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Fourth-order nonlinear diffusion denoising filters are providing a good com-
bination of the noise smoothing and the edge preservation without creating the
staircase artifacts on the filtered image. However, finding an optimal choice
of model parameters (i.e. the threshold value in a diffusivity function and a
time step-size for stability of the numerical solver) is a challenging problem and
generally, these model parameters are image-content dependent. In this paper,
a fourth-order diffusion filter is proposed in which the diffusivity function is a
function of modulus of the gradient of the image. It is shown that this set-
ting for the diffusivity function can lead to a robust and fast convergent filter
in which the model parameters are reduced to the only threshold value in the
diffusivity function that can be estimated. A data-independent time step-size
has been analytically found to guarantee the convergence of numerical solver
of the proposed filter. Although this time step-size is smaller than the ones
typically used, it is shown that the numerical solver of the proposed filter can
provide a significantly fast convergence rate compared to the classical filter due
to an improvement of the image selective smoothing obtained by the diffusivity
function of the proposed filter. Simulation results demonstrate that the quality
of denoised images obtained by the proposed filter are noticeably higher than
the ones from the existing filters.

1. Introduction

In the last two decades, the use of partial differential equations (PDEs)-based
filters in image processing has significantly increased. This paper mainly focuses
on the class of PDE-based filter known as nonlinear/anisotropic diffusion filters.
The first kind of these filters is introduced by Perona and Malik 1) in 1990 in
which the denoised image is the solution of a nonlinear second-order PDE. Since
then, a great deal of research in this field has led to the introduction of a variety

†1 Faculty of Engineering and Computer Science, Department of Electrical Engineering,
Concordia University, Montreal, Canada

of nonlinear diffusion filters (see Refs. 2) and 3) as a few examples). Although the
method proposed by Perona and Malik and its variants are known as good edge
preservation denoising filters, they tend to produce blocky effects in the images 4),
since only a piecewise constant image can be the solution of the associated PDE.

An effective solution to this problem has been introduced by You and Kaveh 4)

in which a fourth-order PDE is used for image noise removal. Because this filter
supports a planar approximation of the image in the solution of the PDE, a sig-
nificant improvement in the ramp edge preservation and a dramatic reduction of
blocky effects are achieved by using this fourth-order diffusion scheme. However,
from practical stand view, using the fourth-order nonlinear diffusion filter for
noise removal comes with the following difficulties:
( 1 ) Finding the optimal choice for model parameters (i.e., the threshold value

in the diffusivity function and the time step-size in the numerical solver of
this filter) is very difficult and they are mainly image-content dependent.
Thus, fourth-order filters including the recently developed ones 5)–7) are
mainly known as manual or man-operated noise removal techniques.

( 2 ) The optimal choice of parameters are usually led to a very slow convergence
rate for these filters as it has been reported in Refs. 4) and 5).

In fact, the Fourth-order diffusion filter dampens high spatial frequency com-
ponents (i.e. noise and step edges) much faster than the second-order diffusion 5).
This feature can potentially result in the edge distortion during the evolutionary
process of the image denoising especially when the smoothing strength of the
filter for the detected edges is not effectively reduced by a diffusivity function.
The diffusivity function of the fourth-order diffusion filters is a function of the
absolute value of Laplacian of the evolved image and it is more sensitive to the
noise compared to the diffusivity function of the second-order nonlinear diffusion
filters, which is a function of the modulus of the gradient of the evolved image.
Thus, the well-established techniques for estimation of the model parameters in
second-order nonlinear diffusion filters are not directly applicable in the fourth-
order filters. On the other hand, due to a severe nonlinearity of the fourth-order
dynamic flow, finding the optimal time step-size in the numerical solver of these
filters is very difficult and it is usually obtained after a long tail of try and error.

In this paper, a self-governing fourth-order nonlinear diffusion filter is proposed
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in which the model parameters are reduced to only one parameter (i.e., the
threshold value in the diffusivity function) that can be estimated. The diffusivity
function of the proposed filter is a function of the modulus of the gradient of the
evolved image, thus it provides the possibility of adoption of a well-established
estimation mechanism for the threshold value after a necessary adjustment. Due
to a good control of the strength of the diffusion of the filter on edges and smooth
regions of the image, it is shown that the time step-size in the numerical solver
can be set to a data-independent one, which is smaller than the optimal one and
yet the proposed filter provides a fast convergence rate comparing to that of the
classical filter.

This paper is organized as the following: In Section 2, a brief review of the
nonlinear diffusion filters and their transition from second-order to fourth-order
is described. In the next section, the proposed filter is presented through sub-
sections. First, the associated PDE of the proposed filter is introduced and it
has been shown that the filter still can support the planar approximation of the
image. In the next subsection, the estimation of the threshold value in the diffu-
sivity is discussed and finally in the last subsection, the data-independent time
step-size for the numerical solver is analytically derived. Section 4 is devoted
to comparative results. In this section, the performance of the proposed filter
is compared with those of the classical and recently developed filters, where it
has been shown that the proposed method can outperform the other fourth-order
filters in terms of the quality of the denoised images and the convergence rate of
the filters. Finally, Section 5 concludes the paper by highlighting the significance
of the proposed filter.

2. A Brief Review

The basic diffusion equation of Perona and Malik 1) for a two dimensional image
intensity function of u in Cartesian coordinate of x and y is given by

∂u/∂t = div. (c (||∇u||)∇u) , (1)
where c(.) is the diffusivity function by which the diffusion coefficient is cal-
culated and t is time. Symbols of div. and ||.|| are used for the mathematical
notations of divergence and Euclidean norm (||∇u|| =

√
u2

x + u2
y) respectively.

The diffusivity function is a positive and non-increasing function of ||∇u||. One
of these diffusivity functions defined by Perona and Malik is given by

c (|∇u|) = k2/
(
k2 + ||∇u||2) , (2)

where k is the so-called contrast parameter. There are some effective automatic
mechanisms for estimation of the contrast parameter such as the schemes intro-
duced in Refs. 1) and 3).

You and his colleagues 8) carried out a detailed analysis to show that the so-
lution of (1) is equal to minimization of an energy functional. If the diffusivity
function of (2) is used then the energy functional is

R (u) =
∫

Ω

k2

2
ln

(
k2 + ||∇u||2) dxdy , (3)

where Ω is the region of support of u. R (u) is minimized when ||∇u||2 is mini-
mum, which leads to a piecewise constant approximation of u. Therefore, forma-
tion of staircase artifacts on the ramp edges is unavoidable. In order to resolve
this problem, You et al. 4) introduced a fourth-order PDE-based denoising method
in which the denoised image is obtained by minimization of the potential function
given by

E (u) =
∫

Ω

f
(|∇2u|) dxdy , (4)

where f ′ (s) = sc (s). Using the same diffusivity function of (2), the potential
function of E(u) can be written as

E (u) =
∫

Ω

k2

2
ln

(
k2 + |∇2u|) dxdy , (5)

meaning that E(u) is minimized when |∇2u| is minimum. Therefore, the ramp
regions of u (i.e., the regions where |∇2u| = 0) are fitted in the solution of the
associated fourth-order PDE. The solution of the minimization problem of (4)
after using Euler equation followed by gradient descent procedure is given by

∂u/∂t = −∇2
(
c
(|∇2u|)∇2u

)
. (6)

By the forward Euler approximation of the ∂u/∂t, the numerical solver of (6) is
given by
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un+1 = un − dt ×∇2
(
c
(|∇2un|)∇2un

)
,

u0 = u0 and n = 0, 1, · · · , N , (7)

where n is the number of iterations, dt is a time step-size and u0 is a noisy
image used as an initial condition. This process is an iterative process. In order
to protect the edges from over-smoothing, the process needs to be stopped at a
certain number of iterations denoted by N .

Apart from a significant advancement in reduction of blocky effects on the
denoised image using Eq. (6), the optimal parameter setting for its numerical
solver in Eq. (7) leads to a very slow convergence rate especially, when the level
of contaminating noise is moderately high. A recently developed technique known
as a hybrid model of fourth-order PDE 6) addresses this problem and by using a
relaxed median filter 9) tends to improve the quality of the denoised image, when
the image is highly noisy. The numerical model of this filter is given by

un+1 = RMαω

(
un − dt ×∇2

(
c
(|∇2un|)∇2un

))
, (8)

where RM denotes the relaxed median filter with a lower bound of α and upper
bound of ω. This filtering process needs a lower number of iterations to give an
estimation of the denoised image. However, the quality of the denoised image by
Eq. (8) is dramatically low, as it is shown in Section 4.

The important point is that both of these techniques are still suffering from
a lack of model parameter estimation mechanisms particularly for the contrast
parameter, k, and the time step-size, dt. As mentioned earlier, the performance
of these filters strongly depends on the selection of these parameters and unfor-
tunately, the optimal parameters selection is image-content-dependent.

Besides these nonlinear diffusion filters, another class of PDE-based filters
known as regularization techniques has been widely used for image restoration.
The classical paper of Rudin, Osher and Fatemi 10) introduces a nonlinear filter
of this kind in which the PDE to be solved is of the second-order. Therefore, the
same problem of formation of staircases on the ramp regions of the image moti-
vates the researchers to introduce the new regularization techniques by solving
the higher order PDE such as the ones in Refs. 11) and 12).

However, the focus of this paper is on the fourth-order diffusion based tech-

niques as they have been reviewed earlier. In the following section, a new filtering
scheme is introduced in which the challenge of model parameter settings is ad-
dressed and a robust solution to this problem is given.

3. The Proposed Filter

3.1 The Associated PDE
The ability of edge preservation in the fourth order PDE-based denoising

method strongly depends on the extent by which the diffusivity function, c(.),
can detect the edges and reduce the strength of the smoothness of the filter for
these detected edges. However, when the diffusivity function is a function of
the absolute value of the Laplacian of the image, the probability of a false edge-
detection by the diffusivity function is significantly higher comparing to the case
that the diffusivity function is a function of the modulus of the gradient. In fact,
as much as the order of the derivative of the image is higher, the sensitivity to
the noise is higher 13). Therefore, the new PDE for denoising is introduced in the
form of

∂u/∂t = −∇2
(
c (||∇u||)∇2u

)
, (9)

in which the diffusivity function is a function of the gradient modulus of the
evolved image (unlike Eq. (6) where the diffusivity is a function of |∇2u|). Similar
to Eq. (7), the numerical solver of Eq. (9) is given by

un+1 = un − dt ×∇2
(
c (||∇un||)∇2un

)
,

u0 = u0 and n = 0, 1, · · · , N . (10)

As the results in the next section show, this simple change can lead to a sub-
stantial improvement in the quality of the denoised image and the convergence
rate of the filter. The most important feature that needs to be guaranteed by the
proposed filter is its ability to support the planar approximation of the evolved
image. Unlike the You and Kaveh filter that has a closed form potential function
of Eq. (5) by which the planar approximation of the u could be shown, for the
proposed filter this feature can be shown by looking at its associated PDE. In
fact, solution of the Eq. (9) or Eq. (6) in the steady state means that ∂u/∂t → 0.
For a ramp region of the image, ∂u/∂t = 0, because ∇2u = 0. Therefore, the
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Fig. 1 Comparing the result of the proposed filter with the result obtained by Perona Malik
filter in term of formation of artifacts. Fig. 1-(a) is the original image, Fig. 1-(b) is
the result of Perona-Malik filter (t=150 ) and Fig. 1-(c) is the result obtained by the
proposed filter (t=150 ).

dynamic flow of the Eqs. (9) and (6) on the ramp region of the image is reach-
ing to the steady state regardless of their diffusivity function and the diffusion
coefficient calculated by it. Based on this argument, one can conclude that the
planar approximation of the intensity function of u can be supported by the pro-
posed filter. The results demonstrated in Fig. 1 give a comparison between the
performance of the proposed filter and Perona and Malik filter, where the signal
shown in Fig. 1-(a) is been filtered for t=150s. The diffusivity function for the
proposed filter and Perona and Malik filter is chosen to be Eq. (2). While the
result obtained by Perona and Malik filter shown in Fig. 1-(b) apparently suffers
from the formation of the blocky effect, the results of the proposed method in
Fig. 1-(c) does not exhibit any sign of the formation of staircase artifacts.

However, the main advantage of the proposed filter compared to the You and
Kaveh is in its ability of running in an unsupervised fashion. In the following
subsections, this aspect is explored in details.

3.2 Estimation of The k Parameter
When the diffusivity function in the proposed method is a function of ||∇u||, the

optimal threshold value, k, in c(.), is proportionally related to the noise level 14)

and can be estimated by Canny noise-estimation technique 15) as the following:
A histogram of the magnitude values of the gradient throughout the image is

computed and k is set to the χ% value of its integral at each iteration.
This way of estimation of the k has been suggested by Perona and Malik and

followed by many other researchers in the domain of the second-order diffusion
filters as a reliable scheme, where the value of χ is set in the range of [80, 90].

Fig. 2 The test image of cameraman and its degraded one. The degradation model is
additive white Gaussian noise (AWGN) with standard deviation (SD) of 15.

The amount of the reduction of the diffusivity on the edges and the strength of
the smoothness obtained by the second-order diffusion filter are matched up so
that the process of the edge distortion is reduced dramatically before the noise is
removed. However, when it is used for the proposed diffusion filter, it will result
in a slightly stronger edge smoothening due to the higher diffusion strength of
the fourth-order filter compared to the second order filter.

In order to take into account this discrepancy between the diffusion strength of
the second and fourth-order filters, the threshold value of the diffusivity function
of the proposed filter needs to be reduced to increase the edge preservation capa-
bility of the filter. To do so, the χ in the proposed filter is set to 40. The rational
behind this choice can be explained by uncorrelation criterion 17). In fact, if the
noise and signal are uncorrelated then, in a fine tuned diffusion filter, the value
of the correlation of the residual image of u0 − u(t) and the developing image of
u(t) with respect to t (i.e., n×dt in the discrete domain) needs to be a unimodal
curve with a single minimum.

Experiments on a variety of test images contaminated with different level of
additive white Gaussian noise (AWGN), i.e., an uncorrelated stationary noise,
shows that this feature does not hold true unless the value of χ is reduced and
a suitable choice is χ = 40. The result of one of these experiments is given in
Fig. 3. This result is obtained for a test image of Cameraman contaminated by
AWGN with standard deviation (SD) of 15 shown in Fig. 2. The upward spike
in the correlation curve for χ = 80 and 60 in the early stage of the development
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Fig. 3 Comparing the correlation of the residual image of u0 − u(t) and u(t) for three
different value of χ.

of the denoised image shows that the estimated value of k in these cases is large
enough to lead to removal of a part of the structure of the image (i.e. mainly low
contrast edges) and their representation in the residual image of u0 − u(t) while
choosing the χ = 40 can prevent the smoothness of these edges.

3.3 Stability Condition
The other important aspect of the fourth-order PDE-based denoising tech-

niques is the stability of the numerical solver in order to guarantee the con-
vergence of the solution. Setting a small time step-size, dt, in Ref. (10), can
guarantee the stability of the dynamic flow, however if dt is too small, it results
in numerous number of iterations. Therefore, finding an optimal time step-size
is crucial in order to reduce the convergence time. On the other hand, if the
diffusivity function can distinguish between the noise and edge with a high de-
gree of certainty, the convergence rate of the PDE-based denoising filter can be
dramatically increased. Comparing the diffusion coefficient map of noisy image
of “cameraman” given in Fig. 2 at the 30th iteration for the You and Kaveh filter
with the one obtained by the proposed filter shows that for the proposed filter,
the wider regions of the image can be detected as smooth regions. Therefore,
the noise reduction is significantly faster than that of Eq. (7). Thus, finding a
constant dt as a data-independent time step-size for Eq. (9) (which is smaller
than the optimal time step-size) and setting the numerical solver of Eq. (10) so
that it operates with this time step-size, make the proposed filter applicable to
a wide category of images without any stability concern and still deliver a good
convergence rate.

Fig. 4 Comparing the map of c
(
|∇2u|

)
in You and Kaveh filter, (a), with the map of c (||∇u||)

in the proposed filter, (b), for the noisy image of cameraman shown in Fig. 2. The bright
regions in the both maps indicate the regions in which a strong diffusion is carried out.

To find a time step-size, dt, for the numerical solver in Eq. (10) so that it is
always convergent to the steady state value, it is needed to show that ∂u/∂t → 0
when t → ∞. If c (||∇u||) ≈ 0 the changes in u is almost zero and ∂u/∂t ≈ 0.
Therefore, the worst condition for stability is when c (||∇u||) = 1. Note that
c (||∇u||) is bounded in (0, 1]. Therefore, under this worst condition for stability
when c (||∇u||) = 1, the numerical solver can be written in the form of

un+1 = un − dt × ((L ∗ L) ∗ un) , (11)
where L is a small Laplacian kernel and symbol of ∗ denotes the convolution
operation. If u is arranged in the column-wise order, the linear system in (11)
can be written as a system of state equations given by

un+1 = (I + S) × un , (12)
where (I + S) is the state matrix of Eq. (11) in which S is an sparse matrix
representing the convolution of u with the small convolution kernel of −dt ×
(L ∗ L) and I is the identity matrix. When L is a standard Laplacian kernel
given by

L =

⎡
⎢⎣

0 1 0
1 −4 1
0 1 0

⎤
⎥⎦ (13)

then −dt × (L ∗ L) is
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−dt × (L ∗ L) = dt ×

⎡
⎢⎢⎢⎢⎢⎣

0 0 −1 0 0
0 −2 8 −2 0
−1 8 −20 8 −1
0 −2 8 −2 0
0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (14)

which means that S is a sparse matrix that the nonzero matrix values in each
row are in the following order:

dt×
[
−1 −2 8 −2 −1 8 −20 8 −1 −2 8 −2 −1

]
(15)

while −20 is always in the main diagonal of S.
For stability of the state system in Eq. (12), dt should be set so that the spectral

radius, (SP), of (I + S) is less than one. On the other hand, the same value of
dt leads to the stability of

un+1 = − (I + S) × un , (16)
However, the state system in Eq. (16) can be written in standard form of Jacobi

solver in the form of
un+1 + ((2I + S) − I)un = 0 . (17)

Stability of the Jacobi solver in Eq. (17) can be obtained if matrix (2I − S)
is strictly row-wise diagonally dominant (see Ref. 16) page 626 for proof). By
definition, the matrix Aij is strictly row-wise diagonally dominant if

|arr| >
∑
j �=r

|arj | for r = 1, 2, · · · , n . (18)

This condition for (2I −S) means that if 2−20dt > 44dt is satisfied the diffusion
Eq. (17) and consequently Eq. (12) are convergent. Recalling the fact that the
diffusion equation of Eq. (12) is obtained under the maximum diffusion strength
of the proposed filter in Eq. (10), it means that when the time step-size is dt <

0.0313, the proposed filter using L as a discrete approximation of Laplacian is
data-independently stable.

4. Comparative Results

In this section, we are presenting the comparative results of the proposed filter
with two other Fourth-order filters. These filters are as the following:

Table 1 Objective comparison results: Degradation model is AWGN.

Noisy Image SD=15 Denoised Image
Images SNR (dB) Method SNR (dB) FOM N CPU/Iter.

Proposed 17.67 0.9108 90 0.08
Pepper 10.96 (7) 15.75 0.8710 3047 0.03

(8) 15.10 0.7996 2 0.15
Proposed 17.28 0.9465 39 0.08

Cameraman 12.39 (7) 16.60 0.9453 3115 0.03
(8) 13.66 0.7345 1 0.16

Proposed 17.48 0.8413 270 0.08
House 9.74 (7) 15.82 0.8252 3904 0.03

(8) 15.34 0.7468 2 0.16
Noisy Image SD=25 Denoised Image

Proposed 15.19 0.8435 210 0.08
Pepper 6.55 (7) 12.91 0.8102 10550 0.03

(8) 13.19 0.7602 3 0.15
Proposed 14.93 0.8794 210 0.08

Cameraman 7.98 (7) 13.76 0.9044 11530 0.03
(8) 12.21 0.6798 2 0.16

Proposed 15.28 0.7919 490 0.08
House 5.32 (7) 13.55 0.8012 13940 0.03

(8) 13.22 0.7174 6 0.16

( 1 ) The proposed filter with dt = 0.031 and contrast parameter, k, estimated
by the histogram-based mechanism explained in Section 3.2.

( 2 ) The filter of (7) introduced by You and Kaveh 4) with the suggested pa-
rameters setting of dt=0.25 and k=1.

( 3 ) The filter of (8) introduced in6) with the suggested parameters setting of
dt=0.1, k=3, α = 3 and ω = 5.

Three test images of “Pepper”, “Cameraman” and “House” have been cor-
rupted by AWGN with SD=15 and 25. In Table 1, an objective comparison
between the performances of these filters is presented. This comparison is in
terms of quality of the denoised image and computational cost of the filters. For
quantifying the quality of the denoised image, signal-to-noise ratio (SNR) and
Pratt’s figure of merit (FOM) 18) of the denoised image are calculated. FOM is
an objective quantitative performance measure has often been used in the edge
detection evaluation given by
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FOM =
1

max(uD, uI)

uD∑
i=1

1
1 + βd2

i

, (19)

where uD is the number of detected edge points, uI is the number of ideal edge
points (ground truth), β is a positive scaling factor (often chosen to be 1/9 and
so that here), and di is the edge deviation or error distance for the ith detected
edge pixel. The edge detector for ground truth and denoised image is chosen to
be the Sobel edge detector as a built-in function in Matlab. The value of FOM
is bounded in range of (0, 1] and as it is closer to one it shows a better ability of
the filter to preserve the edges.

The results show that the proposed filter constantly produces the denoised
image with a significantly higher SNR. The calculated FOM for the denoised
images shows that the proposed method is able to preserve the edges in the
denoised image as good as the classical filter of Eq. (7) and much better than
the fast convergent filter of Eq. (8). It is important to note that the results are
obtained at the optimal number of iterations in which the maximum SNR during
the evolutionary process of the filters are achieved. If the iterative filtering process
is continued after the optimal number of iterations, the SNR of the denoised image
is reduced due to the over-smoothness of the edges.

The other important feature in the proposed filter is its fast convergence rate.
From practical stand view, the convergence time is measured as an overall com-
putational time of the filter to reach to the highest SNR. The computational
burden of the filters is measured as CPU time of each iterations (CPU/Itre.)
multiply by the number of the iterations (N) provided that they are filtering the
same image on the same computer (the computer used for these simulations was
P4 3 GHz with 1 GB DRAM at 533 MHz). From this perspective, the conver-
gence time of Eq. (8) is smaller than the one obtained by the proposed filter and
Eq. (7), however the maximum SNR is significantly lower than that of the other
filters and the measured FOM for the denoised image by Eq. (8) indicates that
this fast convergence comes with the strong over-smoothing of the edges. On the
other hand, the good edge preservation obtained by Eq. (7) leads to a very slow
convergence rate of this filter. However, the proposed filter stand at the middle
of these two extreme cases. It means that the convergence time of the proposed

Fig. 5 Comparing the perceptual quality of the results. The images labeled (a) to (e) are as
the following: (a) noiseless image, (b) noisy image (AWGN with SD=15), (c) denoised
image using (6), (d) denoised image using (8) and (e) the result obtained by proposed
filter. A magnified region of each denoised image is shown in the third row.

filter is higher than Eq. (8) and remarkably lower than Eq. (7) while both SNR
and FOM are almost higher than or comparable to those of the others.

In Figs. 5 and 6, the perceptual quality of the denoised image by the proposed
filter is compared with the ones obtained by the other filters. In the first two
rows, the whole image and in the third row, a magnified portion of the denoised
image are shown. The images are labeled from (a)–(e). The first two images (a)
and (b) are the noiseless and the noisy images. In Fig. 5, the test image House
and its noisy version degraded by AWGN with SD=15 are shown in sections
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Fig. 6 Comparing the perceptual quality of the results. The images labeled (a) to (e) are as
the following: (a) noiseless image, (b) noisy image (AWGN with SD=25), (c) denoised
image using (6), (d) denoised image using (8) and (e) the result obtained by proposed
filter. A magnified region of each denoised image is shown in the third row.

(a) and (b) and sections (c) to (e) are the results of the filters (7), (8) and
the proposed filter respectively. In Fig. 6, the results for the test image of Pepper
degraded by AWGN with SD=25 are shown with the same order described above.
On the surface of the denoised image by Eq. (7) some speckle noise are formed.
This drawback is known and addressed by You and Kaveh 4) and it is as a result
of choosing a small value for k in the diffusivity function, however this setting
is necessary to protect the edges from over-smoothing. In the section (d) of the
Fig. 5 and 6, the denoised image by Eq. (8) are shown where one can clearly see

that this filter in spite of its fast convergence rate does not provide a good edge
preservation and moreover the dominance of the effect of the relaxed median
filter used in this filtering scheme leads to the formation of staircase artifacts on
the smooth regions. This major drawback is clearly visible in magnified image
of Fig. 6 (d). The last image, shown in Fig. 5 and 6 (e) are the result of the
proposed filter in which the extent of the denoising and edge preservation is
noticeably better than those of the other filters.

This improvement in the results obtained by the proposed method is largely
because of the modification of the diffusivity function. As it is shown in Fig. 4,
choosing the diffusivity function as a function of the first-order derivative of the
evolved image in the proposed filter leads to a better edge detection compared to
the diffusivity functions of the other fourth order filters in which the diffusivity
is a function of the second-order derivative of u. Thus, one can expect that noise
is more effectively reduced with much less over-smoothness of the edges.

However, the effect of the setting parameters of dt and k in the enhancement of
the results of the proposed filter are not negligible. In the following, these effects
are described in more details:
( 1 ) The effect of dt: The choice of dt has the effect on the accuracy of the
numerical solver so that if dt is decreased the numerical solver can approximate
the result with higher accuracy, however the convergence time is also increased.
Thus, setting the time step-size, dt, should satisfy not only stability of the nu-
merical solver but also it should provide a good trade-off between the accuracy
and convergence time. One of the advantages of the proposed filter is that these
requirements have been achieved with a very small dt. Choosing the same dt for
other filters will not hinder the stability of those, however it is not practically
an optimal choice. Reduction of the time-step size for the filter of Eq. (7) leads
to the increase of the convergence time, which is already very big and for filter
of Eq. (8), dt is already much smaller than that of filter Eq. (7) and it does not
provide any better results. In fact, the significant edge distortion in the result
of this filter (the lowest FOM) is due to apply of a relax median filter in each
iteration and any farther reduction of dt will not improve the edge preservation
capability of the filter.
( 2 ) The effect of k: The balance between the edge preservation and noise
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reduction ability of these diffusion based filters is determined by the threshold
value of k. It means the reduction of this value may increase FOM of the results
but result in forming of speckle noise on the surface of the image specially for
filter (7) and it reduces the SNR of the results. Thus, the value of k for filters of
Eqs. (7) and (8) is set manually to provide a good balance between the SNR and
FOM of the results. In this numerical study, these value are chosen based on the
suggestion of the authors of the original papers in Refs. 4) and 6). In the proposed
filter, an estimation mechanism relates the optimal value of k to the noise level.
By reduction of the noise level during the development of the denoised image, k

is gradually reduced to increase the edge preservation capability of the filter and
since it is along with reduction of the noise, the speckle noise is not formed on
the denoised image.

Finally, the result of the proposed method is compared with that of the Perona-
Malik for two dimensional image of Cameraman (shown in Fig. 2). As the com-
parative results on one dimensional signal in Fig. 1 shows, the second order filter
of Perona-Malik creates the staircase artifacts. This drawback in a two dimen-
sional image leads to unnatural (cartoon-like) looking of the processed image.
The results in Fig. 7 obtained after filtering the noisy image of Cameraman
shown in Fig. 2-(b) by Perona-Malik and proposed filters. The model parameter
of dt for both filters is set to dt = 0.031 and the same histogram-based estimation
mechanism described in Section 3.2 is used for the estimation of k, however χ

for Perona-Malik is chosen to be 80 as it is suggested in 1). The total number
of iteration for both filters is set to 150. Comparing the result of Perona-Malik
(shown in Fig. 7 (a)) with that of the proposed filter in Fig. 7-(b) demonstrates
the advantage of using the fourth order filter to preserve the natural perception
of the processed image and prevent the formation of the staircase artifacts.

However, SNR of the results of the proposed filter is not as good as the one
obtained by Perona-Malik (SNR of denoised image by Perona-Malik and the
proposed filter are 17.43 (dB) and 17.10 (dB) respectively). This shortcoming is
due to the fact that a part of the noise mainly at piecewise constant regions of
the image (e.g., the background region) can not be completely removed by the
fourth-order filters because before ||∇u|| becomes zero (i.e the best approximation
for these regions and it is the solution of the Perona-Malik filter) the |∇2u| can

Fig. 7 Comparing the perceptual quality of the results obtained by proposed and Perona-
Malik filters for noisy image of Cameraman shown in Fig. 4. The images labeled (a)
is the result of the Perona-Malik filter and (b) is the result obtained by the proposed
filter. A magnified region of each denoised image is shown in the second row.

become zero and diffusion process is ceased. However, the FOM of the results for
both of filters are comparable (i.e., 0.9209 and 0.9260 for the result of Perona-
Malik and the proposed filter respectively) owing to the optimality of the choice
of χ in the proposed method.

5. Conclusion

A self-governing filter for noise removal based on using the fourth-order PDE
has been proposed. A theoretical background of the fourth-order denoising meth-
ods has been reviewed with highlighting the major challenges of parameters es-
timation and slow convergence rate of these techniques. To resolve these draw-

IPSJ Transactions on Computer Vision and Applications Vol. 2 94–103 (Mar. 2010) c© 2010 Information Processing Society of Japan



103 A Self-governing Fourth-order Nonlinear Diffusion Filter

backs, in the proposed method, the diffusion coefficient is calculated by a dif-
fusivity function as a function of modulus of the gradient of the evolved image
while, in the existing fourth-order PDE-based filters, the diffusivity function is a
function of the absolute value of Laplacian of the image. The simulation results
show that the proposed filter can provide a high SNR with a good edge preser-
vation measured by FOM and a tangible improvement of perceptual quality of
the denoised images in comparison with those of the other techniques. The fast
convergence obtained by the proposed filter pave the road toward its utilization
in real time applications.

References

1) Perona, P. and Malik, J.: Scale-space and edge detection using anisotropic dif-
fusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.12,
No.7, pp.629–639 (1990).

2) Catte, F., et al.: Image selective smoothing and edge detection by nonlinear dif-
fusion, SIAM J. Numer. Anal., Vol.29, No.1, pp.182–193 (1992).

3) Black, M.J., et al.: Robust anisotropic diffusion, IEEE Transactions on Image
Processing, Vol.7, No.3, pp.421–432 (1998).

4) You, Y.L. and Kaveh, M.: Fourth-order partial differential equations for noise re-
moval, IEEE Transactions on Image Processing, Vol.9, No.10, pp.1723–1730 (2000).

5) Lysaker, M., Lundervold, A. and Tai, X.-C.: Noise removal using fourth-order
partial differential equation with applications to medical magnetic resonance images
in space and time, IEEE Tran. on Image Processing, Vol.12, No.12, pp.1579–1590
(2003).

6) Rajan, J., Kannan, K. and Kaimal, M.R.: An Improved hybrid model for molecular
image denoising, Journal of Mathematical Imaging and Vision, Vol.31, pp.73–79
(2008).

7) Fang Li, et al.: Image restoration combining a total variational filter and a fourth-
order filter, Journal of Visual Communication and Image Representation, Vol.18,
pp.322–330 (2007).

8) You, Y.-L., et al.: Behavioral analysis of anisotropic diffusion in image processing,
IEEE Trans. Image Processing, Vol.5, pp.1539–1553 (1996).

9) Hamza, A.B., et al.: Removing noise and preserving details with relaxed median fil-
ters, Journal of Mathematical Imaging and Vision, Vol.11, No.2, pp.161–177 (1999).

10) Rudin, L., Osher, S. and Fatemi, E.: Nonlinear Total Variation based noise removal

algorithms, Physica D, Vol.60, pp.259–268 (1992).
11) Chan T., Marquina A. and Mulet R.: High Order Total Variation-based Image

Restoration, SIAM J. on Scientific Computing, Vol.22, No.2, pp.503–516 (2000).
12) Fang, L., et al.: Image restoration combining a total variational filter and a fourth-

order filter, Journal of Visual Communication and Image Representation, Vol.18,
No.4, pp.322–330 (2007).

13) Nixon, M. and Aguado, A.: Feature Extraction and Image Processing, Oxford,
Newnes (2002).

14) Guido, G., et al.: Nonlinear anisotropic filtering of MRI data, IEEE Transactions
on Medical Imaging, Vol.11, No.2, pp.221–232 (1992).

15) Canny, J.F.: A computational approach to edge detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.8, No.6, pp.679–698 (1986).

16) Stoer, J. and Bulirsch, R.: Introduction to Numerical Analysis, Texts in Applied
Mathematics, Vol.12, Springer-Verlag, New York (2002).

17) Mazarek, P. and Navara, M.: Selection of Optimal Stopping Time for Nonlin-
ear Diffusion Filtering, International Journal of Computer Vision, Vol.52, No.2/3,
pp.189–203 (2003).

18) Pratt, W.K.: Digital Image Processing, New York, Wiley (1977).

(Received April 7, 2009)
(Accepted December 3, 2009)

(Released March 11, 2010)

(Communicated by Toshikazu Wada)

Mohammad Reza Hajiaboli was born in 1972. He received
his B.E. degree from Iran University of Science and Technol-
ogy (Tehran, Iran) and M.Eng. degree from Concordia University
(Montreal, Canada), where he was working on CMOS image sen-
sors and their performance at a low illumination condition. He is
currently a Ph.D. Candidate in Concordia University, faculty of
engineering and computer science. His research focuses on com-

putational imaging and edge preservation smoothing. He is a Student Member
of IEEE.

IPSJ Transactions on Computer Vision and Applications Vol. 2 94–103 (Mar. 2010) c© 2010 Information Processing Society of Japan


