
IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009)

Research Paper

Incorrect Feature Tracking Detection

by Affine Space Fitting

Chika Takada
†1 and Yasuyuki Sugaya

†1

We present a new method for detecting incorrect feature point tracking. In
this paper, we detect incorrect feature point tracking by imposing the constraint
that under the affine camera model feature trajectories should be in an affine
space in the parameter space. Introducing a statistical model of image noise,
we test detected partial trajectories are sufficiently reliable. Then we detect
incorrect partial trajectories. Using real video images, we demonstrate that
our proposed method can detect incorrect feature point tracking fairly well.

1. Introduction

Extracting feature points from a video sequence and tracking them is the
first step of many computer vision applications including structure from mo-
tion 18), and motion segmentation 9)–11),14),17). Many authors use the Kanade-
Lucas-Tomasi algorithm 19). However, the resulting trajectories are not always
correct. In order to improve the tracking, Ichimura and Ikoma 6) and Ichimura 5)

introduced nonlinear filtering. Hyunh and Heyden 4), motivated by 3-D recon-
struction applications, showed that outlier trajectories in an image sequence of a
static scene taken by a moving camera can be removed by fitting a 4-dimensional
subspace to them by LMedS. Sugaya and Kanatani 15) fitted a 4-dimensional sub-
space to the observed trajectories by RANSAC 2),3) and removed outliers using a
χ2 criterion by observing the error behavior of actual video tracking.

Usually, we simply discard detected outliers. However, outlier trajectories may
partially contain correctly tracked data. Figure 1 shows three examples of such
trajectories. In Fig. 1 (a), the tracking fails and strays after that. In Fig. 1 (b),
the tracking returns to a correct path after failing. In Fig. 1 (c), the tracking fails

†1 Toyohashi University of Technology

(a) (b) (c)

Fig. 1 Outlier trajectories which contain partially correct tracking. Solid lines are for tra-
jectories. Dotted lines are for correct trajectories. (a) Tracking fails and strays after
that. (b) Tracking returns to a correct path after failing. (c) Tracking fails and follows
another path.

and start tracking another path. If we detect incorrect paths from such outlier
trajectories, we can estimate their correct paths from correct partial trajectories,
and re-use such corrected trajectories as inliers.

Many techniques have proposed in the past for interpolating missing parts of
tracking data. Saito and Kamijima 13) projectively reconstructed tentative 3-D
positions of the missing points by sampling two frames in which they are visible
and then reprojected them onto the frames in which they are invisible. Sugaya
and Kanatani 16) extended partial trajectories by imposing the constraint that
under the affine camera model all feature trajectories should be in an affine space.
This is called the affine space constraint 11). This method consists of iterations
for optimally extending the trajectories and for optimally estimating the affine
space.

In this paper, we present a new method for detecting incorrect parts in out-
lier trajectories by imposing the affine space constraint. We first detect outlier
trajectories from among complete trajectories. Next, we evaluate the reliability
of partial trajectories of outlier trajectories by considering the error behavior of
video tracking and regard unreliable parts as incorrect tracking data.

Section 2 summarizes the affine space constraint. Section 3 describes the out-
lier removal procedure. Section 4 describes how to detect incorrect feature track-
ing. In Section 5, we describe a method for detecting the longest correct partial
trajectories by RANSAC. In Section 6, we show simulation experiment, and in
Section 7, we show real video examples and demonstrate that our method works
fairly well. Section 8 is our conclusion.

174 c© 2009 Information Processing Society of Japan

175 Incorrect Feature Tracking Detection by Affine Space Fitting

2. Affine Space Constraint

We summarize the geometric constraints on which our method is based. The
same constraints have already been used in Refs. 9)–11), 15). We reiterate them
here, because they play a fundamental role in our method.

2.1 Trajectory of Feature Points
Suppose we track N feature points over M frames. Let (xκα, yκα) be the

coordinates of the αth point in the κth frame. We stack all the coordinates
vertically and represent the entire trajectory by the following 2M -dimensional
trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)�. (1)

We regard the XY Z camera coordinate system as the world frame, relative to
which the scene is moving. Consider a 3-D coordinate system fixed to the scene,
and let tκ and {iκ, jκ,kκ} be, respectively, its origin and basis vectors at time
κ. If the αth point has coordinates (aα, bα, cα) with respect to this coordinate
system, the position with respect to the world frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)
2.2 Affine Camera Model
If an affine camera model (generalizing orthographic, weak perspective, and

paraperspective projections 12)) is assumed, the image position of rκα is(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix and a 2-dimensional vector
determined by the position and orientation of the camera and its internal param-
eters at time κ. Substituting Eq. (2), we have(

xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional vectors determined by the
position and orientation of the camera and its internal parameters at time κ.
From Eq. (4), the trajectory vector pα in Eq. (1) can be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)
where m0, m1, m2, and m3 are the 2M -dimensional vectors obtained by stacking
m̃0κ, m̃1κ, m̃2κ, and m̃3κ vertically over the M frames, respectively.

2.3 Affine Space Constraint
Equation (5) implies that all the trajectories are constrained to be in the 4-

dimensional subspace spanned by {m0,m1,m2,m3} in R2M . This is called the
subspace constraint 9),10), on which the method of Jacobs 7) is based.

In addition, the coefficient of m0 in Eq. (5) is identically 1 for all α. This
means that the trajectories are in the 3-dimensional affine space within that
4-dimensional subspace. This is called the affine space constraint 11).

If all the feature points are tracked to the final frame, we can translate the co-
ordinate system so that its origin is at the centroid of the trajectory vectors {pα}.
Then, the trajectory vectors are constrained to be in a 3-dimensional subspace in
R2M . The Tomasi-Kanade factorization 18) is based on this representation, and
Brandt 1) tried to find this representation by iterations. In this paper, we directly
use the affine space constraint without searching for the centroid.

3. Outlier Removal

In order to locate incorrect tracking data in feature trajectories, we first detect
incorrect trajectories, or “outliers”, from among completely tracked trajectories.

Sugaya and Kanatani 15) fitted a 4-dimensional subspace to the observed trajec-
tories by RANSAC 2),3) and detected outliers using a χ2 criterion by observing the
error behavior of actual video tracking. They also modified their method specif-
ically for the affine space constraint 15). Our method is a direct consequence of
the principle given in Ref. 15), but we describe it here, because it plays a crucial
role for our method we introduce later.

3.1 Procedure
Let n = 2M , where M is the number of frames, and let {pα}, α = 1, ..., N , be

the observed complete trajectory vectors. Our outlier detection procedure goes
as follows:

(1) Randomly choose four vectors q1, q2, q3, and q4 from among {pα}.
(2) Compute the n× n moment matrix

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

176 Incorrect Feature Tracking Detection by Affine Space Fitting

M3 =
4∑

i=1

(qi − qC)(qi − qC)�, (6)

where qC is the centroid of {q1, q2, q3, q4}.
(3) Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the matrix M3, and {u1, u2,

u3} the orthonormal system of corresponding eigenvectors.
(4) Compute the n× n projection matrix

P n−3 = I −
3∑

i=1

uiu
�
i . (7)

(5) Let S be the number of points pα that satisfy
||P n−3(pα − qC)||2 < (n− 3)σ2, (8)

where σ is an estimate of the noise standard deviation.
(6) Repeat the above procedure a sufficient number of times �1, and determine

the projection matrix P n−3 that maximizes S.
(7) Detect those pα that satisfy

||P n−3(pα − qC)||2 ≥ σ2χ2
n−3;99, (9)

where χ2
r;a is the ath percentile of the χ2 distribution with r degrees of

freedom.
The term ||P n−3(pα−qC)||2, which we call the residual, is the squared distance

of point pα from the fitted 3-dimensional affine space. We regard the uncertainty
feature tracking as “noise”. If the noise in the coordinates of the feature points
is an independent Gaussian random variable of mean 0 and standard deviation
σ, the residual ||P n−3(pα − qC)||2 divided by σ2 should be subject to a χ2

distribution with n − 3 degrees of freedom. Hence, its expectation is (n − 3)σ2.
The above procedure effectively fits a 3-dimensional affine space that maximizes
the number of the trajectories whose residuals are smaller than (n− 3)σ2. After
fitting such an affine space, we detect those trajectories which cannot be regarded
as inliers with significance level 1%. In Ref. 15), the value σ = 0.5 is recommended
for KLT tracking.

�1 In our experiment, we stopped if S did not increase for 200 consecutive iterations.

3.2 Final Affine Space Fitting
After removing outlier trajectories, we optimally fit a 3-dimensional affine space

to the resulting inlier trajectories. Let {pα}, α = 1, ..., Ñ , be their trajectory
vectors. We first compute their centroid

pC =
1
Ñ

Ñ∑
α=1

pα. (10)

Then, we compute the n× n moment matrix

M =
Ñ∑

α=1

(pα − pC)(pα − pC)�. (11)

Let λ1 ≥ λ2 ≥ λ3 be the three largest eigenvalues of the matrix M , and
{u1,u2,u3} the orthonormal system of corresponding eigenvectors. The opti-
mally fitted 3-dimensional affine space is spanned by the three vectors of u1, u2,
and u3 starting from pC . We may alternatively use the SVD.

4. Reliability Test

4.1 Partial Trajectories
We assume that the αth feature point is correctly tracked only over κ of the M

frames. Its trajectory vector pα has n−k incorrect components (we put n = 2M

as before and put k = 2κ). We partition the vector pα into the k-dimensional part
p

(0)
α consisting of the k correct components and the (n−k)-dimensional part p

(1)
α

consisting of the remaining n−k incorrect components. Similarly, we partition �2

the centroid pC and the basis vectors {u1, u2, u3} into the k-dimensional parts
p

(0)
C and {u(0)

1 , u
(0)
2 , u

(0)
3 } and the (n−k)-dimensional parts p

(1)
C and {u(1)

1 , u
(1)
2 ,

u
(1)
3 } in accordance with the division of pα.
4.2 Reliability of Partial Trajectory
We test if each of the partial trajectories is sufficiently reliable. Let pα be

a partial trajectory vector. If noise does not exist, the deviation of pα from
the centroid pC should be expressed as a linear combination of u1, u2, and u3.

�2 This is merely for the convenience of description. In real computation, we treat all data as
n-dimensional vectors after multiplying them by an appropriate diagonal matrix consisting
of 1s and 0 s.

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

177 Incorrect Feature Tracking Detection by Affine Space Fitting

Hence, there should be constants c1, c2, and c3 such that

p(0)
α − p

(0)
C = c1u

(0)
1 + c2u

(0)
2 + c3u

(0)
3 (12)

for the correct part. In the presence of noise, this equality does not hold. If we
let U (0) be the k × 3 matrix consisting of u

(0)
1 , u

(0)
2 , and u

(0)
3 as its columns,

Eq. (12) is replaced by

p(0)
α − p

(0)
C ≈ U (0)c, (13)

where c is the 3-dimensional vector consisting of c1, c2, and c3. Assuming that
k ≥ 3, we estimate the vector c by least squares in the form

ĉ = U (0)−(p(0)
α − p

(0)
C), (14)

where U (0)− is the generalized inverse of U (0). It is computed by

U (0)− = (U (0)�U (0))−1U (0)�. (15)

The residual, i.e., the squared distance of point p
(0)
α from the 3-dimensional

affine space spanned by {u(0)
1 , u

(0)
2 , u

(0)
3 } is ||p(0)

α −p
(0)
C −U (0)ĉ||2. If the noise in

the coordinates of the feature points is an independent Gaussian random variable
of mean 0 and standard deviation σ, the residual ||p(0)

α − p
(0)
C −U (0)ĉ||2 divided

by σ2 should be subject to a χ2 distribution with k−3 degrees of freedom. Hence,
we regard those trajectories that satisfy

||p(0)
α − p

(0)
C −U (0)ĉ||2 ≥ σ2χ2

k−3;99 (16)

as outliers with significance level 1%.

5. Incorrect Feature Tracking Detection

5.1 Basic Algorithm
If a partial trajectory contains incorrectly tracked data, its residual from the

fitted affine space becomes large. So, we can detect such partial trajectories by
the reliability test of Eq. (16). Given a complete trajectory, we first choice the
feature point in the 1st frame as the base point and generate a partial trajectory
by adding the feature point in the 2nd frame. Then, we test its reliability by
Eq. (16) (Fig. 2 (a)). If the partial trajectory is judged to be reliable, we add

(a) (b) (c)

Fig. 2 Detection algorithm. Solid line is for a testing partial trajectory. Dashed line is for a
really tracked trajectory. Dotted line is for a ideally correct trajectory. (a) Reliability
test for the partial trajectory consisting of the image coordinates of the 1st and 2nd
frames (• for inlier frame; � for testing frame). (b), (c) Reliability test for a partial
trajectory consisting of correctly tracked feature positions (× for outlier frame).

the feature point in the 3rd frame and do the reliability test again. We repeat
this until the partial trajectory is judged to be unreliable (Fig. 2 (b)). If the
partial trajectory is judged to be unreliable, we remove the added point. For
the partial trajectory judged to be reliable, we add the next point and test its
reliability. Repeating this for all the frames, we can detect incorrectly tracked
data (Fig. 2 (c)).

The above procedure for detecting incorrect feature tracking is summarized as
follows:

Affine space fitting:
(1) Detect outliers for all the feature point trajectories pα, α = 1, ..., N using

the procedure described in Section 3.1.
(2) Fit a 3-dimensional affine space to the inlier trajectories. Compute the

n×n moment matrix M in Eq. (11). Let λ1 ≥ λ2 ≥ λ3 be the three largest
eigenvalues of the matrix M , and {u1,u2,u3} the orthonormal system of
corresponding eigenvectors.

Incorrect feature tracing detection:
For each outlier trajectory pα, we do the following:

(1) Consider the partial trajectory p
(0)
α consisting of the point in the 1st frame.

Let k = 2, κ = 2.
(2) Add the point in the κ-th frame, and let k ← k + 2.
(3) Test the resulting partial trajectory p

(0)
α if it is reliable, using Eq. (16). If

it is not judged to be reliable, remove the point in the κ-th frame, and let

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

178 Incorrect Feature Tracking Detection by Affine Space Fitting

k ← k − 2.
(4) Let κ← κ + 1, and go back to Step 2. Repeat this until all the frames are

tested.

The right hand of Eq. (16) is defined if the dimension of the partial trajectory
is larger than four, which means we need at least two frames for testing the
reliability. Therefore, we can theoretically detect an incorrectly tracked data
using the partial trajectory consisting of points in only the 1st and the target
frame. However, the residual may be very small. By accumulating the detected
reliable tracking points, however, we expect that our proposed method effectively
detects incorrectly tracked data.

5.2 RANSAC Approach
Feature point tracking often fails in the first several frames and begins to track

another point. Sometimes, the correctly tracked point may be longer than the
first part. If we extend a very short partial trajectory, the accuracy is generally
low.

In order to cope with this problem, we detect the longest partial trajectory
consisting of correctly tracked points by RANSAC 2),3). Instead of starting from
the first frame, we randomly select a base point and detect a correctly tracked
part. We select the longest partial trajectory as follows:
(1) Randomly select one frame, and consider the partial trajectory p

(0)
α con-

sisting of the point in the selected frame. Let k = 2, κ = 1, S = 0
(2) Add the point in the κ-th frame, and let k ← k + 2. If κ is the initially

selected frame, go back to Step 2 after updating κ as κ← κ + 1.
(3) Test the partial trajectory p

(0)
α if it is reliable, using Eq. (16). If it is not

judged to be reliable, remove the point in the κ-th frame, and let k ← k−2.
(4) Let κ← κ + 1, and go back to Step 2. Repeat this until all the frames are

tested.
(5) If k > S, then S ← k. Repeat the above procedure and determine the

partial trajectory p
(0)
α that maximizes S �1.

As we described, the RANSAC approach can detects the longest partial tra-

�1 In our experiment, we stopped if S did not increase for 5 consecutive iterations.

jectories consisting of correctly tracked points. This is an advantage against the
method which selects the first point as the base point. However, we sometimes
need to track the feature points extracted from the first frame. For example, if we
reconstruct a 3-D shape by the factorization method, we may manually choose
feature points which lay on the object corners and contuors in the first frame.
In this case, the method which selects the first point as the base point has an
advantage against the RANSAC approach. Users can select the two approaches
and uses together according to applications.

6. Simulations

6.1 Simulations for Perspective Effects
We assume an affine camera model, however, tracked feature points obtained

from real video sequences do not necessarily satisfy this assumption enough. In
order to confirm how our method was effective for such tracking data with a
perspective effect, we did experiment using simulated data.

We generated 91 3-D points on a quarter cylinder, and generated four types
of 30 frames tracking data by projected them onto an image plane assuming
four camera models with different perspective effects. Figure 3 (a)–(d) are the
feature points in the 15th frame computed from Eq. (17),

x =
X

1 +
Z tan θ

L

, y =
Y

1 +
Z tan θ

L

, (17)

and we set θ = 0◦, 10◦, 20◦, and 30◦, respectively. X, Y , and Z are the 3-D
position of the simulated data, and x and y are its projected 2-D position. L is
a constant for controlling perspective effects �2.

For four partial feature trajectories, which consist of the tracked data from the
10th frame to the 30th frame, shown by the symbol × in Fig. 3 (a)–(d), we moved
its positions by 5, 10, 25, and 50 pixels from their original positions, respectively,
then added random Gaussian noise of mean 0 and standard deviation 1 (pixel).
We detected outliers from these tracking data by using the method described in
Section 3, then we obtained 4, 18, 37, and 31 outliers including four true outliers

�2 In our experiment, we set L = 400, it is about 10 times of the depth range.

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

179 Incorrect Feature Tracking Detection by Affine Space Fitting

(a) θ = 0◦ (b) θ = 10◦ (c) θ = 20◦ (d) θ = 30◦

(e) (f) (g)

Fig. 3 (a)–(d) feature positions in the 15th frame projected by Eq. (17), θ = 0◦, 10◦, 20◦, and
30◦ (× for outliers). (e) The results of detecting incorrect tracking for the data set of
θ = 30◦. (f) expansion of (e). (g) The residuals for other outliers.

for the data sets of θ = 0◦, 10◦, 20◦, and 30◦, respectively. The reason why some
inliers are detected as outliers is the tracking data are not strictly satisfied an
affine camera model by a perspective effect.

For detected outliers, we applied our proposed method and confirmed our
method successfully worked for all data sets. Figure 3 (e) shows the results of
incorrect tracking detection for four outliers of the data set of θ = 30◦. The
horizontal and vertical axes show the frame number and the residual for the fit-
ted affine space, respectively. We can see that the residuals become large from
the 10th frame for all outlier trajectories. Figure 3 (f) shows the expansion of
Fig. 3 (e). The dotted line indicates the threshold computed by the right hand
of Eq. (16). All the residuals become larger than the threshold from the 10th
frame. We also checked the other data sets and confirmed that comparable re-
sults are obtained. From this, our method is effective for tracking data which do
not strictly satisfied an affine camera model. In Fig. 3 (g), on the other hands,
we show three residuals which are regarded as outliers by perspective effects,
for contrast one residual for the simulated outlier is plotted. As we can see, the

Table 1 Data set configurations.

number of frames correctly tracked frame
data1 5 1–3
data2 10 1–6
data3 15 1–8
data4 30 1–16

residuals gradually increase, and become larger than the threshold. However, the
residuals are generally small, so if we set the threshold more large then we may
avoid to detect inliers as outliers.

6.2 Stability of RANSAC Approach
We also experimented the stability of the RANSAC based method against

number of frames. We generated a simulation data by Eq.(17) with θ = 0,
and then manually generated four miss tracking data set which were shown in
Table 1. We decimated each number of frames from the 30 frames sequence, and
moved its positions by 5 pixels from their original positions, then added random
Gaussian noise of mean 0 and standard deviation 1 (pixel).

All data set include nearly 50% outliers. For each data set, we detected incor-
rect tracking frames by the RANSAC based method. We did 100 trials for each
data set, and visually confirmed that the RANSAC based method output the
correct results for all data set of all trials. From this result, the RANSAC based
method is stable for the number of frames.

7. Real Video Experiments

We test our method using real video sequences. Figure 4 (a) show three dec-
imated frames from a 100 frame sequences (320 × 240 pixels) of a static poster
scene taken by a moving camera. We detected 200 feature points and tracked
them using the Kanade-Lucas-Tomasi algorithm 19). Among them, 121 feature
points are completely tracked over the entire frames, and 6 are regarded as out-
liers. The symbol � in Fig. 4 indicates inlier positions, and the symbol× indicates
outlier positions.

Figure 4 (b)–(d) show the results of incorrect tracking detection for three out-
liers. The horizontal and vertical axes show the frame number and the residual
for the fitted affine space, respectively. The solid line indicates the residual of the

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

180 Incorrect Feature Tracking Detection by Affine Space Fitting

(a)

(b) (c) (d)

(e) (f) (g)

(h)

Fig. 4 (a) Three decimated frames of a 100 frame image sequence and 121 feature points
successfully tracked (� for inlier positions; × for outlier positions). (b), (c), (d) The
results of detecting incorrect tracking for the feature points starting from the 1st frame
(the feature point ID 1, 2, and 3). Solid line is for the residual of the fitted affine space;
dotted line is for the threshold; the box marks are for detecting frames for the correctly
tracked feature points. (e), (f), (g) The results of detecting the longest tracked feature
points (the feature point ID 1, 2, and 3). (h) Estimation of the missing positions for
the resulting longest partial trajectories (� for estimated positions; × for originally
tracked positions).

partial trajectory, which is computed by the left hand of Eq. (16). The dotted
line indicates the threshold computed by the right hand of Eq. (16). The box
marks indicate that the feature points in its frame are correctly tracked. In order
to remove outliers and detect incorrect tracking, we need to know the standard
deviation of noise ε. Theoretically, it can be estimated if the noise in each frame
is independent and Gaussian 8). In reality, however, strong correlations exist over
consecutive frames, so that some points are tracked unambiguously through-
out the sequence, while others fluctuate from frame to frame 15) as Sugaya and
Kanatani 14) pointed out. Considering this, we set the value σ for removing out-
liers and detecting incorrect tracking to be 0.5 and 0.3, respectively (including
the simulation experiment). We visually inspected all the outliers trajectories
frame by frame to see if they are really correct and confirmed that our method
worked correctly.

We also detected partial trajectories consisting of the points correctly tracked
through the longest frame sequence by the method described in Section 5. Fig-
ure 4 (e)–(g) show the result for the outlier trajectories in Fig. 4 (b)–(d). In
Fig. 4 (e), we visually inspected the result and noticed that some correctly tracked
feature points were not detected. However, we confirmed that all the detected
feature points were correctly tracked. From the result in Fig. 4 (f), we can see
that another feature point, not the point extracted from the 1st frame, are cor-
rectly tracked from the 3rd frame to the 61st frame. Figure 4 (g), we also confirm
that the same result are given in Fig. 4 (d). Using the trajectories obtained in
Fig. 4 (e)–(g), we estimated the missing parts of the feature trajectories by the
method of Sugaya and Kanatani 16). As we can see in Fig. 4 (h), the correct posi-
tions are obtained. We also computed the execution time for detecting incorrect
tracking. It took about 20 seconds for obtaining each of the results in Fig. 4 (b)–
(d), and 120 seconds for Fig. 4 (e)–(g). We used Intel Core2Duo E6700 2.66 GHz
for the CPU and Linux for the OS.

Figure 5 shows the result of applying the proposed method to a structure
from motion. Figure 5 (a) shows three decimated frames from a 150 frame se-
quence (640 × 480 pixels). We detected 200 feature points and tracked them.
Among them, 108 were completely tracked through the sequence. From them,
49 trajectories were regarded as outliers. From these outlier trajectories, we de-

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

181 Incorrect Feature Tracking Detection by Affine Space Fitting

(a)

(b) (c)

Fig. 5 (a) Three decimated frames of a 150 frame age sequence and 108 feature points success-
fully tracked (� for inlier positions; × for outlier positions). (b) The texture-mapped 3-
D shape reconstructed from the original 59 inlier trajectories. (c) The texture-mapped
3-D shape reconstructed after adding 49 corrected trajectories.

tected longest correct trajectories. Then, we extrapolated them by the method
of Sugaya and Kanatani 16).

We reconstructed the 3-D shape by factorization, assuming weak perspective
projection. Figure 5 (b) shows the front and the side views of the texture-mapped
3-D shape reconstructed from the original 59 inlier trajectories. Figure 5 (c) shows
the front and the side views of the texture-mapped 3-D shape reconstructed after
adding 49 corrected trajectories. From these results, we can see that the detailed
structure is reconstructed by detecting and correcting incorrect tracking data.

8. Concluding Remarks

We have presented a new method for detecting incorrect tracking data in a fea-
ture point tracking. We have detected incorrect parts by imposing the constraint

that under the affine camera model feature trajectories should be in an affine
space in the parameter space. Introducing a statistical model of image noise, we
have tested if a partial trajectory is sufficiently reliable. Then we have detected
incorrect partial trajectories.

From the simulation, we confirmed that our method works well for tracking
data which do not strictly satisfied an affine camera model. Using real video
images, we have demonstrated that our proposed method can detect incorrect
feature point tracking fairly well. We also confirmed the effectiveness of our
method using a shape from motion application example.

Acknowledgments This work was partially supported in part by the Min-
istry of Education, Culture, Sports, Science and Technology, Japan, under the
Grant in Aid for Young Scientists (B) (No.18700181), 2008. The authors thank
Kenichi Kanatani of Okayama University, Japan for helpful comments.

References

1) Brandt, S.: Closed-form solutions for affine reconstruction under missing data,
Proc. Statistical Methods in Video Processing Workshop, pp.109–114, Copenhagen,
Denmark (June 2002).

2) Fischler, M.A. and Bolles, R.C.: Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography, Comm.
ACM, Vol.24, No.6, pp.381–395 (June 1981).

3) Hartley, R. and Zisserman, A.: Multiple View Geometry in Computer Vision,
Cambridge University Press, Cambridge, U.K. (2000).

4) Huynh, D.Q. and Heyden, A.: Outlier detection in video sequences under affine
projection, Proc. IEEE Conf. Comput. Vision Pattern Recog., Vol.2, pp.695–701,
Kauai, HI, U.S.A. (Dec. 2001).

5) Ichimura, N.: Stochastic filtering for motion trajectory in image sequences using
a Monte Carlo filter with estimation of hyper-parameters, Proc. 16th Int. Conf.
Pattern Recog., Vol.4, pp.68–73, Quebec City, Canada (Aug. 2002).

6) Ichimura, N. and Ikoma, N.: Filtering and smoothing for motion trajectory of fea-
ture point using non-gaussian state space model, IEICE Trans. Inf. Syst., Vol.E84-
D, No.6, pp.755–759 (2001).

7) Jacobs, D.W.: Linear fitting with missing data for structure-from-motion, Comput.
Vision Image Understand, Vol.82, No.1, pp.57–81 (Apr. 2001).

8) Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and
Practice, Elsevier Science, Amsterdam, the Netherlands (1996).

9) Kanatani, K.: Motion segmentation by subspace separation and model selection,

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

182 Incorrect Feature Tracking Detection by Affine Space Fitting

Proc. 8th Int. Conf. Comput. Vision, Vancouver, Canada, Vol.2, pp.301–306 (July
2001).

10) Kanatani, K.: Motion segmentation by subspace separation: Model selection and
reliability evaluation, Int. J. Image Graphics, Vol.2, No.2, pp.179–197 (Apr. 2002).

11) Kanatani, K.: Evaluation and selection of models for motion segmentation, Proc.
7th Euro. Conf. Comput. Vision, Copenhagen, Denmark, pp.335–349 (June 2002).

12) Poelman, C.J. and Kanade, T.: A paraperspective factorization method for shape
and motion recovery, IEEE Trans. Patt. Anal. Mach. Intell., Vol.19, No.3, pp.206–
218 (March 1997).

13) Saito, H. and Kamijima, S.: Factorization method using interpolated feature
tracking via projective geometry, Proc. 14th British Machine Vision Conf., Vol.2,
pp.449–458, Norwich, UK (Sept. 2003).

14) Sugaya, Y. and Kanatani, K.: Automatic camera model selection for multi-
body motion segmentation, Proc. IAPR Workshop on Machine Vision Applications
(MVA 2002), pp.412–415, Nara, Japan (Dec. 2002).

15) Sugaya, Y. and Kanatani, K.: Outlier removal for motion tracking by subspace
separation, IEICE Trans. Inf. Syst., Vol.E86-D, No.6, pp.1095–1102 (June 2003).

16) Sugaya, Y. and Kanatani, K.: Extending interrupted feature point tracking for
3-D affine reconstruction, IEICE Trans. Inf. Syst., Vol.E87-D, No.4, pp.1031–1038
(2004).

17) Sugaya, Y. and Kanatani, K.: Multi-stage optimization for multi-body motion
segmentation, IEICE Trans. Inf. Syst., Vol.E87-D, No.7, pp.1935–1942 (2004).

18) Tomasi, C. and Kanade, T.: Shape and motion from image streams under orthog-
raphy — A factorization method, Int. J. Comput. Vision, Vol.9, No.2, pp.137–154
(Nov. 1992).

19) Tomasi, C. and Kanade, T.: Detection and Tracking of Point Features, CMU Tech.
Rep. CMU-CS-91-132 (Apr. 1991). http://www.ces.clemson.edu/˜stb/klt/

(Received October 3, 2008)
(Accepted March 15, 2009)

(Released September 24, 2009)

(Communicated by Akihiro Sugimoto)

Chika Takada received B.S. and M.S. degrees in computer
science in 2007 and 2009, respectively, from Toyohashi University
of Technology, where she studied computer vision.

Yasuyuki Sugaya was born in 1972. He received his M.S. and
Ph.D. in computer science from University of Tsukuba, Ibaraki,
Japan, in 1998 and 2001, respectively. After serving as Assistant
Professor of computer science at Okayama University, Okayama,
Japan, he is currently Lecturer of computer science at Toyohashi
University of Technology, Aichi, Japan. His research interests in-
clude image processing and computer vision. He received the IE-

ICE best paper awards in 2005.

IPSJ Transactions on Computer Vision and Applications Vol. 1 174–182 (Sep. 2009) c© 2009 Information Processing Society of Japan

