
IPSJ Transactions on Computer Vision and Applications Vol. 2 156–168 (Nov. 2010)

Research Paper

Object Detection Based on Combining Multiple

Background Modelings

Tatsuya Tanaka,
†1

Satoshi Yoshinaga,
†1

Atsushi Shimada,
†1

Rin-ichiro Taniguchi,
†1

Takayoshi Yamashita
†2 and Daisaku Arita

†3

We propose a new method for background modeling based on combination
of multiple models. Our method consists of three complementary approaches.
The first one, or the pixel-level background modeling, uses the probability den-
sity function to approximate background model, where the PDF is estimated
non-parametrically by using Parzen density estimation. Then the pixel-level
background modeling can adapt periodical changes of pixel values. The region-
level background modeling is based on the evaluation of local texture around
each pixel, which can reduce the effects of variations in lighting. It can adapt
gradual change of pixel value. The frame-level background modeling detects
sudden and global changes of the image brightness and estimates a present
background image from input image referring to a model background image,
and foreground objects can be extracted by background subtraction. In our
proposed method, integrating these approaches realizes robust object detection
under varying illumination, whose effectiveness is shown in several experiments.

1. Introduction

Background subtraction technique has been often applied to detection of ob-
jects in images. It is quite useful because we can get object regions without
prior information about the objects by subtracting a background image from an
observed image. However, simple background subtraction often detects not only
objects but also a lot of noise regions, because it is quite sensitive to small il-
lumination changes caused by moving clouds, swaying tree leaves, water ripples
glittering in the light, etc.

To handle these background changes, many techniques have been pro-
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posed 1)–11). In general, they are classified into three categories: pixel-level,
region-level and frame-level background modelings.
pixel-level modeling In most of the pixel-level background modelings, the

distribution of each pixel value is described in a probabilistic framework 1),9).
A typical method is Elgammal’s method where the probability density func-
tion is estimated by Parzen density estimation in a non-parametric form.
Probabilistic methods construct the background model referring to observed
images in the past, and, therefore, they are effective for repetitive brightness
changes, which are caused by fluctuation of illumination, swaying tree leaves
etc. However, these approaches including other pixel-level background mod-
els 8),10),11) can not handle sudden illumination changes correctly, which are
not observed in the previous frames.

region-level modeling Several approaches which consider spatial information
such as texture have been proposed 5),12)–14). Methods based on Radial Reach
Correlation (RRC) and Local Binary Pattern (LBP) are typical region-level,
or texture-based, background modelings 5),12). In those methods, local tex-
ture information around a pixel, which is represented in terms of magnitude
relation of the pixel and its peripheral pixels, is described. Usually, this mag-
nitude relation does not change even if the illumination condition changes,
and, thus, region-level background modeling often gives us more robust re-
sults than the pixel-level modeling. However, local changes of brightness,
such as the change due to tree leave swaying, can not be handled correctly.
BPRRC 13) is also region-level background model which is robust against illu-
mination changes. However, it requires some background changes in advance
to train the changes.

frame-level modeling Fukui, et al. have proposed a method to estimate the
current background image from a model background image 15). In their
method, background candidate regions are extracted from the current im-
age and the background generation function is estimated referring to the
brightness of the candidate regions. The generation function is estimated
under the assumption that the illumination changes uniformly in the image,
and, therefore, nonuniform illumination changes can not be handled. In ad-
dition, the model background image is acquired in advance, and, unpredicted
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changes of the background can not be handled as well.
As mentioned above, each approach has merits and demerits depending on the

assumptions of characteristics of the background and the illumination. There-
fore, to achieve more robust object detection, or to acquire more effective back-
ground model, we should combine adaptively background modelings having dif-
ferent characteristics. In this paper, we propose integrated background modeling
combining the pixel-level, the region-level and the frame-level background mod-
elings.

2. Basic Background Modeling

Before we describe our integrated modeling approach, we propose improve-
ments to each of the three basic background models. These improvements provide
better performance of the integrated modeling.

2.1 Pixel-level Background Modeling
For pixel-level background modeling, probabilistic modeling of pixel value is

the most popular method, in which fast and accurate estimation of the probabil-
ity density function (PDF) of each pixel value is quite important. To estimate
the PDF, Parzen density estimation is quite effective. However, to acquire an
accurate estimation, sufficient of samples are required, and a typical method 1)

requires a lot of computation, which is proportional to the number of samples.
Therefore, it cannot be applied in real-time processing. To solve this problem,
we have designed a fast algorithm of PDF estimation. In our algorithm, we have
used a rectangular function (See Fig. 1) as the kernel function K, instead of
Gaussian function, which is often used in Parzen density estimation.

K(u) =

{
1
h if − h

2 ≤ u ≤ h
2

0 otherwise
(1)

where h is a parameter representing the width of the kernel, i.e., some smoothing
parameter. Using this kernel, the PDF is represented as follows:

P (X) =
1
N

N∑
i=1

1
hd
ψ

( |X − Xi|
h

)
(2)

where, |X − Xi| means the chess-board distance in d-dimensional space, and

ψ(u) is calculated by the following formula.

ψ(u) =

{
1 if u ≤ 1

2

0 otherwise
(3)

When an observed pixel value X is inside of the kernel located at X, ψ(u) is 1;
otherwise ψ(u) is 0.

Thus, we estimate the PDF based on Eq. (2), and P (X) is calculated by enu-
merating pixels in the latest pixel process whose values are inside of the kernel
located at X. However, if we calculate the PDF, in a naive way, by enumerating
pixels in the latest pixel process whose values are inside of the kernel located
at X, the computational time is proportional to N . Instead, we propose a fast
algorithm to compute the PDF, whose computation cost does not depend on N .

In background modeling we estimate P (X) referring to the latest pixel process
consisting of pixel values of the latest N frames. Let us suppose that at time
t we have a new pixel value XN+1, and that we estimate an updated PDF
P t(X) referring to the new XN+1. Basically, the essence of PDF estimation is
accumulation of the kernel estimator, and, when a new value, XN+1, is acquired
the kernel estimator corresponding to XN+1 should be accumulated. At the
same time, the oldest one, i.e., the kernel estimator at N frames earlier, should
be discarded, since the length of the pixel process is constant, N . This idea leads
to reduction of the PDF computation into the following incremental computation:

Pt(X) = Pt−1(X) +
1

Nhd
ψ

( |X − XN+1|
h

)
− 1
Nhd

ψ

( |X − X1|
h

)
(4)

where Pt−1 is the PDF estimated at the previous frame.
The above equation means that when a new pixel value is observed, the PDF

can be acquired by:
• increasing the probabilities of pixel values which are inside of the kernel

located at the new pixel value XN+1 by 1
Nhd

• decreasing those which are inside of the kernel located at the oldest pixel
value, a pixel value at N frames earlier, X1 by 1

Nhd .
In other words, the new PDF is acquired by local operation of the previous

PDF, assuming the latest N pixel values are stored in the memory, which achieves
quite fast computation of PDF estimation. Figure 2 illustrates how the PDF, or
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Fig. 1 Kernel function of
our algorithm.

Fig. 2 Update of background model.

the background model, is modified. Please refer to the paper 16) for experimental
results of the fast algorithm.

2.2 Region-level Background Modeling
To realize robust region-level background modeling, we have improved Radial

Reach Correlation (RRC) 5) so that the background model is properly updated
according to background changes of input image frames.

2.2.1 Radial Reach Correlation (RRC) 5)

In order that each pixel is robustly judged as either the foreground or the
background without the influence of illumination changes, Radial Reach Corre-
lation (RRC) has been introduced to evaluate local texture similarity. RRC is
calculated at each pixel (x, y). At first, pixels whose brightness differences to
the brightness of the center pixel (x, y) exceed a threshold are searched for in
every radial reach extension in 8 directions around the pixel (x, y). We refer to
the searched 8 pixels as peripheral pixels hereafter. Then, the signs of bright-
ness differences (positive difference or negative difference) of the 8 pairs, each of
which is a pair of one of eight peripheral pixels and the center pixel (x, y), are
represented in a binary code. The basic idea is that the binary code represents
intrinsic information about local texture around the pixel, and that it does not
change under illumination changes. To make this idea concrete, the correlation
value of the binary codes extracted from the observed image and the reference
background image is calculated to evaluate their similarity.

Suppose that the position of a pixel is represented as a vector p = (x, y)T , and

that the directional vectors of radial reach extensions are defined as d0 = (1, 0)T ,
d1 = (1, 1)T d2 = (0, 1)T , d3 = (−1, 1)T , d4 = (−1, 0)T , d5 = (−1,−1)T

d6 = (0,−1)T , and d7 = (1,−1)T . Then the reaches {rk}7
k=0 for these directions

are defined as follows referring to the reference image f , or the background image
here:

rk = min{r| |f(p + rdk) − f(p)| ≥ TP } (5)
where f(p) represents the pixel value of the position of p in the image f , and TP

represents the threshold value to detect a pixel with different brightness. When
rk cannot be detected, we regard the pixel on the bound of image as a pixel with
different brightness. If such case often occurs, region-revel background model
cannot represent spatial features. However, the problem rarely rises in the scenes
used in our experiments.

Based on the brightness difference between the center pixel and the peripheral
pixels (defined by Eq. (5)), the coefficients of incremental code, or polarity code,
of the brightness distribution around the pixel in the background image f are
given by the following formula:

bk(p) =

{
1 if f(p + rkdk) ≥ f(p)
0 otherwise

(6)

where k = 0, 1, . . . , 7. In the same manner, the incremental codes are calculated
for the input image g, except that the reach group {rk}7

k=0 is established in the
background image f , not in the input image g.

bk
′(p) =

{
1 if g(p + rkdk) ≥ g(p)
0 otherwise

(7)

Based on the obtained bk(p), bk′(p), the number of matches (correlation), B(p),
between the two incremental codes are calculated as follows.

B(p) =
7∑

k=0

{bk(p) · bk′(p) + bk(p) · bk′(p)} (8)

where x = 1−x represents the inversion of a bit x. B(p) represents the similarity,
or correlation value, of the brightness distribution around the pixel p in the two
images. This is called Radial Reach Correlation (RRC).
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Since RRC between an input image pixel and its corresponding background
image pixel represents their similarity, it can be used as a measure to detect
foreground pixels. That is, pixels whose RRC are smaller than a certain threshold
can be judged as foreground pixels.

2.2.2 Background Modeling Based on Adaptive RRC
Using RRC, the similarity between incremental codes of a background image

pixel and its corresponding pixel in the observed image can be calculated. Pixels
which are not “similar” to their corresponding pixels in the background image are
detected as foreground pixels. In principle, if the background does not change,
we can prepare adequate codes of the background image in advance. However,
usually, due to the illumination changes and various noises, it is almost impos-
sible to prepare them. Even if we manage to prepare such fixed background
codes, accurate results can not be acquired, and, therefore, we should update the
background codes properly. Here, we have developed a mechanism to update the
background codes according to the following formula:

b̂t+1
k (p) = (1 − α) · b̂tk(p) + α · b̂′tk (p) (9)

where b̂tk(p)(k = 0, 1, . . . , 7) represents the incremental code of a pixel p at time
t. α is a learning rate, and when it is large enough the above code can be
quickly adapted to the current input image, i.e., adapted to sudden background
changes. The range of b̂tk(p) is [0, 1], and when b̂tk(p) is close to either 0 or 1,
it means that the magnitude relation of brightness between the center pixel and
its peripheral pixel does not change. Otherwise, i.e., if b̂tk(p) is close to 0.5, the
magnitude relation is not stable. According to this consideration, a peripheral
pixel is sought again when Tr ≤ b̂tk(p) ≤ 1− Tr holds. Tr is a threshold value to
invoke re-searching of peripheral pixels.

Then, we re-define the similarity of the incremental codes as follows:

B̂t(p) =
7∑

k=0

|b̂tk(p) − b̂′tk (p)| (10)

Similarity or dissimilarity is judged by comparing the similarity value with a
threshold TB. Therefore, when B̂t(p) is smaller than TB , we regard the pixel as
background.

The detailed procedure of background modeling is summarized as follows:
Step1 The incremental codes of the current frame g are calculated, and fore-

ground pixels are discriminated from background pixels according to the sim-
ilarity (defined in Eq. (10)) of the incremental codes of the input image pixels
and those of the background pixels.

Step2 The incremental codes of the background pixels judged in the integration
process (see Section 3) are updated according to Eq. (9).

Step3 When Tr ≤ b̂tk(p) ≤ 1−Tr becomes to hold, its peripheral pixel is sought
again in the current frame, and b̂tk(p) is re-initialized using the newly found
peripheral pixel.

As mentioned above, we selectively update the region-level background model.
Though selective update process sometimes propagates misclassification to suc-
cessive frames, we ease this problem by integrating the detection results from
multiple background models. For details, see Section 3 and experimental results.

2.3 Frame-level Background Modeling
Frame-level background modeling proposed by Fukui, et al. 15), which is based

on brightness normalization of a model background image, is designed to be
robust against sudden illumination changes. They assume that pixels having
the same brightness value change their brightness in the same way when the
illumination condition changes, i.e., they assume that the illumination changes
occur uniformly in the entire image. Therefore, in principle, their method can
not detect objects robustly under non-uniform illumination changes. In addition,
since the model background image is prepared in advance, it can not handle
unexpected background changes as well.

In our method, on the contrary, the model background image is adaptively gen-
erated referring to recent pixel values, and unexpected background changes can
be dealt with. Then, the brightness of the model background image is further
normalized based on on-line training, and the influence of non-uniform illumina-
tion changes is reduced. Finally, objects can be simply detected by subtracting
the normalized background image from an observed image.

To realize robust brightness normalization, we have designed a multi-layered
perceptron, by which the mapping between pixel brightness of the model back-
ground image and that of an observed image is established. To reflect the locality

IPSJ Transactions on Computer Vision and Applications Vol. 2 156–168 (Nov. 2010) c© 2010 Information Processing Society of Japan



160 Multiple Background Modelings

of the brightness distribution, the input vector of the perceptron consists of the
image coordinates (x, y) and the brightness value (R,G,B) of a pixel, and this
combination can handle the non-uniform illumination changes. The detailed pro-
cedure of the frame-level background modeling is as follows
Step1 Learning: the mapping between an input vector, (x, y,R,G,B), of a

pixel in a model background image and an output vector, (R′, G′, B′) of the
pixel at the same position in the observed image is learned. (x, y) is the
coordinates of the pixel and (R,G,B), (R′, G′, B′) are the color brightness
values of the pixels. To achieve on-line training, we have to also acquire
training data on-line, which is achieved in the integration process of the
background modelings. Details will be presented in the next section.

Step2 Normalization: the brightness of the model background image is normal-
ized using the perceptron learned in Step1, which means that the background
image corresponding to the observed image is estimated.

Step3 Object detection: subtraction of the normalized background image,
which is estimated in Step2, from the observed image gives us the object de-
tection result. That is, pixels which have large brightness difference (larger
than a given threshold, Tdet) are detected as foreground pixels, or object
pixels.

3. Combination of Multiple Background Modelings

Finally, we present our major contribution, i.e., integrated background mod-
eling, which is realized by integrating pixel-level, region-level and frame-level
background modelings. One of the important issues here is how to select training
samples for the frame-level background modeling, which should exclude wrong
samples as much as possible. In the preliminary experiments, we have found
that background pixels judged in the integration process (see Step3) contain lit-
tle false negatives (i.e., pixels which are, in reality, foregrounds), and the training
samples are selected from those pixels. The flowchart of the integration process
is shown in Fig. 3 and the detailed processing flow is as follows. Note that the
initialization process is achieved by using the first frame image.
Step1 Objects are detected based on the pixel-level background modeling.
Step2 Objects are detected based on the region-level background modeling.

Fig. 3 Flowchart of integration process.

Step3 Object detection results of Step1 and Step2 are combined. That is,
pixels which are judged as foregrounds by both of the above modelings are
judged as foregrounds and other pixels are judged as backgrounds. Then,
the parameters of the background models are modified. First, the PDF of
the pixel value of the input images, which is maintained in the pixel-level
background model, is updated. In addition, when a pixel is judged as a
background pixel here, the parameters of region-level background model are
modified.

Step4 When the brightness difference between the current frame and the previ-
ous frame is large at a certain number of pixels, we establish TTL (Time To
Live) to the frame-level background model, and TTL represents the duration
where the frame-level model is activated. By using TTL, we activate the
frame-level model only when the illumination condition suddenly changes.

Step5 If TTL > 0, objects are finally detected based on the frame-level back-
ground model and TTL is decreased. Otherwise, object detection result ac-
quired in Step3 is adopted. The frame-level background modeling is achieved
as follows:
(5-1) A model background image is generated so that each pixel has the
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most frequent pixel value in its PDF. The PDF is maintained in the
pixel-level background model.

(5-2) Training samples to adjust the model background image generated
in (5-1) are selected from pixels judged as background in Step3 (called
as background candidate pixels (BCPs)). In practice, at each frame,
100∼200 pixels out of BCPs are randomly sampled and used as training
samples.

(5-3) After the multi-layered perceptron is trained at each frame, referring
to the training samples acquired in (5-2), the model background image
is adjusted using the perceptron, and, the subtraction of the adjusted
model background image from the observed image becomes the final ob-
ject detection result.

As explained above, the pixel-level, region-level and frame-level background
model are integrated. Note that the frame-level background model is used only
when the illumination condition suddenly changes. This is because pixel-level
and region-level are adaptable to other illumination changes such as periodic
changes or gradual changes. Therefore, we selectively use the frame-level back-
ground model from the viewpoint of computational cost. On the other hand,
we detect the sudden illumination changes by independent process from pixel-
level and region-level background models. This is because whether or not sudden
illumination changes should be investigated by successive two frame images. Ac-
tually, the judgment of sudden illumination change is investigated by calculating
the brightness difference between the current frame and the previous frame. Fi-
nally, when sudden illumination change occurs, we acquire another foreground
mask, which means the final detection result just detected by frame-level model.

4. Experiment

To evaluate the performance of our method, we have used two outdoor scene
data sets of PETS (PETS2001) �1, which are often used in video-based surveil-
lance, and two indoor scene data sets publicly available for evaluation of ob-

�1 Benchmark data of International Workshop on Performance Evaluation of Tracking and
Surveillance. Available from http://ftp.pets.rdg.ac.uk/PETS2001/

ject detection �2. The outdoor scenes include people passing through streets,
tree leaves are flickering, and the weather conditions change rapidly. One of
the indoor scenes includes sharp pixel value changes caused by camera aperture
changes. Another includes sudden illumination changes caused by turning on/off
of the light. We have also used Wallflower data set 3) to compare our proposed
method with the Wallflower approach.

4.1 Preliminary Experiment
4.1.1 Region-level Background Modeling
First, we investigated the effectiveness of our Adaptive RRC (ARRC). Fig-

ure 4 comparatively shows the performance of ARRC where (a), (b) and (c) show
input images, the results without re-searching of peripheral pixels, and the ones
with re-searching, respectively. Tr, a threshold value to invoke the re-searching
process, is set to be 0.3. Another parameter α in Eq. (9) was set to be 0.05,
which is commonly used in the following experiments. The figure shows that
re-searching of peripheral pixels gives us better results. Green and red marks
in the input images show typical examples of peripheral pixels which are sought
again: green crosses are center pixels, red dots are their initial peripheral pixels,
and green dots are peripheral pixels which are found in the re-searching process.
When there is no red dot, peripheral pixels which are the same as the initial
ones are found again in the re-searching process. When there is no green dot, no
peripheral pixel is found in that direction.

In case that the re-searching process is not invoked, we find incorrect detections
in the window area of the upper left part of the images and around the PC in the
lower right part. In these cases, brightness difference between the center pixel
and its peripheral pixels becomes small when the illumination changes suddenly,
and it means that peripheral pixels whose magnitude relation to the center pixel
are not stable are selected. As a result, when the incremental codes of the input
image pixels are affected by noise, such background pixels can be incorrectly
detected as foregrounds.

On the other hand, when the re-searching is invoked, peripheral pixels whose

�2 Several kinds of test images and their ground truth is available from http://limu.ait.kyushu-
u.ac.jp/dataset/
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(a) Input image (b) RRC without
re-searching

(c) Improved RRC
with re-searching

Fig. 4 Effect of our improved RRC. Green and red marks in the input images show typical
examples of peripheral pixels which are sought again: green crosses are center pixels,
red dots are their initial peripheral pixels, and green dots are peripheral pixels which
are found in the re-searching process.

magnitude relation to the center pixel are not stable are abandoned, and new
peripheral pixels which correctly represent the local texture information are
searched for. Thus, ARRC with the re-searching process outperforms the one
without the re-searching process.

4.1.2 Frame-level Background Modeling
Secondly, we have evaluated the performance of background image estimation

in the frame-level modeling using test data, an example of which is shown in
Fig. 5: the left indicates an observed image, the center is the model background
image, and the right is hypothetic foreground-candidate regions which are man-
ually established for this experiment. In the observed images, there are non-
uniform illumination changes due to turning on/off of the light, and, referring to
pixels randomly sampled from background-candidate regions in the observed im-

Fig. 5 Experimental data for background estimation. The left indicates an observed image,
the center is the model background image, and the right is hypothetic foreground-
candidate regions which are manually established for this experiment.

Table 1 Result of background image estimation.

average error std. deviation

Fukui 15) 9.5 13.9
NN (R, G, B) 8.5 10.4

NN (X, Y, R, G, B) 5.4 9.3

age and their corresponding pixels in the model background image, an adjusted
background image is generated.

Here, we have examined three algorithms: an estimation method by Fukui, et
al. 15), a three layered perceptron which accepts pixel position as its input, and
one without the pixel position. Training data given to the algorithms consists of
input vectors (x, y,R,G,B) randomly sampled from the background-candidate
regions in the observed image and their corresponding output vectors (R′, G′, B′)
at the same pixel positions in the model background image. The number of the
samples here is 100. The perceptron consists of 5 nodes in the input layer (3
nodes when the pixel position is not referred to), 3 nodes in the output layer and
3 nodes in the middle layer.

Table 1 shows the accuracy of estimation, i.e., the error between the observed
image and the image estimated from the model background image. It indicates
that our method, the three layered perceptron accepting pixel position informa-
tion, is better than other methods. This is because, referring to the pixel position
information, our method can robustly estimate the background image under non-
uniform illumination changes. In other words, since the other methods do not
take into account the pixel position information, they can not deal with non-
uniform illumination changes. If the dynamic range of the model background
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image is rather small (i.e., the model background image is acquired in a dark
situation), the estimated one is not very accurate. In such cases, the input im-
age, which is brighter, should be compensated instead of the model background
image.

4.2 Experiment on the Integrated Background Modeling
In this experiment, we have used the following parameters:

Pixel-level The width of the rectangular kernel is 9 and the number of samples
is 500. See the paper 10) for the details.

Region-level Tp = 10, TB = 2.5, Tr = 0.3 and α = 0.05 in Section 2.2.
Frame-level When the number of pixels which have large difference value be-

tween the current frame and previous frame (we set the difference threshold
to be 10) exceeded the half number of total pixel, the frame-level background
model is used. Tdet = 30. The initial value of TTL is 60, which has been
decided according to the time-lag necessary for the pixel-level background
model to adjust for illumination changes.

4.2.1 Effect of Integration
At first, the characteristics of the pixel-level and the region-level background

modelings are compared with each other using an outdoor image sequence. The
image sequence contains rapid illumination changes due to weather condition
changes and swaying tree leaves, which can not be dealt with by simple back-
ground subtraction techniques. However, it does not include sudden illumination
changes such as the change of camera parameters, light switches. Hence, the
frame-level background model was not activated in the outdoor scenes. Fig-
ure 6 shows a typical experimental result, where the top row indicates some of
the input frames and where the bottom row indicates their processed results. In
this figure, each pixel is represented as follows:
• black: judged as “background” by the both of the pixel-level and the region-

level background modelings
• red: “background” by the pixel-level and “foreground” by the region-level
• green: “foreground” by the pixel-level and “background” by the region-level
• white: “foreground” by the both modelings
From these results, we can observe two important characteristics. First, red

pixels indicate that small fluctuation of the background due to swaying tree leaves

(a) Input image

(b) Detection result

Fig. 6 Detection results by the pixel-level and the region-level background modelings. In the
detection result, black pixels are judged as “background” by the both of the pixel-level
and the region-level background modelings. Red pixels are judged as “background”
by the pixel-level and “foreground” by the region-level. Green pixels are judged as
“foreground” by the pixel-level and “background” by the region-level. White pixels are
judged as “foreground” by the both modelings.

causes incorrect detection in the region-level modeling. This is because the mag-
nitude relation between the center pixel and its peripheral pixels has changed due
to the fluctuation of the background. Secondly, green pixels indicate that rapid
illumination changes cause incorrect detection in the pixel-level modeling. This
is because the pixel-level modeling statistically represents the pixel value distri-
bution based on the past pixel values, and because rapid illumination changes
which have not been observed previously can not represented in the current back-
ground model. Considering the above observations, we can summarize that the
pixel-level and the region-level modelings well complement each other, and that,
as in presented in Section 3, integrating the results of the both modelings by
intersection operation (i.e., white pixels in Fig. 6) gives us fairly accurate result.

The effect of the frame-level background modeling is shown in Fig. 7, where
illumination condition is suddenly changed due to the extinction of a light. It
is shown that the pixel-level background modeling causes a lot of incorrect de-
tections everywhere in the image. Combining the pixel-level and the region-level
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(a) Input image (b) Most probable
pixel values

(c) Estimated
background model

(d) Pixel-level
background modeling

(e) Pixel and
region-level modelings

(f) Integration of the
three modelings

Fig. 7 Effects of integration of different background modelings.

modelings provides a better result but there still remain a lot of incorrect detec-
tions because of the non-uniform illumination change. Finally, integrating the
three modelings, i.e., the pixel-level, the region-level and the frame-level model-
ings, provides the best result. It proves the effectiveness of the frame-level mod-
eling, which can compensate position-dependent sudden illumination changes.

4.2.2 Accuracy Evaluation
We have evaluated the accuracy of object detection in terms of precision and

recall, comparing the proposed method with adaptive Gaussian mixture model 9),
fast Parzen estimation 10), RRC 5) and spatial locality model 17). Table 2 shows
the result, and it is clearly shown that our proposed method outperforms the
other competitive methods based on pixel-level, region-level and their combina-
tion modeling. Fig. 8 shows their object detection example.

Considering the experimental results, we can see the following characteristics:
• The pixel-level background modeling (based on Parzen density estimation

and GMM) can adapt background changes in the outdoor scenes, but can
not handle the sudden illumination changes correctly in the indoor scenes.

• RRC can handle illumination changes, but it can not handle background

Table 2 Comparative results of object detection accuracy.

Outdoor 1 Outdoor 2 Indoor 1 Indoor 2

GMM 9) Recall 61.3 % 34.9 % 38.1 % 35.6 %
Precision 58.2 % 55.0 % 59.7 % 46.1 %

Parzen 10) Recall 56.3 % 46.8 % 43.0 % 37.8 %
Precision 51.6 % 72.8 % 42.0 % 58.5 %

RRC 5) Recall 37.5 % 24.8 % 35.3 % 26.9 %
Precision 22.4 % 20.7 % 51.2 % 24.9 %

Adaptive RRC Recall 50.0 % 46.6 % 47.1 % 69.7 %
(Section 2.2.2) Precision 65.0 % 46.1 % 83.1 % 75.8 %

Spatial Locality 17) Recall 71.6 % 60.2 % 62.6 % 52.1 %
Precision 72.6 % 55.6 % 74.4 % 60.0 %

Proposed method Recall 77.9 % 65.5 % 75.4 % 68.3 %
without frame-level model Precision 69.1 % 69.7 % 90.8 % 70.4 %

Proposed method
Recall 77.9 % 65.5 % 73.9 % 76.1 %

Precision 69.1 % 69.7 % 92.1 % 77.4 %

(a) Input images (b) Ground truth (c) Proposed

(d) GMM (e) RRC (f) Parzen

Fig. 8 Examples of object detection result.

changes such as changes due to moving clouds. This is because RRC employs
a fixed reference image �1, and texture information which does not appear in
the initial frame can not be handled correctly. Therefore, background pixels

�1 In this experiment, incremental codes for reference are generated from the initial frame.
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are incorrectly detected as foreground pixels. The adaptive RRC proposed in
this paper (Section 2.2.2) brings better results than the original RRC since
it can update the background model in response to background changes.

• Two combinational models bring better results than methods which use pixel-
level or region-level model only; one is the spatial locality model 17) and the
other is our proposed method without frame-level background model.

• Our proposed method can detect objects robustly against both of background

Table 3 Parameter ranges which affect the variation of precision and recall within 10%.

Outdoor 1 Indoor 2

Tp [5,15] [5,15]
TB [1.5,2.5] [2.5,3.5]
Tr [0.1,0.4] [0.1,0.4]

Tdet [20,40] [20,40]

Table 4 Performance evaluation using Wallflower dataset.

Moved
Object

Time of
Day

Light
Switch

Waving
Trees

Camou-
flage

Boot-
strap

Foreground
Aperture

Total
Errors

Frame
Difference

FN 0 1,165 2,479 3,509 9,900 1,881 3,884
FP 0 193 86 3,280 170 294 470 27,311

Mean +
Threshold

FN 0 873 1,116 17 194 415 2,210
FP 0 1,720 15,116 3,268 1,638 2,821 608 29,996

Mean +
Covariance

FN 0 949 1,857 3,110 4,101 2,215 3,464
FP 0 535 15,123 357 2,040 92 1,290 35,133

GMM
FN 0 1,008 1,633 1,323 398 1,874 2,442
FP 0 20 14,169 341 3,098 217 530 27,053

Block
Correlation

FN 0 1,030 883 3,323 6,103 2,638 1,172
FP 1,200 135 2,919 448 567 35 1,230 21,683

Temporal
Derivative

FN 0 1,151 752 2,483 1,965 2,428 2,049
FP 1,563 11,842 15,331 259 3,266 217 2,861 46,167

Bayesian
Decision

FN 0 1,018 2,380 629 1,538 2,143 2,511
FP 0 562 13,439 334 2,130 2,764 1,974 31,422

Eigen-
background

FN 0 879 962 1,027 350 304 2,441
FP 1,065 16 362 2,057 1,548 6,129 537 17,677

Linear
Prediction

FN 0 961 1,585 931 1,119 2,025 2,419
FP 0 25 1,3576 933 2,439 365 649 27,027

Wallflower
FN 0 961 947 877 229 2,025 320
FP 0 25 375 1,999 2,706 365 649 11,478

Proposed
Method

FN 0 1,349 1,681 198 177 1,235 2,085
FP 0 0 1,396 771 342 199 658 10,091

FN: False Negative, FP: False Positive

changes and illumination changes. Meanwhile, objects detected by our pro-
posed method tended to be shrunk by the integration process of pixel-level
and region-level background model. This is why some false negative pixels
still exist. In this study, we integrated two background models by calculating
the logical product, which is an immediate cause of false negatives. In ad-
dition, our proposed method detected not only object regions but also their
shadow regions. The shadow regions were responsible for increase in false
positive pixels. From the viewpoint of object detection, we are sure that the
object regions detected by our proposed method gives us enough information
for post-processing such as event detection, crowd analysis and so on.

• The integrated model brings better results than the single use of each model.
For example, the accuracy of our proposed method without frame-level back-
ground model is superior to a single model (i.e., Parzen or Adaptive RRC
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166 Multiple Background Modelings

in Table 2). In addition, we can see that frame-level background model en-
hances the robustness against illumination changes in the indoor scenes (see
the results of “our proposed method without frame-level background model”
and “our proposed method” in Table 2).

We have conducted some additional experiments using Outdoor scene 1 and
Indoor scene 2. We changed some parameters in each scene and investigated
how the parameters affected the recall and precision ratio. Table 3 shows the
parameters which affected the variation of precision and recall within 10%. We
can see that the parameter setting is not so severe and some ranges of each
parameter are allowed.

We have also evaluated our method using Wallflower dataset 3), in which im-
ages and their ground truth data for various background subtraction issues are
included. Table 4 shows the results, in which accuracy of the methods other
than ours is cited from the Wallflower paper. The column of total errors indi-
cates the summation of false positive and false negative pixels in each scene.
The total errors of our proposed method is fewer than the one of Wallflower.
Figure 9 illustratively shows some of the comparative results. Although these
results indicate that the performance of our method is almost the same as that
of Wallflower, our method requires no off-line training and it is much more useful
than Wallflower, which requires advance learning of background images. With
regard to the “Light Switch” scene, our method detected more false positives
than Wallflower. To reduce the number of false positive pixels, we will introduce
illumination likelihood model 18) in the future works.

4.2.3 Computational Cost Evaluation
Computational cost of the proposed method is evaluated using an image se-

quence shown in Fig. 7. For the evaluation of computational cost, we have used a
PC with an Intel Core2 3.16 GHz and 4.0 GB memory. Our source code was imple-
mented in C++. Figure 10 indicates its required computation time. Required
computation times of the pixel-level and the region-level background modelings
are about 40 msec and 15 msec, respectively, and they are relatively stable. On
the contrary, the frame-level background modeling is used only when the bright-
ness of the image suddenly changes, and, as a result, its computational cost is
nearly zero in most of the frames. However, when the frame-level background

Fig. 9 Illustrative comparison between the proposed method and Wallflower.

Fig. 10 Computation time of the proposed method.
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modeling is activated, its computation time becomes 50∼80 msec. It amounts
to almost the half of the total computation time, and varies depending on the
image frame due to the neural network learning. Thus, the computation time of
each frame largely varies depending on its data. From the viewpoint of real-time
processing, computation reduction of the frame-level background modeling and
stabilization of the computational cost are important future works.

5. Conclusion

In this paper, we have presented combinational background modeling and ro-
bust object detection based on this modeling. By integrating several background
modelings having different characteristics, we can establish more robust back-
ground model against variety of background and illumination changes.

Our future works are summarized as follows:
• Improvement of the estimation accuracy of background image

Background image estimation in Step5 of Section 3 should be more accu-
rate. Since this accuracy directly affects object detection result, the accurate
estimation is inevitable.

• Stabilization of computation time
Computation time required in the frame-level background modeling becomes
larger compared with other background modelings. This is partly because the
training of the perceptron is executed. In addition, the time varies depending
on input images. Therefore, to realize a practical online system, reduction
and stabilization of its computation time is quite important.
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