

Du
p (βp) = |βp − β0|0.7 + |βp − 1|0.7, p ∈ P. (5)

β0 is a constant value, and is not changed throughout the interactive refinement
stage. L0.7-norm is useful for separating two types of information 15), and we
also use it here to decompose the input image into the shadow and shadow-free
images.

We also employ a smoothness term for the shadow image β. L1-norm is a good
estimator in order to avoid outliers 16); thus we set the smoothness term of the
shadow image β as follows:

V b
p,q(βp, βq) = |βp − βq|, {p, q} ∈ N . (6)

Although the smoothness term defined in Eq. (6) can be solved using either the
α-expansion or Ishikawa’s method 17), we solve it using a hierarchical graph cut
in order to reduce the computation time.

We also set the smoothness term of the shadow-free image. Our hierarchical
graph cut assumes that the smoothness term is represented by L1-norm, but
because F = I/β, we cannot represent the smoothness term by L1-norm. We
therefore calculate the smoothness term of the shadow-free image as follows and
add it to the data term:

Df
p (βp) =

∣∣∣Ip/βp − Ip/βp

∣∣∣2 , p ∈ P. (7)

The term Df represents the blurred shadow-free image. The value Ip/βp is the
value Fp = Ip/βp which is blurred befor each iteration: (1) Before starting each
iteration, we blur the shadow-free image calculated in previous iteration; (2) for
Df

p (βp), we use the difference between the shadow-free image calculated from βp
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Fig. 2 Results of image segmentation. (a) Shadow, non-shadow, and background regions
specified by red, blue, and green strokes drawn by the user. (b) The image segmented
into shadow, non-shadow, and background regions represented as red, blue, and green
regions. (c) The image segmented into small super-pixels.

and the blurred shadow-free image calculated in step (1); (3) after applying the
graph cut to Eq. (3) for one iteration, we go back to step (1) if the graph cut is
not converged.

2.1 Image Segmentation
Region segmentation
The cost functions Dt and Du in Eq. (3) are calculated from the shadow and

non-shadow regions. In order to construct the likelihoods, we have to segment
the image into shadow and non-shadow regions before applying our shadow re-
moval algorithm. Like previous image segmentation methods 12),13), we ask the
user to mark each region using a stroke-based interface, as shown in Fig. 2 (a).
After that, we separate the image into three regions: shadow, non-shadow, and
background. The background region is not used in further calculations. The
segmented region shown in Fig. 2 (b) is obtained by using the α-expansion algo-
rithm. The boundary of the background region should be specified clearly so that
this region would not be updated. However, the boundary between the shadow
region and the non-shadow region does not need to be clearly segmented because
the software can revise the results.

Over-segmentation
To accelerate the region segmentation stage, we segment the image into small

super-pixels in the over-segmentation stage, as shown in Fig. 2 (c). In this stage,
we reduce the colors of the image by k-means clustering in the RGB color space,
and then connect neighboring pixels which have the same color into one small

super-pixel. These super-pixels are also used in the initial removal stage. The
boundary of each super-pixel sometimes produces defects, so we apply our graph
cut shadow removal algorithm pixel by pixel in the interactive removal stage.

3. Interactive Parameter Optimization

In this section, we explain how to interactively update the weighting parameters
λ introduced in Eq. (3). In the initial removal stage, we apply our graph cut
shadow removal algorithm (Section 2) with the default weighting parameters.
The default parameters λt = 10, λu = 1, λf = 0.01, and λb = 1, however, are
not always optimal. Therefore, we use the user input to find a better parameter
set.

The main concept of the interactive parameter optimization algorithm is rep-
resented in the following formula.

Λ̂ = argmin
Λ

∑
p∈Ω0

|β̂p − βc|2, s.t . {β̂p|p ∈ Ω0} = graph cut(βp|p ∈ Ω0;Λ),

(8)
where Λ ≡ {λt, λu, λf , λb}. The system automatically updates the parameters
Λ so that the shadow image βp of pixel p will be close to the user-specified
constant βc. The constant value βc of pixel p is specified from the starting point
of the stroke input by the user. The area Ω0 to be examined is specified by the
user. Here, graph cut is the function to solve Eq. (3) using the parameters Λ, the
current shadow image β, and the hierarchical graph cut explained in Section 4.
By considering the trade-off between the precision and the computation speed,
we limited the iterations of Eq. (8) to 4: We explain the detailed implementation
in Section 3.2. Eq. (8) represents the case for the shadow image β, and the
case for the shadow-free image F is similar. The system increases λt and λf for
smooth textures, and increases λu and λb for constant shadow areas (Fig. 3). For
example, if λf is large, the image will be blurred due to the term Df , which is
effective to remove the shadow when the image contains the scene with constant
color. The discussion about the formulation of Eq. (8) is provided in Section 3.1,
and the actual implementation of it is shown in Section 3.2.

3.1 Objective Function
In our implementation, we use Eq. (8) for the interactive parameter optimiza-
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Fig. 3 The image enhanced by user-specified strokes. According to the user’s strokes, the
algorithm automatically finds the parameters which reflect the user’s intentions. The
strokes are represented by magenta pixels. In this example, 1–3rd strokes are added
to the shadow-free image and 4–6th strokes are added to the shadow image. (a) is the
input image, (b) is the initial state, and (c)–(h) are the results after the 1–6th strokes.

tion. In this section, we discuss the validity of Eq. (8). In Eq. (8), the term∑ |β̂p − βc|2 represents the constraint given by the user stroke. The software
tries to make the shadow opacity β to be close to the value βc specified by the
user. The function graph cut represents the minimization of the cost function,
Eq. (3). Consequently, Eq. (8) tries to minimize both the Eq. (3) and the term∑ |β̂p − βc|2 in order to obtain the optimal value for the shadow opacity β and
the parameters λt, λu, λf , and λb.

Eq. (8) can be expressed in other form as follows.

Λ̂ = argmin
Λ

U(β̂) ,

{β̂p|p ∈ Ω0} = argmin
{βp|p∈Ω0}

E(Λ, β) , (9)

or more simply,

Λ̂ = argmin
Λ

U(β̂(Λ)) ,

where β̂(Λ) = argmin
β

E(Λ, β) . (10)

Here, E(Λ, β) ≡ E(Λ, {βp|p ∈ Ω0}) represents the cost function, Eq. (3), and
U(β̂) ≡ U({β̂p|p ∈ Ω0}) represents the constraint U(β̂) =

∑
p∈Ω0

|β̂p −βc|2 given
by the user. The variable Λ is a global parameter which affects the |Ω0| number
of the shadow opacity β̂p, while the variable β̂p is a local parameter set for each
pixel. Since the nature of these parameters are quite different, optimizing them
at the same time does not work stably. In order to solve the problem stably, the
algorithm is represented by the nested loop as Eqs. (8), (9), and (10). The outer
loop minimizes U with respect to Λ, and the inner loop minimizes E with respect
to β. The inner loop minimizes E with the graph cut; thus, we can use the same
source code used in the initial removal stage. The outer loop does not contain
E, namely, the outer loop does not require the graph cut; thus, the computation
time is reduced. The solution to argminΛ E is λt = 0, λu = 0, λf = 0, and λb = 0
(c.f., Eq. (3)), and these values are not the values that we want. Note that we
want the parameter Λ which satisfies the user requirement, U . The solution to
argminβ U is βp = βc, (c.f., Eq. (8)), and this value is not the value that we want.
Note that we want the shadow opacity which minimizes the cost function of the
shadow removal problem, E, namely, Eq. (3).

3.2 Detailed Implementation
The detailed algorithm of the interactive parameter optimization algorithm is

described in Fig. 4. The behavior of the algorithm is illustrated in Fig. 5. The
first half of the algorithm is to estimate the parameter Λ (c.f., line 3–7 in Fig. 4
and Fig. 5 (a)–(b)). The user specifies some strokes as is shown in Fig. 3, and
the system automatically optimize the parameters which are consistent to the
user’s intention. The user can draw strokes to both the shadow image β and
the shadow-free image F ; however, we only explain the case where the user drew
strokes to the shadow image β here. The second half of the algorithm is to
apply the graph cut shadow removal algorithm to other area using the updated
parameters (c.f., line 8–12 in Fig. 4 and Fig. 5 (b)–(c)). The system automatically
select some regions, and applies the graph cut shadow removal algorithm.
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1: {βp|p ∈ P} ⇐ initial value
2: Λ ≡ {λt, λu, λf , λb} ⇐ initial value
3: Ω0 ⇐ user specified area
4: βc ⇐ user specified β // algorithm for F is also similar
5: {βp|p ∈ Ω0} ⇐ βc

6: Ω0 ⇐ Ω0 ∪ surrounding 4px-width area
7: Λ̂ ⇐ argminΛ Σp∈Ω0 |β̂p − βc|2

s.t. {β̂p|p ∈ Ω0} ⇐ graph cut(βp|p ∈ Ω0;Λ)
8: {βa, βb} ⇐ {βp, β̂p} s.t. |βp − β̂p| > T0, p ∈ Ω0

// T0 is adjusted if {βa, βb} is not found
9: Ω1 ⇐ {p} s.t. |βp − βa| < T1, p ∈ P

// T1 is adjusted if |Ω1| is too big or too small
10: {β̂p|p ∈ Ω1} ⇐ βb

11: Ω1 ⇐ Ω1 ∪ surrounding 4px-width area
12: {βp|p ∈ Ω1} ⇐ graph cut(β̂p|p ∈ Ω1; Λ̂)
13: Λ ⇐ Λ̂
14: if user is still unsatisfied then goto 3

Fig. 4 Interactive parameter optimization.

Parameter optimization
The first half of the algorithm is to optimize the parameter Λ under the con-

straint specified by the user (Fig. 5 (a)–(b)).
Fig. 4 line 3 The user draws strokes to specify incorrectly removed areas. The

region specified by the user is indicated by Ω0.
Fig. 4 line 4 We represent the shadow opacity of the starting point of the stroke

as βc. The purpose of the process in this section is to estimate the parameter
Λ so that the shadow opacity will be as close as possible to βc.

Fig. 4 line 5 Before applying the graph cut algorithm, we set the initial value
of the shadow opacity. The initial value is set to be βc for the area Ω0

specified by the user.
Fig. 4 line 6 The algorithm is also applied to a region surrounding the area

Ω0 specified by the user. The region Ω0 is expanded by 4 pixels width. The
value “4” is determined empirically. The shadow opacity of the surrounding

Fig. 5 A sketch of the interactive parameter optimization. (a) This illustration represents
the shadow image βp. Magenta stroke represents the user specified area. The shadow
opacity of the starting point of the stroke is represented by βc. The area for parameter
estimation is represented by Ω0. After the parameter optimization, the parameters
Λ becomes Λ̂, and the shadow opacity βp becomes β̂p. At a certain point randomly
chosen from Ω0, the shadow opacity βa changed to βb. (b) The area where shadow
opacity βp is close to βa is represented by Ω1. (c) This illustration represents the result
after applying graph cut shadow removal algorithm to the area Ω1 with the updated
parameters Λ̂.

area is considered to be correct while it is not considered to be correct in the
user specified area. The shadow opacity of the surrounding area works as a
soft constraint.

Fig. 4 line 7 We apply our method with 4 different parameter sets that are
randomly modified from the current parameters Λ. We compare the results
β̂p obtained using the 4 parameter sets and choose the result which is closest
to the starting point βc of the stroke. In other words, we first randomly make
4 different parameter sets, Λ1, Λ2, Λ3, and Λ4, which is slightly different
from the current parameters Λ. Next, we solve the graph cut and obtain
the shadow image β̂1p, β̂2p, β̂3p, and β̂4p for the parameters Λ1, Λ2, Λ3, and
Λ4, respectively. Then, we find the minimum among the following 4 values,∑

p∈Ω0
|β̂1p−βc|2,

∑
p∈Ω0

|β̂2p−βc|2,
∑

p∈Ω0
|β̂3p−βc|2, and

∑
p∈Ω0

|β̂4p−βc|2,
and choose the parameter set Λ̂ which makes this value minimum. This
process is represented in Eq. (8). The value “4” is determined empirically by
considering the trade-off between the precision and the computation speed.
We do not change the parameters to the steepest descent but change the
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parameters randomly in order to limit the number of computing the cost
function. The convergence of the algorithm is slow but it will converge close
to the minimum and slightly oscillate around the minimum. The global
minimum of Eq. (8) is the shadow opacity βc specified by the user; thus,
we do not iterate the computation until convergence, and only evaluate 4
different parameters. We minimize Eq. (8) for estimating the parameters
Λ ≡ {λt, λu, λf , λb}. Detailed discussion is provided in Section 3.1.

Shadow removal applied to the selected region
After changing the parameters, we also update the shadow of the areas not

specified by the user. It is time consuming if we apply the graph cut shadow
removal algorithm to the whole area P; thus, we limit the size of the region Ω1

to be processed. The second half of the algorithm is to choose some pixels to
be processed, and apply the graph cut shadow removal algorithm to the chosen
pixels using the updated parameter Λ̂.
Fig. 4 line 8 In line 7, the function “graph cut” updates the shadow opacity

βp of pixel p to be β̂p using the parameter set Λ̂. The shadow opacity has
drastically changed if the value |βp − β̂p| is larger than the threshold T0, and
it has slightly changed if the value |βp − β̂p| is smaller than the threshold
T0. We randomly choose a certain pixel p inside the region Ω0, and check
whether the difference of the shadow opacity before applying the graph cut
and after applying the graph cut is larger than the threshold T0. We denote
the chosen values βp and β̂p as βa and βb, respectively. Since we choose a
pixel p randomly, βa and βb are expected to be the values of the shadow
opacity before and after the graph cut, which are distributed in wide area.
The threshold T0 is dynamically adjusted so that these values βa and βb can
be found; namely, if we could not find the pixels which satisfy the condition,
we relax the condition by decreasing the threshold T0 so that we can find the
pixels which satisfy the condition. We choose one set of these values; thus,
βa and βb are constant values.

Fig. 4 line 9 If the pixel p has a shadow opacity close to βa, it is likely to
become βb if we apply our graph cut shadow removal algorithm. The shadow
opacities of some pixels outside the user specified region Ω0 are also equal to
βa. We denote the set of pixels whose shadow opacity is close to βa within a

threshold T1 as Ω1; namely, if the difference of the shadow opacity between
the pixel p, βp, and βa is less than the threshold T1, such pixel can be included
in the set Ω1. If we apply the graph cut shadow removal algorithm to the
region Ω1, the shadow opacity of some pixels in Ω1 becomes close to βb. Note
that it is not guaranteed that the shadow opacity of all the pixels in region Ω1

becomes βb: Unless the graph cut shadow removal algorithm is applied, we do
not know what value the shadow opacity will be for the pixels in region Ω1.
It is time consuming if the number of pixels in Ω1, namely |Ω1|, is too large,
and the change through this process is little if |Ω1| is too small. Therefore,
we dynamically change the threshold T1 so that the number of pixels to be
chosen, namely |Ω1|, is limited in a certain range. The range of |Ω1| is set
empirically considering the trade-off between the computation speed and the
speed of the convergence.

Fig. 4 line 10 Before applying the graph cut shadow removal algorithm, the
initial value of the shadow opacity β̂p in region Ω1 is set to be βb. The
shadow opacity in region Ω1 is close to βa; thus, setting the initial value as
βb is considered to be effective.

Fig. 4 line 11 We also apply the graph cut shadow removal algorithm to the
surrounding region of Ω1. The region Ω1 is expanded by 4 pixels width. The
value “4” is determined empirically. The shadow opacity of the surrounding
area is considered to be correct while it is not considered to be correct in the
selected area. The shadow opacity of the surrounding area works as a soft
constraint.

Fig. 4 line 12 We apply the function “graph cut” to the region Ω1 using the
current parameter set Λ̂. Note that, the parameter Λ̂ obtained in the first
half of the algorithm is used. Also note that the graph cut shadow removal
algorithm, namely graph cut, is applied to the region Ω1 which is not always
the same as the user specified region Ω0.

Summary of the algorithm
To summarize, the parameters Λ are updated (line 7) from the user’s strokes

Ω0 (line 3). The output image in the area Ω1 which the user did not specify
(Ω1 �= Ω0) is also improved by the updated parameters Λ̂ (line 12). Since the
size of the area to be computed is smaller than the whole set of pixels (Ω0 ∈ P
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and Ω1 ∈ P), the system can display the output image immediately.

4. Hierarchical Graph Cut

In order to improve the computation speed of the n-label graph cut, we propose
a hierarchical graph cut. The algorithm uses a coarse-to-fine approach to run
more quickly than both the α-expansion method 2) and Ishikawa’s method 17).

We first explain the benefits of our approach as compared with the previous
methods. A hierarchical approach to region segmentation or image restoration
has been previously studied 18)–22); however, few methods have employed a hier-
archical approach which can be applied to other applications. Juan, et al. 23) use
an initial value before solving a graph cut to increase the computation speed, but
it is only twice as fast as the α-expansion. A method called LogCut proposed by
Lempitsky, et al. 24) is much faster, but it requires a training stage before it can
be applied. On the other hand, the method proposed by Komodakis, et al. 25)

does not need any training stages, but the method only improves the computa-
tion time of the second and subsequent iterations, not the first iteration. We
propose a hierarchical graph cut algorithm which is faster than the α-expansion
when applied to a multi-label MRF.

The pseudo-code of the hierarchical graph cut is described in Fig. 6, and that
of the α-expansion is shown for comparison in Fig. 7. In Fig. 7 and Fig. 6, the
function “graph” adds nodes and edges to the current graph g under the rule
shown in Fig. 8. For each iteration, the α-expansion solves the 2-label MRF
problem, where one is the current label and the other is stated as α. Our hier-
archical graph cut uses multiple “α”s for each iteration (line 12 and line 13 in
Fig. 6). The list of multiple αs is represented by A in line 3, and is defined as:

A0 ={0} , A1 =
{n

2

}
, A2j =

2j−1−1⋃
k=0

{
1+4k

2j+1
n

}
, A2j+1 =

2j−1−1⋃
k=0

{
3+4k

2j+1
n

}
,

(11)

where j represents the level of the hierarchical structure, and n represents the
number of labels. The interval of each label at level j is 4

2j+1 n. For example, the
list of labels for n = 64 will be as follows.

1: B ≡ {βp|p ∈ P} ⇐ initial value
2: n ⇐ /* number of labels comes here */
3: A ⇐ Eq. (11)
4: success ⇐ 0
5: for i = 0 to 2 log2 n − 1 do
6: g ⇐ null
7: for all p ∈ P do
8: αp ⇐ argminα∈Ai

|βp − α|
9: g ⇐ g ∪ graph(αp, βp) // see Fig. 8
10: end for
11: for all {p, q} ∈ N do
12: αp ⇐ argminα∈Ai

|βp − α|
13: αq ⇐ argminα∈Ai

|βq − α|
14: g ⇐ g ∪ graph(αp, αq, βp, βq) // see Fig. 8
15: end for
16: B′ ⇐ max-flow(B, g)
17: if E(B′) < E(B) then
18: B ⇐ B′

19: success ⇐ 1
20: end if

21: end for
22: if success = 1 then goto 4

Fig. 6 Hierarchical graph cut.

A =
{{0}, {32}, {16}, {48}, {8, 40}, {24, 56}, {4, 20, 36, 52}, . . .
. . . , {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63}}. (12)

A represents the hierarchical structure since the number of A increases exponen-
tially:

|Ai| = max(1, 2�
i
2 �−1), (13)

where | · | represents the number of items included in the list. For example, the
number of items for n = 64 will be as follows.
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1: B ≡ {βp|p ∈ P} ⇐ initial value
2: n ⇐ /* number of labels comes here */
3: A ⇐ {0, 1, 2, . . . , n − 1}
4: success ⇐ 0
5: for i = 0 to n − 1 do
6: α ⇐ Ai

7: g ⇐ null
8: for all p ∈ P do
9: g ⇐ g ∪ graph(α, βp) // see Fig. 8
10: end for
11: for all {p, q} ∈ N do
12: g ⇐ g ∪ graph(α, βp, βq) // see Fig. 8
13: end for
14: B′ ⇐ max-flow(B, g)
15: if E(B′) < E(B) then
16: B ⇐ B′

17: success ⇐ 1
18: end if

19: end for
20: if success = 1 then goto 4

Fig. 7 α-expansion.

{|A0|, |A1|, . . . , |A11|} = {1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16}. (14)
Note that our algorithm can express all n numbers of the labels:

2 log2 n−1∑
i=0

max
(
1, 2�

i
2 �−1

)
= n. (15)

Our method only requires 2 log2 n times for each iteration (line 5 in the algorithm
6) thanks to the hierarchical approach, while the α-expansion needs n times for
each iteration. Although Ishikawa’s method does not require any iterations, the
computation time is almost the same as for the α-expansion, since the number
of nodes for the computation is n times larger than for the α-expansion.

Recently, Li and Huttenlocher 26), and Scharstein and Pal 27) took a machine

edge weight for
epα D(αp) p ∈ P
eβp D(βp)
eβa V (βp, βq)
eaα V (αp, αq) {p, q} ∈ N , αp = αq

epa, eap V (αp, βp)
eaq, eqa V (αq, βq)

eβa V (βp, βq) {p, q} ∈ N , αp �= αq

eaα V (αp, αq)
eap, eaq ∞ {p, q} ∈ N , αp �= αq,

epa [V (αp, βq) − V (βp, βq)]+ V (βp, βq) ≤ V (αp, αq)
eqa [V (βp, αq) − V (βp, βq)]+

epa, eqa ∞ {p, q} ∈ N , αp �= αq,
eaq [V (αp, βq) − V (αp, αq)]+ V (βp, βq) ≥ V (αp, αq)
eap [V (βp, αq) − V (αp, αq)]+

Fig. 8 Graph construction for our graph cut. [x]+ = max(0, x). The nodes p and q are
the neighboring nodes, which also represents the pixel position. The node a is the
auxiliary node added in order to set the weights properly. The nodes α and β are the
sink and source nodes, respectively, which also represent the labels used temporarily
in the graph cut algorithm and the label to be estimated, respectively. P and N are
the pixel set and the set of the couples of the neighboring pixels. e represents the edge
weight between two nodes of the graph. V and D are the smoothness and the data
term, respectively.

learning approach in order to model the cost function (especially the smooth-
ness function) which can represent the good stereo matching as possible. They
estimated the parameters of the smoothness function using the training data of
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stereo matching results in order to obtain better results. Modeling appropri-
ate smoothness function is important in the stereo matching problem since the
disparity changes discontinuously when there are many occlusions. Our shadow
removal software only treats the gradually changing shadow, and the discontin-
uous shadow opacity is not assumed. The discontinuity of the shadow appears if
the scene is illuminated by multiple point light sources; thus, we are also inter-
ested in further improvement of our method using their methods 26),27) to treat
with this problem.

Though our algorithm is faster than α-expansion method 2), its quality is
slightly lower than α-expansion method 2) and Ishikawa’s method 17). However,
the results in Section 5.1 indicate that our results are quite similar to the results
of α-expansion method and Ishikawa’s method. Recently, Pock, et al. 28) pro-
posed a method which produces slightly better results than Ishikawa’s method
when the problem is spatially continuous. Pock’s work is devoted to the study
of the variational problem,

min
u

{∫
Ω

|∇u(x)| dx +
∫

Ω

ρ (u(x),x) dx
}

, (16)

where u is the label represented in MRF framework, Ω is the image domain,
x = (x, y)T is the pixel coordinate, and ρ is the data term. The left term of
Eq. (16) is the Total Variation of the label u, represented as follows.

|∇u(x)| =

√(
∂u(x)

∂x

)2

+
(

∂u(x)
∂y

)2

. (17)

The TV term allows for sharp discontinuities and preserves edges in the solution.
Therefore, the shadow boundary of hard shadow can be improved if we use Pock’s
method. However, we are interested in improving the results of soft shadow rather
than hard shadow in our future work, since our method is more suitable for hard
shadow than soft shadow as is discussed in Section 6.

We believe that improving the cost function (Eq. (3)) would be the most impor-
tant future work than improving the graph cut algorithm. Later, in Section 5.1,
we show the hierarchical graph cut results compared to other graph cuts. Sec-
tion 5.1 shows that it is difficult to distinguish the difference between our result
and other results at a glance. On the other hand, in Section 5.2, we show that

our shadow removal result is apparently better than other shadow removal result
obtained by Finlayson’s method 5) and Wu’s method 11). One of the difference
between our shadow removal algorithm and other shadow removal algorithms is
that we employ graph cut for optimization, and the other is that we elaborately
defined the cost function of the shadow removal problem. Since improving the
graph cut would give only a small progress in the quality of the output as shown
empirically in Section 5.1, we are directing our attention to improving the cost
function in our future work. Though using better graph cuts like Pock’s method
improves our results, we believe that there is a much room in improving the cost
function of the shadow removal problem.

4.1 Graph Structure
We construct the graph structure as described in Fig. 8. The edge weight epa,

eap, eaq, and eqa in Fig. 8 should be a positive number; thus, we truncate the
edge weight if the weight is negative. Now, we discuss how the truncation affects
the cost function defined by the engineer.

Consider the case where V (βp, βq) ≥ V (αp, αq). The smoothness cost when the
label of pixel p is α (i.e., αp) and the label of pixel q is β (i.e., βq) is represented
as follows (Fig. 8):

[V (αp, βq) − V (αp, αq)]
+ + V (αp, αq). (18)

Here, [x]+ = max(0, x) represents the truncation of the negative value. From line
12, line 13 in Fig. 6, and Eq. (11), the following inequalities hold.

0 ≤ |αp − βp| ≤ 2
2j+1

n, 0 ≤ |αq − βq| ≤ 2
2j+1

n. (19)

From V (βp, βq) ≥ V (αp, αq), Eqs. (6), (11), and (19), we obtain the following
property.

− 2
2j+1

n ≤ V (αp, βq) − V (αp, αq) ≤ 2
2j+1

n. (20)

If V (αp, βq) − V (αp, αq) ≥ 0 holds, the truncation does not occur. In this case,
Eq. (18) becomes V (αp, βq) − V (αp, αq) + V (αp, αq); namely, the proper cost
V (αp, βq) is set to the graph; thus, the max-flow computation 29) (line 16) can
obtain a correct result. On the other hand, the proper cost is not set to the
graph if V (αp, βq) − V (αp, αq) ≤ 0, and the maximum error for this term is
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2
2j+1 n. This error value is the half of the interval of the αs 4

2j+1 n (c.f., Eq. (11));
meaning that the graph construction shown in Fig. 8 can solve the problem up to
a discretization error. We can also prove the same property for the cases which
are not V (βp, βq) ≥ V (αp, αq).

The above property indicates that the algorithm cannot always estimate the
global optimum of the given cost function. On the other hand, the estimation
error is limited with a small value; thus, the algorithm is expected to produce a
solution close to the global optimum.

5. Experiments

5.1 Hierarchical Graph Cut
Comparison to other graph cut methods
First, we experimentally validate the performance of the hierarchical graph

cut algorithm in three domains: shadow removal, image restoration, and stereo
matching. We used the stereo data sets introduced in Ref. 27). The results

Fig. 9 Results of our hierarchical graph cut. (a), (b), (c), (d), and (e) show the input, the
ground truth, the result for Ishikawa’s method, the result for α-expansion, and the
result for the hierarchical graph cut, respectively.

Table 1 Computation speed of our H-Cut. The first row specifies the experiments. The
second and third rows show the number of labels used and the image size. The
fourth and fifth rows show the ratio of computation times for X-Cut vs. H-Cut and
A-Cut vs. H-Cut. The error differences for H-Cut minus X-Cut and H-Cut minus
A-Cut are shown in the sixth and seventh rows, where a positive value means that
the other methods outperform our method. The number of iterations required until
convergence occurs is shown in the eighth and ninth rows for A-Cut and H-Cut.
X-Cut does not need iterations. The memory size required is shown in the tenth,
eleventh, and twelfth rows for X-Cut, A-Cut, and H-Cut.
[notations] X-Cut : Ishikawa’s exact optimization. A-Cut : α-expansion. H-Cut :
Hierarchical graph cut.

Problem Stereo Stereo Image Shadow

matching 1 matching 2 restoration removal

Labels 128 128 256 64

Image size 543 × 434 480 × 397 256 × 256 640 × 480

Speed-up vs. X-Cut ×5.2 ×5.9 ×8.0 ×6.4

vs. A-Cut ×6.8 ×11.4 ×16.6 ×3.4

Error vs. X-Cut +5.0% +3.2% +0.6% +0.0%

difference vs. A-Cut +4.6% +3.0% −0.4% +0.0%

Iteration A-Cut 8 7 10 4

H-Cut 10 5 7 6

Allocated X-Cut 6,748 MB 5,537 MB 5,306 MB 4,538 MB

memory A-Cut 106 MB 111 MB 65 MB 482 MB

H-Cut 106 MB 120 MB 64 MB 482 MB

Fig. 10 The plot of the value of overall cost of experiment “stereo matching 2” vs. the time
(a) or iteration (b). The initial value of the cost is the cost of conventional stereo.
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Fig. 11 The shadow removal result of our method and the gradient descent approach. (a),
(b), (c), and (d) show the input, the ground truth, the result for gradient descent
method, and the result for the hierarchical graph cut, respectively.

Table 2 Computation speed of our method and the gradient descent approach. The first and
second rows show the number of labels used and the image size. The third row shows
the ratio of computation times for the gradient descent method vs. our hierarchical
graph cut method. The error difference for our method minus the gradient descent
method is shown in the fourth row, which indicates that our method is better than
the gradient descent method. The number of iterations required until convergence
occurs is shown in the fifth and sixth rows for our method and the gradient descent
method. The memory size required is shown in the seventh and eighth rows for our
method and the gradient descent method.

Labels 64

Image size 640 × 480

Speed-up ×1.8

Error difference −3.4%

Iteration Gradient descent 19

Hierarchical graph cut 6

Allocated Gradient descent 485 MB

memory Hierarchical graph cut 482 MB

shown in Fig. 9 indicate that our algorithm produces similar results to the α-
expansion 2) and to Ishikawa’s method 17). Table 1 shows that the hierarchical
graph cut is 3 to 16 times (or 5 to 8 times) faster than the α-expansion (or
Ishikawa’s method). The change in the value of the cost function at the first
iteration is large, while it is negligible after the second iteration, as shown in
Fig. 10. The disadvantage of the hierarchical graph cut is that the result depends
on the initial value when there are many local minima, as shown in the stereo

Fig. 12 Our shadow removal results. The first and fourth columns show the input images,
the second and fifth columns show the shadow-free images, and the third and sixth
columns show the shadow images.

matching result. Due to its fast computation speed, we use the hierarchical graph
cut in our shadow removal algorithm instead of the α-expansion and Ishikawa’s
method. The detailed discussion for image restoration and stereo matching is
shown in Appendix A.1.
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Fig. 13 Our shadow removal results. The first and fourth columns show the input images,
the second and fifth columns show the shadow-free images, and the third and sixth
columns show the shadow images.

Comparison to gradient descent approach
We also applied the method based on gradient descent to the shadow removal

problem. Figure 11 (c) is the result of the gradient descent based method. Com-
pared to the result of our method shown in Fig. 11 (d), the gradient descent based

Fig. 14 Our shadow removal results. The first and fourth columns show the input images,
the second and fifth columns show the shadow-free images, and the third and sixth
columns show the shadow images.

method does not work well at the shadow boundary. The error difference shown
in Table 2 also shows that the image quality of Fig. 11 (c) is lower than that of
Fig. 11 (d). Gradient descent finds a local minimum which is close to the initial
value; while most of the graph cut methods can find a global minimum. The ex-
periment shown in Table 1 indicates that our hierarchical graph cut (c.f., H-Cut)
can produce the result close to the global minimum (c.f., X-Cut). Therefore, our
method removes the shadow at the boundary in higher quality than the method
based on gradient descent.
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Table 3 Computation time for our shadow removal. The first column gives the images from
Figs. 12–14. The second column shows the size of each image. The third column
shows the number of user interactions used for parameter optimization. The fourth
column shows the computation time for each user interaction, using 3 GHz desktop
computer.

Image Image size Strokes† Average time per stroke

Fig. 12 (a) grass 640 × 480 [px] N/A N/A
Fig. 12 (b) family 640 × 480 [px] 1 1.4 [sec]
Fig. 12 (c) standing 320 × 240 [px] 4 1.2 [sec]
Fig. 12 (d) horse 640 × 480 [px] 6 2.1 [sec]
Fig. 13 (a) rock 640 × 480 [px] 8 1.5 [sec]
Fig. 13 (b) women 640 × 480 [px] 12 2.0 [sec]
Fig. 13 (c) statue 320 × 240 [px] 15 1.9 [sec]
Fig. 13 (d) bird 320 × 240 [px] 2 1.5 [sec]
Fig. 14 (a) walking 640 × 480 [px] 26 2.0 [sec]
Fig. 14 (b) cat 640 × 480 [px] 27 5.8 [sec]
Fig. 14 (c) glass 640 × 360 [px] 32 6.3 [sec]
Fig. 14 (d) wine 640 × 320 [px] 40 2.8 [sec]

† = Number of strokes for parameter optimization

5.2 Shadow Removal
Natural image
Our shadow removal results are shown in Figs. 12–14. The number of user

interactions required for parameter optimization is listed in Table 3. The system
displays the output image at the responsive speed. The shadows were removed
effectively while the complex textures of the images were preserved. We express
the shadow opacity using 64 discrete values, but these results show that this
discretization does not cause any strong defects. Figure 12 (a) did not require the
stroke for the interactive parameter optimization, since the default parameters
successfully removed the shadows. The shadows of the cracks in Fig. 13 (a) and
the statue in Fig. 13 (c) are not removed since the user did not specify these
shadows to be removed. The leg of the bird in Fig. 13 (d) is disappeared since the
brightnesses of the shadow and the leg are similar, and this is always a problem
for most of the shadow removal softwares. If the shadows are complex (Fig. 14 (c)
and Fig. 14 (d)), the user has to add many strokes to extract them.

Aerial images
In aerial images, the shadows of buildings fall both on the ground and on

Fig. 15 Application to aerial images. The input image and the shadow-free image are shown.

neighboring buildings. Neighboring aerial images are often taken at different
times, so that when they are stitched together, there may be a seam where the
different images meet. Thus, it is important to remove the shadows in the aerial
images. After many strokes are added to this complex scene, we finally obtain
the images which are shown in Fig. 15.

Evaluation
In Fig. 16, we show how our method benefits from the user interaction. The

results are evaluated quantitatively using the ground truth. Our results improve
gradually when the user interacts with the system. The computation times for the
results shown in Fig. 16 (a) using a 3GHz desktop computer are 21 [sec], 336 [sec],
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Fig. 16 Comparison between our method, Finlayson’s method, and Wu’s method, when ap-
plied to indoor scene (a) and outdoor scene (b). The root mean square error (RMSE)
is calculated by comparison with the ground truth. The solid line represents our
results and the dashed lines represent Finlayson’s results and Wu’s results.

and 65 [sec] for the main part of the algorithm for Finlayson’s method 5), Wu’s
method 11), and our method until convergence, respectively; while the computa-
tion times for Fig. 16 (b) are 8 [sec], 649 [sec], and 53 [sec].

6. Conclusions and Discussions

We present a method for user-assisted shadow removal from a single image. We
have expressed the shadow opacity with a multi-label MRF and solved it using a
hierarchical graph cut. Our hierarchical graph cut algorithm allows the system
to run at interactive speeds. The weighting parameters for each cost term are

automatically updated using an intuitive user interface.
Using user-supplied hints, the coefficients of each cost term are adjusted, and

the method can be applied to both hard shadows and soft shadows. We set the
default coefficients so that it can successfully remove the hard shadow. Since
the best coefficients for soft shadow is difficult to find, we require the users to
interact to the system. Automatic shadow removal which works well with soft
shadow is our future work.

The hierarchical graph cut solves multi-label MRF problems 3 to 16 times
faster than α-expansion 2) and Ishikawa’s graph cut 17). However, the precision
of this graph cut method is often slightly worse than α-expansion. It often falls
into local minimum; thus, a good initial value is necessary. Considering both the
computation speed and the robustness is a hard task, and we leave it as an open
problem.

Another limitation is that the method requires the labels to have a numer-
ical order. It cannot be used, for example, to segment image pixels into the
foreground or background. However, fast solutions already exist for such fore-
ground/background cut problems.
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Appendix

A.1 Image Restoration and Stereo Matching
The main topic of this paper is the shadow removal; thus, we examine the

experiments shown in Fig. 9 and Table 1 in the appendix.
The initial value of image restoration is the input image itself. The data term

is defined as follows.
Dp(βp) = min(t1, |βp − Ip|), (21)

where t1 is a constant value, and Ip is the pixel brightness of the input image.
The smoothness cost is as follows.

Vp,q(βp, βq) = t2 exp(−|∇Ip|/t3)|βp − βq|, (22)
where t2 and t3 are constant values, and ∇Ip represents the edge strength which
is calculated by Sobel operator.

The initial value of stereo matching is the result of conventional stereo which
uses shiftable window 31). The data term is defined as follows.

Dp(βp) = min(t4, s(βp)), (23)
where t4 is a constant value, and s(βp) is the SAD (sum of absolute difference)
between the stereo image pair calculated by shiftable window whose size is 5× 5.
The smoothness cost is as follows.
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Table 4 Middlebury stereo evaluation 30), where error threshold is 1. Tsukuba, Venus, Teddy,
and Cones are the names of input image pair. The smaller the numerical value
is, the better the algorithm’s performance is. “Avg. rank” represents the overall
performance of the algorithm. “H-Cut” represents the proposed method. “SSD+MF
[1a],” “DP [1b],” “SO [1c],” and “GC [1d]” represent the stereo matching algorithms
which use “SSD + min-filter,” “Dynamic programming,” “Scanline optimization,”
and “Graph cuts using alpha-beta swaps,” respectively 31).

Algorithm Avg. rank Tsukuba Venus Teddy Cones

GC [1d] 57.5 1.94 1.79 16.5 7.70

H-Cut 59.4 2.85 1.73 10.7 5.46

DP [1b] 65.1 4.12 10.1 14.0 10.5

SSD+MF [1a] 69.0 5.23 3.74 16.5 10.6

SO [1c] 70.7 5.08 9.44 19.9 13.0

Vp,q(βp, βq) =
(
t5 exp(−|∇Ip|2/t6) + t7

) |βp − βq|, (24)

where t5, t6, and t7 are constant values, and ∇Ip represents the edge strength
which is calculated by Sobel operator. The subpixel refinement and the occlusion
detection are not implemented in our current software.

We have compared our stereo matching result with other methods 30). The
results are shown in Table 4. As expected, our result is worse than conventional
graph cut stereo, but is better than DP (dynamic programming) stereo and other
conventional stereos. The comparison with state-of-art stereo algorithms can be
found in the Middlebury stereo webpage 30).
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