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The topic of this paper is wide area structure from motion. We first de-
scribe recent progress in obtaining large-scale 3D visual models from images.
Our approach consists of a multi-stage processing pipeline, which can process
a recorded video stream in real-time on standard PC hardware by leveraging
the computational power of the graphics processor. The output of this pipeline
is a detailed textured 3D model of the recorded area. The approach is demon-
strated on video data recorded in Chapel Hill containing more than a million
frames. While for these results GPS and inertial sensor data was used, we fur-
ther explore the possibility to extract the necessary information for consistent
3D mapping over larger areas from images only. In particular, we discuss our
recent work focusing on estimating the absolute scale of motion from images as
well as finding intersections where the camera path crosses itself to effectively
close loops in the mapping process. For this purpose we introduce viewpoint-
invariant patches (VIP) as a new 3D feature that we extract from 3D models
locally computed from the video sequence. These 3D features have important
advantages with respect to traditional 2D SIFT features such as much stronger
viewpoint-invariance, a relative pose hypothesis from a single match and a hier-
archical matching scheme naturally robust to repetitive structures. In addition,
we also briefly discuss some additional work related to absolute scale estimation
and multi-camera calibration.

1. Introduction

In recent years there has been a growing interest in obtaining realistic visual
representations of urban environments. This has mainly been driven by the need
to provide a visual and spatial context for information on the internet. While
currently most existing commercial products are limited to aerial views, such as
Google Earth and Virtual Earth/Bing Maps, or only provide 2D visualization,
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such as Google Street View, the most effective and flexible representation would
be a photo-realistic ground-level 3D model. Besides virtual exploration, this
would also support many more applications such as for example autonomous
navigation, visual localization and mobile augmented reality.

There are two main types of approaches being explored for capturing realistic
3D models of large-scale urban environments. One type uses LIDAR to cap-
ture the 3D geometry and images to capture the appearance, while the other
type of approach uses solely images to capture both 3D geometry and appear-
ance simultaneously. An early example of a LIDAR-based approach is the work
by Früh and Zakhor 16). The earliest examples for image-based 3D modeling of
urban scenes probably dates back about a hundred years to the origin of pho-
togrammetry. However, only in the last decade or two has automation made
it feasible to approach large scale ground-based modeling of urban scenes from
images. The early approaches for automated 3D modeling from images such as
the ones proposed by Tomasi and Kanade 57) and Pollefeys, et al. 40) were lim-
ited to modeling more or less what could be seen in a single image. Our more
recent approaches could model larger scenes that could not fully be seen from a
single view-point 41), but was much too slow to use for larger scale reconstruc-
tions as processing was in the order of a minute per frame. In this paper, we
will focus on our most recent approach 42), which leverages the computational
power of the graphics processing unit (GPU) to recover 3D models from urban
imagery at video-rate on a standard PC. The GPU is particularly well-suited
to achieve high performance for many image processing tasks such as tracking
or matching features 52),63),69),71) and stereo matching 65),67). Other approaches to
perform 3D reconstruction of urban scenes from images have recently been pro-
posed, but they mostly generate simplified models without a lot of detail, e.g.,
Refs. 9), 32), 64), or require human interaction 53). Another interesting approach
for obtaining visual 3D models leverages the emergence of community photo-
collections 1),30),54). Similarly spatio-temporal city models can be obtained from
archives collected over time 49). These approaches, however, are mostly limited
to landmark structures for which many photographs are available.

The simplest approach to obtain consistent maps over large scales is to use a
Global Positioning System (GPS), but this can be problematic for some appli-
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106 Challenges in Wide-area Structure-from-motion

cations such as mapping of indoor spaces, dense urban neighborhoods or other
areas where the GPS signals are weak or unavailable (GPS signals can be eas-
ily jammed). While structure-from-motion allows to obtain consistent local 3D
maps, over long distances errors in position, orientation and scale accumulate.
Therefore, an important challenge in large-scale reconstruction and mapping
consists of obtaining self-consistent maps. One of the most important steps to
achieve this is to close loops when the camera revisits the same location. Many
approaches have been proposed based on SIFT 31) and other invariant features.
Specific approaches have been proposed to efficiently match novel images to large
number of previously acquired images 10),15),24),38). However, these approaches all
rely on the ability to generate enough potential correspondences in the first place.
This can be a significant problem in scenarios where the viewing angle can be
very different when a place is revisited. Our approach introduced in Wu, et al. 61)

proposes to use the local geometric reconstruction to extract visual features on
the 3D surface instead of in the images (i.e., we extract features in ortho-rectified
patches). This provides viewpoint invariance and allows for direct estimation of a
3D similarity transformation from a single match, which enables robust matching
even with very few correct correspondences.

The remainder of the paper is organized as follows. In Section 2 we introduce
our video-rate urban 3D modeling pipeline. In Section 3 we present our approach
to loop-closing under widely varying viewpoints. Section 4 discusses additional
issues related to calibration of multi-camera systems and solutions to the problem
of absolute scale estimation from video. A discussion of open issues and the
conclusion are given in Section 5.

2. Real-time Urban 3D Modeling from Images

This section describes the different steps of our 3D modeling pipeline. The
input to our system consists of a video stream combined with a GPS and an
Inertial Navigation System (INS), although we are currently exploring how to
perform drift free large scale reconstruction without these additional sensors (see
Section 3 for more details). The output is a detailed dense textured 3D surface
reconstruction of the recorded urban scene. An example is shown in Fig. 1.

The example was recorded in Chapel Hill, NC. As our goal in this case was

Fig. 1 Urban 3D modeling from video: top view of 3D model of Chapel Hill, NC, and close-
up view of the model in two areas.

to reconstruct 3D models of the facades (as opposed to robot navigation for
example), our cameras were oriented to the side of the vehicle. For this example
the camera recorded 170,000 video frames at 30 Hz with a resolution of 1024×768.
This means that at 50 km/h an image is recorded approximately every 50 cm
along the path of the vehicle. The small baseline simplifies feature tracking for
motion estimation. It also ensures very high overlap between the images. The
high redundancy facilitates the use of simple multi-view stereo algorithms that
can be implemented very efficiently on the GPU. In Fig. 2 an overview of the
different stages of our video processing pipeline is given. While it is important
to perform processing at rates comparable to capture time, it is more effective
for this processing to happen off-line than on-board the vehicle. For efficiency
a separate input thread deals with reading the video data from disk. The first
computing module extracts features that are then tracked in subsequent frames.
To achieve a high performance, this step is performed on the GPU. Next, the
feature tracks are used in complement with the INS/GPS system to determine
the precise motion of the vehicle and to localize the cameras in world coordinates.
At the same time, the 3D location of the tracked features is recovered. This is
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107 Challenges in Wide-area Structure-from-motion

Fig. 2 Processing modules and data flow of our 3D reconstruction pipeline.

then used by the next module to obtain a range for the depth of the scene, as well
as to extract the dominant orientations of the facades. This information is used
to set up the dense multi-view stereo module. This step is followed by a robust
depth-map fusion processing, which computes consensus depth-maps by making
use of visibility constraints. Both of these steps are efficiently performed on the
GPU. Finally, the fused depth-maps are triangulated to obtain a 3D surface
mesh. Double representations are removed and a subset of the original images
are used as textures for the 3D model. The overall processing rate of our system
is 30 Hz on a single PC for one video stream as described above. The largest
fraction of time is spend in the stereo and fusion steps (about 30% each) which
are performed at half-resolution (512× 384), while the other steps are performed

on full-resolution images. The next sections are discussing the main processing
steps in more detail.

2.1 2D Feature Tracking and Motion Estimation
The first step to determine the motion between consecutive video frames is to

extract salient image features and track them from frame to frame. For this pur-
pose we use a variant of the well-known Kanade-Lukas-Tomasi (KLT) tracker 50).
To deal with a mix of sunlit and shadow regions, it is important to vary the ex-
posure during recording. In Ref. 27) we showed that a consistent global exposure
change for the image can efficiently be recovered jointly with the feature displace-
ment and that this performs better than brightness invariant approaches. Our
current pipeline uses a very fast KLT implementation, which tracks 1000 features
with more than 200 Hz in 1024×768 images 69). This implementation is available
in open-source 71).

The next step consists of determining the motion of the camera. As feature
tracks can drift and become erroneous, it is important to use robust techniques
for motion estimation. For this purpose we use the Random Sampling Consensus
(RANSAC) 11). As this is an essential algorithm for many computer vision sys-
tems, many improvements have been proposed. We have for example proposed
an approach to deal with quasi-degenerate cases such as scenes where most points
lie on a single plane 12) (as these violate some assumptions of the basic algorithm
and tend to confuse RANSAC into stopping too early). As hypotheses generated
by RANSAC are dependent on a minimal sample, they can often strongly be af-
fected by noise and not allow to directly identify all the inliers. We have recently
also proposed a RANSAC algorithm, which properly takes the measurement un-
certainties and the transformation uncertainties into account to early identify
additional potential inliers and gain up to an order of magnitude in efficiency 44).
In the current system, we use a RANSAC approach, which combines the benefits
of several previous approaches to minimize the amount of processing 43). Knowing
the internal calibration of the cameras used we deploy minimal solvers to esti-
mate the relative motion from five points 36) and perform pose estimation from
three points 22) as hypothesis generators for RANSAC. The initial triangulation
of feature points uses the optimal approach proposed in Ref. 23). Our approach
is similar to the visual odometry approach described in Ref. 37). However, this
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Fig. 3 Illustration of benefit of combining video and GPS/INS for motion estimation. The
central track of coordinate frames, which exhibits 10 cm vertical drift while the vehicle
stopped at a red traffic light, corresponds to the GPS/INS only motion estimation. The
coordinate frames in the front and back represent the results from combined GPS/INS
and video tracking.

approach only provides satisfying results over relatively short distances. To ob-
tain better results from video only, it is important to perform visual loop-closure
as will be discussed in Section 3.

For large scale reconstructions our current system uses a Kalman filter on the
2D feature tracks and the GPS/INS data to estimate geo-located camera poses
and 3D feature locations. In Fig. 3 the benefit of fusing the GPS/INS data with
the 2D feature tracks in a Kalman filter is illustrated. Even high-end GPS/INS
systems suffer from drift which are in particular disturbing when the vehicle
stops or moves slowly. In these cases vision allows to remove most of the error.
In addition, as a by-product of the motion estimation, we also obtain the 3D
location of the tracked salient scene features. This is very useful as it provides
us with a range of interest for the dense stereo matching. In addition, we extract
the dominant orthogonal facade orientations from the salient 3D feature points
to facilitate the generation of plane hypotheses aligned with building facades as
this improves the result of the stereo algorithm 17). The vertical facade direction
is obtained from the INS system or by detecting the corresponding vanishing
points. The feature points are projected on a horizontal plane. For each possible

Fig. 4 Top-view of 3D feature locations for two different orientations together with histograms
of x and y coordinates. The minimal histogram entropy configuration (shown on the
right) is selected.

orientation in the plane the histograms of x and y coordinates are computed and
the orientation for which these histograms have the lowest entropy is selected.
This process is illustrated in Fig. 4.

2.2 Fast Multi-view Stereo Matching
To obtain a detailed reconstruction of the surface geometry the sparse set

of points reconstructed previously is insufficient. For each video frame and its
temporal neighbors we perform multi-view stereo matching to compute the depth
for every pixel. Our approach is based on the GPU-friendly multi-view stereo
approach proposed in Refs. 65) and 67). For a reference video frame its neighbors
are identified and a collection of scene planes is hypothesized which samples the
depth range sufficiently densely to avoid disparity aliasing. For a particular plane
each neighboring image is now projected first on the plane and from there into the
reference image where its photo-consistency with respect to the reference image
is evaluated. This is done in a single image warping operation during which
the exposure change is also compensated. For each pixel the sum of absolute
differences is computed. In practice, this is done separately for the reference
image and the five previous images and for the reference image and the five
succeeding images to provide robustness to occlusions. The minimum of the
previous images costs and the succeeding images cost is kept. For each pixel
costs are aggregated over a correlation window and the plane with the lowest cost
is selected for each pixel independently. From this plane labels it is simple to
obtain the depth for each pixel. The same process is repeated for the next frame.
A rolling buffer is used to store the eleven frames currently used on the GPU
so that each time only one new frame needs to be transferred. More details on
this algorithm are provided in Refs. 26) and 42). For urban scenes with dominant
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Fig. 5 Multi-view stereo with multiple surface orientation hypotheses: original video frame
(left), depth map (middle), orientation map (right).

facade orientations, better results are obtained by using plane hypotheses aligned
with the facades. This approach is described in detail in Ref. 17). In this case
three sets of planes are hypothesized, two for orthogonal facade directions and one
parallel with the ground-plane (not necessarily horizontal in our implementation).
For each pixel one can now obtain a depth and a normal. This approach is
illustrated in Fig. 5. It can be seen from the figure that the orientations obtained
by this approach are largely correct. The depth results are also better as typically
the lowest cost is now achieved for the whole aggregation window consistently for
the correct depth and orientation. To help resolve the ambiguity in homogenous
regions, we add a prior, which is derived from the distribution of the sparse
feature points along the different axes as illustrated in Fig. 4. If needed, this
stereo algorithm can also be accelerated significantly by only considering the
planes with the highest prior likelihoods. Very recently, we have also explored
the possibility to explicitly detect extended planes across multiple images and
use these to improve the quality of the model 19).

One important issue with stereo is that the accuracy degrades quadratically
with depth. In many application though the goal is to recover a reconstruction
of the scene up to a pre-determined accuracy. In these cases fixed-baseline stereo
often has trouble reaching the required depth resolution in the far range of the
working volume, this often implies a prohibitive amount of computations are
performed in the near range. In Ref. 18) we proposed an approach to vary both
baseline and resolution used throughout the working volume. The discretization
of space for both the standard algorithm and our algorithm are shown in Fig. 6.
The amount of computations and accuracy are proportional to the density and
shape of the volume elements respectively.

Once a depth map has been computed for each video frame, it is important

Fig. 6 Discretization of space and results for standard stereo (left) and variable
baseline/resolution stereo (right).

Fig. 7 Visibility-based constraints for depth-map fusion.

to reconcile overlapping depth maps. This is performed with a robust visibility-
based depth map fusion approach. Different types of visibility-based conflicts are
shown in Fig. 7. On the left current hypothesis A conflicts with the point A′

obtained from view i and we say the free-space of A’ is violated. On the right
current hypothesis C would be occluded in the reference view by C ′ obtained
from view i. Our approach selects for each pixel the closest point along the
viewing ray which has at least as many occlusions as free space violations. The
approach can very efficiently be implemented on the GPU. More details on this
approach can be found in Ref. 34). Another very interesting depth-map fusion
approach, which minimizes the TV −L1 was recently proposed by Zach, et al. 68).
While stereo depth-maps were computed for every frame and had a lot of overlap
(every point on the surface is seen in 10–30 frames), fused depth-maps are only
computed for a subset of these frames. The goal is to maintain a factor of 2–3
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Fig. 8 Firestone evaluation: reconstructed 3D model (top-left), ground-truth 3D model (top-
right), color-coded accuracy evaluation (bottom-left) and color-coded completeness
evaluation (bottom-right). Blue indicates errors below 10 cm while red indicates er-
rors larger than 50 cm.

overlap so that regions of the scene that are occluded by foreground objects in
one view can be filled in from neighboring fused depth-maps.

2.3 3D Urban Modeling
Starting from the fused depth maps, a 3D mesh is obtained by overlaying

a triangular mesh on the image and projecting it into space according to the
depth. An efficient multi-resolution quad-tree algorithm is used to minimize the
number of triangles in the mesh 39). As consecutive fused depth-maps still have
a significant amount of overlap, we remove double representations in a post-
processing step by projecting previously reconstructed surfaces in the current
view and verifying depth consistency. Only previously not reconstructed surfaces
are then reconstructed. This strategy allows to fill in holes in the reconstruction
initially left behind columns for example.

To evaluate the quality of our results, our 3D reconstruction results were com-
pared to a ground-truth model obtained through a professional survey. The
results of this comparison are shown in Fig. 8. The accuracy was evaluated by
determining the closest point on the ground-truth model for each of the vertices in
our model. Completeness is determined similarly by determining if for every ver-
tex of a regular sampled ground-truth model there is a point on our model within
some pre-determined distance (30 cm in our case). The median and mean error
for our approach on this data set are 2–3 cm and 5–6 cm respectively, depending

Fig. 9 Map of Chapel Hill, NC, with vehicle path overlaid (left) and top view of recovered
reconstruction (right).

Fig. 10 Top view of segment of the Chapel Hill reconstruction with two views of facades.

on the settings, and the completeness varies from 66–73%. The relatively low
completeness is mostly due to unobserved surfaces and saturated white regions
for which no surface was reconstructed.

The complete 3D urban modeling pipeline can process incoming 1024 × 768
video streams collected at 30 frames per second in real-time on a single PC (with
stereo and depth-map fusion being run at half-resolution). This was for example
done for a 1.3 million frame data set captured in Chapel Hill. In Fig. 9 the path
of the vehicle is shown on the map and a top view of the complete reconstruction
is shown. An alternative simplified fusion and reconstruction approach has very
recently been proposed in Ref. 20). In Fig. 10 a top view of a one reconstruction
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segment is shown, as well as facade views of two buildings from that segment.

3. Visual Loop-closing

3D models that are created sequentially from input images are always subject
to drift. Each small inaccuracy in motion estimation will propagate forward and
the absolute positions and motions will be inaccurate. It is therefore necessary
to do a global optimization step afterwards to remove the drift. This makes
constraints necessary that are capable to remove drift. Such constraints can
come from global pose measurements like GPS (as currently used in the system
as described in the previous section), but in case these are not available (e.g.,
indoors, GPS denied areas or urban canyons) internal consistency constraints like
loops and intersections of the camera path can be used, e.g., Ref. 45). In this
section we will therefore discuss solutions to the challenging task of detecting
loops and intersections and using them for global optimization.

3.1 Loop Detection Using Visual Words
To correct the encountered disturbance through the drift in the absence of GPS,

we need to detect when the camera intersects its previous path. Registering the
camera with respect to the previously estimated path provides an estimate of the
accumulated drift error. For robustness the path self-intersection itself can only
rely on the views itself and not on the estimated camera motion, which drifts
unbounded. This visual loop detection and can also be phrased as a location
recognition problem 46).

Our location recognition system determines the path intersection by using
salient image features and evaluating their similarity to the previously observed
salient features in all views. The system deploys the SIFT- 31) or if local ge-
ometry is available our view invariant VIP-features 61) (see next section). The
local geometry is typically provided through the estimation processes described
in Section 2.2. For the fast computation of SIFT features, we make use of SIFT-
GPU 63), which can for example extract SIFT features at ∼ 10 Hz from 1024×768
images.

To find corresponding previous views, we would need to test the current view
for overlap to all previous views. Typically the overview would be determined
through a matching of the salient features in the two views. Given that it is

computationally prohibitive to compute the similarity of salient features in the
current view to all features in all previously observed views we use the vocabulary
tree 38) to find a small set of potentially corresponding views. The vocabulary
tree provides a computationally efficient indexing for the set of previous views. It
quantizes a high-dimensional feature vector (SIFT or VIP) by means of hierarchi-
cal k-means clustering. An alternative consist of using Ref. 60). The quantization
assigns a single integer value, called a visual word (VW), to the originally high-
dimensional feature vector. This results in a very compact image representation,
where each location is represented by a list of visual words, each only of integer
size. The list of visual words from one location forms a document vector, which is
a v-dimensional vector where v is the number of possible visual words (a typical
choice would be v = 106). The document vector is a weighted histogram of vi-
sual words normalized to 1 (more precisely, the term frequency inverse document
frequency is used). To compute the similarity matrix the L2 distance between all
document vectors is calculated. The document vectors are naturally very sparse
and the organization of the database as an inverted file structure makes this very
efficient.

Determining the visual words for the features extracted from the query image
requires traversal of the vocabulary tree for each extracted feature in the current
view including a number of comparisons for the query feature with the node de-
scriptors. Hereby the features from the query image are handled independently,
hence the tree traversal can be performed in parallel for each feature. To op-
timize performance we employ an in-house CUDA-based approach executed on
the GPU for faster determination of the respective visual words. The speed-up
induced by the GPU is about 20 on a GeForce GTX280 versus an CPU im-
plementation executed on an Intel Pentium D 3.2 Ghz. This allows to perform
more descriptor comparisons than in Ref. 38), i.e., a deeper tree with a smaller
branching factor can be replaced by a shallower tree with a significantly higher
number of branches. As pointed out in Ref. 48), a broader tree yields to a more
uniform, hence representative sampling of the high-dimensional descriptor space.
An alternative for optimization consists of using kd-trees which are cheaper to
compute at the cost of a more restricted partitioning of space (i.e., axis-aligned).

Since the vocabulary tree only delivers a list of previous views potentially over-
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Fig. 11 Camera positions and triangulated features after loop closing (red). Initial estimates
are shown in blue and black. The loop is nicely closed.

lapping with the current view we perform a geometric verification of the delivered
result. First we exhaustively compare the features of the search frame with the
features in the candidate frame to find highly correlating pairs of features. For
efficiency reasons we implemented this as a dense matrix multiplication on the
GPU. Afterwards the potential correspondences are tested for a valid two-view
relationship between the views through our efficient RANSAC approach 43). In
case scenes contain repeated structures, it might be necessary to use a more
advanced verification scheme which verifies global consistency 70).

To increase the performance of the above described location search we use
our recently proposed index compression method 24). This allows us to perform
the search with approximately 10 Hz and typically success rates of more than
70%. The approach uses the initial redundancy of the feature representation in
the standard vocabulary approach that stores a representation for each feature in
each image. Instead we use the information from the structure from motion (Sec-
tion 2.1), which links the salient features belonging to the same 3D scene point.
We perform a mean-shift clustering 8) on all observed SIFT or VIP descriptors
of the 3D scene point and store only the cluster centers in the vocabulary tree.
This effectively increases the signal to noise ratio of the search. Additionally
we introduce summarization views for the scene in stead of indexing all original
views, which reduces the size of the index.

Figure 11 shows the effect of loop closing on a 400 m long trajectory of a

Fig. 12 Reconstruction of part of San Marco square in Venice from a community photo
collection with 10338 cameras.

vehicle equipped with a camera. The path in blue is from the initial camera poses
from structure-from-motion. Loop closing is performed using bundle adjustment
and the result is the red trajectory in Fig. 11, which shows that the loop is
nicely closed. For this experiment bundle adjustment 58) was used to optimize
the camera positions and the 3D features. The detected loops were added as
constraints to the bundle adjustment optimization. We provide open source code
for sparse bundle adjustment 71).

Our approach can also be used to perform efficient large-scale reconstruction
from community photo collection 30). An example of such a reconstruction is
shown in Fig. 12.

3.2 Viewpoint Invariant Patches (VIP) for Loop Closing and 3D
Model Registration

Almost all existing approaches attempt to close loops by matching 2D image
features only 10),46). However, in most applications scenarios for loop closure and
localization images are not recorded in isolation. Indeed, a robot navigating
through an environment typically collects videos. This imagery is often sufficient
to build a local 3D model at each pass using structure from motion and dense
stereo matching techniques as explained earlier in this paper. Therefore, we
propose to leverage local 3D scene geometry to achieve viewpoint invariance. For
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this purpose we have introduced Viewpoint Invariant Patches (VIP) in Ref. 61).
VIP’s are textured 3D patches extracted from the local textured 3D model in a
viewpoint invariant way. Conceptually, our goal is to extract features directly
on the surface, in stead of in the images. In urban areas with many planar
regions, this can be done efficiently by generating an ortho-texture for each planar
surface and then extract features from those texture maps. As the ambiguity
for a 3D model extracted from images is a 3D similarity transformation (i.e.,
scale, orientation and location), for features on a 2D plane embedded in the
3D world, 2D similarity invariance is sufficient to deal with viewpoint changes.
Therefore, extracting SIFT features (which are designed to be invariant to 2D
similarities) from the ortho-textures provides us full viewpoint invariance (up
to view-dependent effects due to non-Lambertian surface reflectance and non-
planar details). In addition, a single VIP correspondence is sufficient to uniquely
determine a full 3D similarity (scale is obtained from the scale of the feature,
orientation from the patch normal and the dominant texture gradient in the
patch, location from the keypoint at the center of the patch). The VIP concept
is illustrate in Fig. 13.

The viewpoint invariance of the VIP features makes them a perfect choice to be
used for 3D model registration or loop closing. In the case of 3D model registra-
tion we seek a similarity transformation between two overlapping 3D models. For
this, VIP features are extracted from each model and subsequently matched. It
should be noticed that the relative scale between all matching features extracted
from two separate models should be the same. Similarly, the relative rotation be-
tween models should also be constant for all patches. Therefore, these can be ver-
ified independently. This allows a very effective Hierarchical Efficient Hypothesis
Testing (HEHT) scheme. We first verify relative scale by finding the dominant
scale and remove all potential feature matches with inconsistent scales. Next, we
find the dominant rotation and eliminate outliers and finally we verify inliers for
the dominant translation. It turns out that is approach is particularly effective
on urban scenes with many repeating structures and only few good matches sup-
porting the correct hypothesis. The reason is that repeated structures generally
support the right scale and ——for structures repeating on the same or parallel
planes—— also the right orientation. For the example shown in Fig. 14 (left),

Fig. 13 While SIFT features are extracted from 2D images and are not fully invariant to
viewpoint (left), VIP features are extracted on the 3D surface which provide viewpoint
invariance and enables single match hypotheses (right).

there were 2,085 potential VIP matches, 1,224 scale inliers, 654 rotation and scale
inliers and 214 true inliers. For the example shown on the right of Fig. 14 there
were 494 potential VIP matches, 141 scale inliers, 42 rotation and scale inliers
and 38 true inliers. For this last example alternative 2D registration approaches
failed to return any valid solution. The viewpoint invariance allows the detection
of loops with much more significant viewpoint changes. The hierarchical match-
ing enables robustness to repetitive structures and very high levels of outliers
(> 90%). It was recently shown that this scheme can also be very effective for
location recognition from stereo images in the context of robotics 13).
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Fig. 14 3D registration of 2 3D models with 45◦ viewing direction change using VIP
features.

4. Additional Calibration and Motion Estimation Issues

To be able to fuse the models of the different cameras of our capture system into
one coherent 3D model we need to determine a common coordinate system for
the reconstructions of each individual camera. In the case of known GPS tracking
this can be solved by calibrating all cameras internally and registering them into
a common coordinate system for which relative scale to the world coordinate
system is known, as well as translation and orientation difference to the world
coordinate system. In Section 4.1 we provide more detail about the method for
internal calibration and external calibration of all cameras into a single common
coordinate system. Even with a calibrated (multi-)camera system it is often not
straight-forward to determine the scale of the vehicle motion. In Section 4.2 we
discuss several approaches to obtain the absolute scale of motion from cameras
mounted on a vehicles.

4.1 Mirror-based Calibration of Non-overlapping Cameras
For many mapping and robotics applications a wide field of view (FOV) is

required of the cameras system. This can be achieved using omnidirectional
sensors such as cata-dioptric or fish-eye lenses, or by using camera clusters. In
both cases calibration poses specific challenges. In Refs. 55) and 56) we have
proposed a simple self-calibration approach for rotating omnidirectional cameras
based on multi-view geometry. When high resolution and high frame rates are
desired, camera clusters can be a better choice. To obtain the external calibration
for the different cameras of the capture system traditional calibration pattern

Fig. 15 The calibration setup for a six camera head is shown on the left. On the right a set
of example calibration frames as observed by the cameras are provided.

based methods 59),72) can not be used due to the fact that the fields of view of
the cameras have no overlap. To establish an external calibration of all camera
into a single coordinate system we deploy our recently proposed technique for the
calibration of non-overlapping cameras using a mirror and a standard calibration
pattern 29). Our technique places one calibration pattern in a fixed position to
define the reference coordinate frame for the external calibration of the system
(see Fig. 15). This pattern is typically not seen by any of the cameras or only
a very few cameras. Then we use a planar front surface mirror to enable each
camera to observe the calibration pattern under multiple mirror positions. Since
for the internal calibration of the cameras the mirroring of the cameras does not
have any influence we can use any standard technique 59),72) for pattern based
internal calibration directly.

A byproduct of these standard calibration methods is the camera position for
each frame captured that shows the pattern reflected by the mirror. Given that
the camera frame shows the reflected pattern the reconstructed camera pose for
each frame is also the reflected camera pose. This set of reflected camera poses
describes a three-dimensional family of camera poses corresponding to the three
degrees of freedom for the mirror position, which are the two off-mirror plane
rotations and the translation along the mirror normal. Since the mirror positions
are unknown from the frames captured for the calibration the camera position in
the pattern coordinate system can not be computed through inverse reflection.
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We showed that in fact the observed three dimensional family of mirrored camera
poses determines the real cameras position and orientation uniquely without
requiring known mirror positions 29) from as few as two images (five when using
only linear equations). The calibration accuracy obtained through this method
are comparable to the precision obtained from standard calibration methods like
Refs. 59) and 72). One could also imagine a self-calibration approach based on
the shared motion (up to the relative pose) of the different cameras in the cluster.
This idea was explored for rotated cameras 3) and for orthographic cameras 2), but
more work is needed for an approach that works well in the general case. In the
next section we discuss how to obtain the true world scale even in the absence of
GPS measurements.

4.2 Absolute Scale Estimation of Motion
The standard way to get the absolute scale in motion estimation is the use

of a stereo setup with a known baseline, e.g., Refs. 7) and 37). The fields of
views of the two cameras need sufficient overlap and motion estimation is done by
triangulating feature points, tracking them, and estimating new poses from them.
In Refs. 4) and 25) we developed algorithms that could compute the absolute scale
of motion even without overlap between the two cameras. From independently
tracked features in both cameras and with known baseline, full 6DOF motion can
be estimated. Another approach 6) makes use of a minimally overlapping stereo
pair, which maximizes the field of view of the combined system but leaves some
minimal overlap to help compute the absolute scale.

For the case of interest in this paper, where the camera is mounted on a wheeled
vehicle, we demonstrated recently that it is even possible to compute the absolute
scale of the motion from a single camera only 47) (for the planar motion case).
This is possible due to the non-holonomicity of a wheeled vehicle. A wheeled
vehicle (e.g., car, bike, etc.) that is constructed to follow the Ackermann steering
principle will undergo locally circular motion 21). In particular, any point on
the vertical plane containing the fixed rear axle performs a circular motion, the
others will not. A camera, that is not located at the rear axle, will undergo a
planar motion, different than that of the circular motion of the car coordinate
center. From this camera motion and a measurement of the offset from the rear
axle (in meters) the absolute scale of the camera motion can be computed. This

Fig. 16 Absolute scale results on a 3 km camera path. The blue circles show spots where the
absolute scale was computed. To achieve accurate measurements the absolute scale
is only estimated at specific spots where circular vehicle motion is ensured and the
turning angle is high.

makes it possible to upgrade an up-to-scale motion estimate for the camera to
an absolutely scaled motion. The absolute scale can be estimated at multiple
location throughout the vehicle’s path. From these points, the absolute scale
can be propagated through structure from motion. Figure 16 shows results of
the absolute scale estimation on a 3 km long camera path. To achieve accurate
measurements the absolute scale is only estimated at specific spots where circular
vehicle motion is ensured and the turning angle is sufficiently high. It is also
important to take measures to successfully propagate scale information in bundle
adjustment 14).

5. Discussion and Conclusion

In this paper we have discussed a video-rate processing pipeline for large-
scale scene reconstruction from ground reconnaissance video. To obtain the
high performance reconstructions the system deploys the graphics processing
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unit throughout the different computation steps of the reconstruction pipeline.
The current system relies on GPS for consist modeling of large areas, but we dis-
cussed progress on loop-closing and other techniques to enable consistent large
scale reconstruction. In particular, the VIP features presented in this paper were
shown to be very effective for closing loops in challenging circumstances. Also,
depending on the camera configuration, different methods exist to recover and
maintain the correct absolute scale of the motion. However, while many of the
subproblems now have solutions, many challenges remain to develop an auto-
matic system for wide area reconstruction that does not rely on GPS. Solving
this will be important for example to allow the deployment of robots that can
operate fully autonomously in large buildings with vision as their main sensor.
The techniques discussed here are also important for other applications such as
image-based localization. The possibility to determine the location from an im-
age for example is very important to enable advanced location-based services
for mobile phones. Although the hardware for our current real-time system is
only a single PC, future applications would greatly benefit from the possibility to
perform localization and mapping functions on smaller and more energy efficient
embedded platforms. We are currently investigating the possibility of performing
visual SLAM on very small embedded platforms to support autonomous naviga-
tion of micro-aerial vehicles. Other related projects we are currently pursuing
are image-based localization for mobile phones and visual SLAM for humanoid
robots. Notice that for autonomous robot navigation, besides performing tradi-
tional visual SLAM with sparse features, we would also aim to recover a dense
surface model and free space from images.
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