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The purpose of the work reported in this paper is to detect humans from
images. This paper proposes a method for extracting feature descriptors con-
sisting of co-occurrence histograms of oriented gradients (CoHOG). Including
co-occurrence with various positional offsets, the feature descriptors can ex-
press complex shapes of objects with local and global distributions of gradient
orientations. Our method is evaluated with a simple linear classifier on two
well-known human detection benchmark datasets: “DaimlerChrysler pedestrian
classification benchmark dataset” and “INRIA person data set”. The results
show that our method reduces the miss rate by half compared with HOG, and
outperforms the state-of-the-art methods on both datasets. Furthermore, as
an example of a practical application, we applied our method to a surveillance
video eight hours in length. The result shows that our method reduces false
positives by half compared with HOG. In addition, CoHOG can be calculated
40% faster than HOG.

1. Introduction

Detecting humans in images is essential in many applications such as automatic
driver assistance, image surveillance, and image analysis. The extensive variety
of postures and clothes of humans makes this problem challenging.

Many types of feature descriptors have been proposed for human detection.
Gavrila, et al. proposed combining two feature descriptors 1): templates of hu-
man contours with chamfer matching 2) and LRF (Local Receptive Fields) with
a quadratic SVM classifier 3). LRF are weight parameters of hidden layers of
neural network that extract local features of humans. Viola, et al. proposed a
motion feature descriptor and combined it with cascaded AdaBoost classifier 4).
Papageorgiou, et al. used SVM-based parts detectors with Haar wavelet feature
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and integrated them with SVM 5),6).
Recently, using gradient-orientation-based feature descriptors, such as

SIFT (Scale Invariant Feature Transform) 7) and HOG (Histograms of Oriented
Gradients) 8), is a trend in object detection 9),10). Those feature descriptors are
also used for human detection 8),11)–13). Shashua, et al. employed body parts de-
tectors using SIFT 11) and Mikolajczyk, et al. also used jointed SIFT with an
SVM classifier 12). Dalal, et al. proposed HOG and combined it with an SVM
classifier 8), and also extended their method to motion feature descriptors 13).

Some multiple-edge-based feature descriptors also have been proposed. Wu,
et al. proposed edgelet feature descriptor that expresses long curves of edges 14).
Sabzmeydani, et al. proposed shapelet feature descriptor based on edges selected
by AdaBoost 15). Since shapelets are combinations of edges, they can express
more detailed shape information than SIFT/HOG feature descriptors can.

We propose a multiple-gradient-orientation-based feature descriptor named
“Co-occurrence Histograms of Oriented Gradients (CoHOG)”. CoHOG are his-
tograms whose building blocks are pairs of gradient orientations. Since a pair of
gradient orientations has more vocabulary than a single orientation as shown in
Fig. 1, CoHOG can express shapes in more detail than HOG, which uses single
gradient orientation. Benchmark results on two well-known datasets, namely,
DaimlerChrysler pedestrian classification benchmark dataset and INRIA person
data set, show the effectiveness of our method. Furthermore, as an example of a

(a) Single (b) Paired

Fig. 1 Vocabulary of gradient orientations. Though (a) a single gradient orientation has
only eight varieties, (b) a pair of them has many more varieties than the single one.
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Fig. 2 Our classification process. We combine the strong feature descriptor CoHOG and a con-
ventional simple classifier. Our classification process consists of three parts: (a) com-
putation of gradient orientations from input images, (b) computation of CoHOG from
gradient orientations, and (c) classification with linear SVM classifier that is fast at
learning and classification.

practical application, we used CoHOG to detect humans from a long surveillance
video.

The rest of this paper is organized as follows: Section 2 explains the outline
of our human detection approach; Section 3 briefly explains HOG, and then
describes our feature descriptor; Section 4 shows experimental results for two
benchmark datasets and a surveillance video; the final section is the conclusion.

2. Outline of Our Approach

In most human detection tasks, classification accuracy is the most important
requirement. The performance of the system depends on the effectiveness of
feature descriptors and the accuracy of classification models.

In this paper, we focus on the feature descriptor. An overview of our human
detection process is shown in Fig. 2. The first two parts of the process extract
feature descriptors from input images, and then the last part classifies and out-
puts classification results. We propose a high-dimensional feature descriptor in
Section 3. Our feature descriptor is effective for classification, because it contains
building blocks that have an extensive vocabulary.

If the feature descriptor is informative enough, a simple linear classifier can
detect humans accurately. We use a linear classifier obtained by a linear SVM 16)

that works fast at learning and classification.

3. Gradient-orientation-based Feature Descriptor

3.1 Histograms of Oriented Gradients (HOG)
We briefly explain the essence of the HOG calculation process with Fig. 3. In

Fig. 3 Overview of HOG calculation.

order to extract HOG from an image, firstly, gradient orientations at every pixel
are calculated (Fig. 3 (a)). Secondly, a histogram of each orientation in a small
rectangular region is calculated (Fig. 3 (b)). Finally, the HOG feature vector is
created by concatenating the histograms of all small regions (Fig. 3 (c)).

HOG has two merits for human detection. One merit is the robustness against
illumination variance because gradient orientations of local regions do not change
with illumination variance. The other merit is the robustness against deforma-
tions because slight shifts and affine deformations make small histogram value
changes.

3.2 Co-occurrence Histograms of Oriented Gradients (CoHOG)
We propose a high-dimensional feature “Co-occurrence Histograms of Oriented

Gradients (CoHOG)”. Our feature uses pairs of gradient orientations as units�1,
from which it builds the histograms. The histogram is referred to as the co-
occurrence matrix, hereafter. The co-occurrence matrix expresses the distribu-
tion of gradient orientations at a given offset over an image as shown in Fig. 4.
The combinations of neighbor gradient orientations can express shapes in de-
tail. It is informative for human classification. Mathematically, a co-occurrence

�1 CoHOG can be defined with not only a pair of gradient orientations but also a set of
multiple gradient orientations, in general. In this paper, we only explain the case of using
two gradient orientations, because it is sufficient to contrast CoHOG with HOG and is easy
to understand. In a similar way, we can use a set of multiple gradient orientations as a
feature descriptor.
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Fig. 4 Co-occurrence matrix of gradient orientations. It calculates sums of all pairs of
gradient orientations at a given offset.

matrix C is defined over an n×m image, parameterized by an offset (x, y), as:

Cx,y(i, j) =
n∑

p=1

m∑
q=1

{
1, if I(p, q) = i and I(p + x, q + y) = j

0, otherwise,
(1)

where I denotes a gradient orientation image, and i and j denote gradient orien-
tations. CoHOG has robustness against deformation and illumination variance
for the same reasons as HOG, because CoHOG is a gradient-based histogram
feature descriptor.

We describe the process of CoHOG calculation shown in Fig. 5. Firstly, we
compute gradient orientations from an image by

θ = arctan
v

h
, (2)

where v and h are vertical and horizontal gradients, respectively, calculated by
Sobel filter, Roberts filter, etc. We label each pixel with one of eight discrete
orientations or as no-gradient (Fig. 5 (a)). All 0◦ – 360◦ orientations are divided
into eight orientations per 45◦. No-gradient means

√
v2 + h2 is smaller than a

threshold. Secondly, we compute co-occurrence matrices by Eq. (1) (Fig. 5 (b)).
The offsets we used are shown in Fig. 6. By using short-range and long-range
offsets, the co-occurrence matrices can express local and global shapes. We do
not use half of the offsets, because they behave the same as the others in cal-

Fig. 5 Overview of CoHOG calculation.

Fig. 6 Offsets of co-occurrence matrices. Offsets are smaller than the large dashed-circle.
The center small white-circle and the other 30 dark-circles are paired. We calculate 31
co-occurrence matrices with different offsets including zero offset.

culation of co-occurrence matrix as shown in Fig. 7. The dashed-circle is the
maximum range of offsets. We can get 31 offsets including a zero offset. The
co-occurrence matrices are computed for each small region (Fig. 5 (c)). The small
rectangular regions are tiled N ×M , such as 3×6 or 6×12, with no overlapping.
Finally, the components of all the co-occurrence matrices are concatenated into
a vector (Fig. 5 (d)).

Since CoHOG expresses shapes in detail, it is high-dimensional. The dimension
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Fig. 7 Offset value of (a) (1, 1) is equivalent to that of (b) (−1,−1) in the calculation of co-
occurrence matrix.

1: given I: an image of gradient orientation
2: initialize H ← 0
3: for all positions (p, q) inside of the image do
4: i← I(p, q)
5: k ← the small region including (p, q)
6: for all offsets (x, y) such that corresponds neighbors do
7: if (p + x, q + y) is inside of the image then
8: j ← I(p + x, q + y)
9: H(k, i, j, x, y)← H(k, i, j, x, y) + 1
10: end if
11: end for

12: end for
Fig. 8 Implementation of CoHOG calculation. The bins of histogram H are initialized to zero

before voting. All pixels in the gradient orientation image I are scanned, and bins of
H corresponding to pixels are incremented.

is 34,704, when the small regions are tiled 3× 6. From one small region, CoHOG
obtains 31 co-occurrence matrices. Each co-occurrence matrix has 64 compo-
nents (Fig. 4 (c)). The co-occurrence matrix calculated with zero offset has only
eight effective values because off-diagonal components are zero. Thus CoHOG
obtains (64× 30 + 8)× (3× 6) = 34,704 components from an image. In fact, the
effective values are fewer than 34,704, because co-occurrence matrices have mul-
tiple zero-valued components. Nevertheless, CoHOG is a more powerful feature
descriptor than HOG because CoHOG has more effective values than HOG.

The implementation of CoHOG is simple. An example of CoHOG implementa-
tion is shown in Fig. 8. We can calculate CoHOG by only iterating to increment
the components of co-occurrence matrices, whereas HOG calculation includes

more procedures, such as orientation weighted voting, histogram normalization,
and region overlapping. CoHOG can achieve high performance without those
complex procedures.

4. Experimental Results

We evaluated our method by two experiments. First, we compared the per-
formance of our method with the state-of-the-art methods by using benchmark
datasets. Second, we applied our method to a practical application that detects
humans from a surveillance video.

4.1 Benchmark Datasets
We evaluated the performance of CoHOG by applying our method to two

human image datasets, namely, the DiamlerChrysler dataset 3) and the INRIA
dataset 8), which are widely used as human detection benchmark datasets. The
DaimlerChrysler dataset contains human images and non-human images cropped
to 18 × 36 pixels. The INRIA dataset contains human images cropped to 64 ×
128 pixels and non-human images of various sizes. The details of those datasets
are shown in Table 1, and some samples of the datasets are shown in Fig. 9.

Because the images differe in size, in our method we divided the Diamler-
Chrysler dataset images into 3× 6 small regions, and the INRIA dataset images
into 6× 12 small regions. Thus, the dimensions of our features are 34,704 on the
DiamlerChrysler dataset, and quadruple that on the INRIA dataset. We used
Roberts filter, the filter size of which is 2 × 2, on the DiamlerChrysler dataset
and Sobel filter, the filter size of which is 3× 3, on the INRIA dataset, because
the image size of the DiamlerChrysler dataset is small. We used a linear SVM
classifier trained with LIBLINEAR 17) that solves linear SVM learning problems
much faster than previous solvers such as LIBSVM 18) and SVMLight 19).

We compared our method with five previous methods 3),8),15),20),21). All the
methods use different features and classifiers: Dalal, et al. used HOG and RBF
kernel SVM and linear SVM 8); Gavrila, et al. used local receptive fields (LRF)
and quadratic SVM 3); Dollar, et al. used Haar wavelet and AdaBoost 20);
Sabzmeydani, et al. used shapelet and AdaBoost 15); and Maji, et al. used multi-
level oriented edge energy features and intersection kernel SVM (IKSVM) 21).

The comparison of their performances is shown in Fig. 10. The results of pre-
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Table 1 Human detection benchmark datasets.

(a) DaimlerChrysler dataset

Dataset Name DaimlerChrysler Pedestrian Classification Benchmark Dataset
Distribution site http://www.science.uva.nl/research/isla/downloads/pedestrians/
Training data 4,800 × 3 human images

5,000 × 3 non-human images
Test data 4,800 × 2 human images

5,000 × 2 non-human images
Image size 18 × 36 pixels

(b) INRIA dataset

Dataset Name INRIA Person Data Set
Distribution site http://pascal.inrialpes.fr/data/human/
Training data 2,716 human images

1,218 non-human images (10 regions are randomly sampled per
image for training.)

Test data 1,132 human images
453 non-human images

Image size Human images are 64 × 128 pixels
Non-human images are of various size (214×320 – 648×486 pixels)

(a) DaimlerChrysler dataset

(b) INRIA dataset

Fig. 9 Thumbnails of (a) DaimlerChrysler dataset and (b) INRIA dataset. Upper rows are
images of humans and lower rows are images of non-humans in each dataset.

(a)

(b)

Fig. 10 Performance of our method on (a) DaimlerChrysler dataset and (b) INRIA dataset.
We compared our method with several previous methods. On the DaimlerChrysler
dataset, our method shows the best performance. Our method reduces the miss rate
40% compared with the state-of-the-art method at a false positive rate of 0.05. On
the INRIA dataset, our method decreases the miss rate by 30% compared with that
of the state-of-the-art method at a FPPW of 10−6. Our method reduces the miss
rate by half compared with HOG on both datasets.

vious methods are traced from the original papers except the performance of
HOG on the DaimlerChrysler dataset, because it is not shown by Dalal, et al.
We show it based on the result of our experiment. The parameters of HOG are
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as follows: nine gradient orientations in 0◦–180◦, cell size of 3 × 3 pixels, block
size of 2 × 2 cells, L2Hys normalized, and the classifier is an RBF-kernel SVM.
In Fig. 10 (a), ROC (Receiver Operating Characteristic) curves on the Daimler-
Chrysler dataset are shown. An ROC curve further toward the top-left of the
diagram means better performance. The results show that our method achieved
the best detection rate at every false positive rate. Our method reduced the miss
rate (= 1− detection rate) by about 40% from the state-of-the-art method at a
false positive rate of 0.05; the miss rate of our method is 0.08 and that of Dollar,
et al., the second best, is 0.14.

In Fig. 10 (b), DET (Detection Error Tradeoff) curves on the INRIA dataset
are shown. A DET curve further toward the bottom-left of the diagram means
better performance. The results show that the performance of our method is
better than the state-of-the-art methods or at least comparable. On condition
that FPPW is low, our method reduced the miss rate by about 30% compared
with the state-of-the-art method; the miss rate of our method is 0.12 and that
of Maji, et al. is 0.17 at a FPPW of 10−6. On condition that FPPW is high,
the miss rates of our method is comparable to that of Maji, et al.; the miss rate
of our method is 0.017 and that of Maji, et al. is 0.01 at a FPPW of 5 × 10−4.
Even though the miss rate of our method is slightly higher than that of Maji, et
al. the difference of the miss rates is only 0.007.

The performance at low FPPW is more important than that at high FPPW,
because low FPPW is necessary for machine-aided monitoring systems that are a
typical application field of human detection, such as drive assistance system for
automobile 2) and highway-railway grade crossing monitoring system. The alarm
of the drive assistance system is activated when a human stands in front of the
automobile. If the system’s alarm is unnecessarily activated often, the user will
be irritated and turn off the system. Even though the miss rate is high at low
FPPW, it can be recovered using multiple images taken in a short period of time.

Furthermore, they show the stability of our method; the performance of the
method of Dollar, et al. is not good on the INRIA dataset and the method of
Maji, et al. is not good on the DaimlerChrysler dataset, whereas, the performance
of our method is consistently good on both datasets. Though our method uses
a linear classifier that is simpler than an RBF-kernel SVM classifier used with

Table 2 Surveillance video.

Length First day: 7 hours and 25 minutes
Second day: 7 hours and 46 minutes

Frame rate 2 frames per minute
Image size 320 × 240 pixels
Training data 3,751 human images from the first day and

45,406 non-human images from another dataset.
The image sizes of them are 42 × 42 pixels.

Test data 932 images from the second day
that include 3,864 humans.

Fig. 11 Positive samples.

HOG, the miss rate of our method is less than half that of HOG.
4.2 Surveillance Video
We detected humans from a surveillance video taken by a camera hung from

the ceiling. The specification of the video is shown in Table 2. We used two
videos for training data and test data that were taken on different days. In this
experiment, we do not use the whole body of a human but use only the upper
body to detect humans, because a lower body of the human who is near the
camera is invisible. The ground truths that are given by hand are shown in
Fig. 11. (The faces in the images are masked in this publication for reasons of
privacy. A non-masked version is used for the experiment.) The images used
for training are regularized to 42 × 42 pixels. In calculation of CoHOG feature
descriptor, we divided the images into 6×6 small regions, and thus the dimension
of our feature is 69,408.

We defined correct/incorrect detection by using the distance Dr,t between the
detection result r and the ground truth t that is defined as

Dr,t =
A(r ∩ t)
A(r ∪ t)

, (3)
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Fig. 12 Distance between detected result and ground truth.

where A(·) denotes the area (see Fig. 12). If ∃tDr,t ≥ 1/3, then the detection
result is correct, otherwise the detection result is incorrect.

The result of human detection by our method is shown in Fig. 13. True posi-
tives, false positives, and false negatives are represented by red, yellow, and blue
squares, respectively. As shown in Fig. 13, even when there are many humans in
the image, almost all the humans are detected correctly (true positive); and unde-
tected humans (false negative) and non-human regions detected as humans (false
positive) are few.

We compared the performance of our method and HOG by using the surveil-
lance video. The parameters of HOG are as follows: Nine gradient orientations
in 0◦–180◦, cell size of 3 × 3 pixels, block size of 2 × 2 cells, L2Hys normalized,
and the classifier is a linear SVM. Thus, the dimension of HOG is 6,084. The
DET curves are shown in Fig. 14. At every miss rate, our method reduced
FPPF (False Positives Per Frame) by half compared with HOG.

The processing times per frame are shown in Table 3. To detect humans
in an image, 7,577 ROIs are processed. The minimum size of the ROI is 42 ×
42 pixels. Our method is 40% faster than HOG, even though CoHOG is a higher-
dimensional feature descriptor than HOG; because CoHOG is simple to calculate
as mentioned in Section 3.2. The result means that a high-dimensional feature
descriptor is not always disadvantageous in terms of processing time.

Several methods which reduce the processing time of HOG are proposed 22),23),
such as feature selection, classifier cascading, integral image, and feature pool.
The speed-up methods can be utilized to reduce the processing time of CoHOG
too, because the fundamental structure of HOG used by the speed-up methods
is common to CoHOG.

Fig. 13 Detection results: Red, yellow, and blue squares represent true positive, false
positive, and false negative, respectively.
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Fig. 14 Performance of human detection on surveillance video. Our method reduces FPPF
by half compared with HOG at every miss rate.

Table 3 Processing time per a frame. Our method is 40% faster than HOG.

Processing time
CoHOG 0.77 sec/frame
HOG 1.25 sec/frame

5. Conclusion

In this paper, we proposed a high-dimensional feature descriptor “Co-
occurrence histograms of oriented gradients (CoHOG)” for human detection.
Our feature descriptor uses pairs of gradient orientations as units, from which it
builds histograms. Since the building blocks have an extensive vocabulary, our
feature descriptor can express local and global shapes in detail. We compared
the classification performance of our method and several previous methods on
two well-known datasets. The experimental results show that the performance of
our method is better than that of the state-of-the-art methods or at least com-
parable, and consistently good on both datasets. The miss rate (i.e., the rate
of human images classified as non-human) of our method is less than half that
of HOG. Furthermore, as an example of a practical application, we applied our
method to a surveillance video eight hours in length. The result shows that our

method reduces false positives by half compared with HOG. In addition, CoHOG
can be calculated 40% faster than HOG.
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