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Natural Image Matting with Membership Propagation

Weiwei Du†1 and Kiichi Urahama†2

We present a semi-supervised technique of object extraction for natural im-
age matting. At first, we present a novel unsupervised graph-spectral algo-
rithm for extraction of homogeneous regions in an image. We next derive a
semi-supervised scheme from this unsupervised algorithm. In our method, it
is sufficient for users to draw strokes only in one of object and background
regions. The semi-supervised optimization problem is solved with an iterative
method where memberships are propagated from strokes to their surroundings.
We suggest a guideline for placement of strokes by exploiting the same iterative
solution process in the unsupervised algorithm. We project the color vectors
with the linear discriminant analysis to improve the color discriminability and
speed up the convergence of the iterative method. Performance of the proposed
method is examined for some images and the results are compared with other
methods and ground truth mattes.

1. Introduction

Many techniques have recently been developed for natural image matting 1)–3)

where objects are extracted from photographs with natural backgrounds. These
matting methods can be used more easily than the standard technique called
the chroma-key matting which needs a specialized studio with a blue or green
background wall. Natural image matting techniques require no such a special
room and are applicable to arbitrarily photographed pictures.

Although the natural image matting techniques can be widely applicable to
various images, early methods 1),2) for it were practically hard to be used because
they require users to draw supplementary images called trimaps such as shown in
Fig. 1 (a) of which drawing is laborious and time-consuming. So, recently devel-
oped methods 3)–10) have become to accept only rough strokes as is illustrated in
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(a) trimap (b) strokes

Fig. 1 Examples of supplementary drawings 3).

Fig. 1 (b) instead of complex trimaps. These strokes, also called scribbles, can be
drawn easily and quickly by even unskilled users. They are, however, required to
be drawn in both of the foreground region and the background area as the same
as the trimaps.

We present, in this paper, a similar easily usable matting method by using a
technique of semi-supervised extraction of objects. In our method, it is sufficient
that strokes are drawn only in either objects or backgrounds. This is owing to
that our semi-supervised method is derived from a novel form of unsupervised
graph-spectral algorithm of cluster extraction type 11),12) in contrast to those of
cluster partitioning type 13),14) adopted in almost all matting methods.

Although the basic unsupervised scheme cannot extract a specific object of
a single homogeneous region in an image, it can detect inhomogeneous color
regions in the image. This detection of inhomogeneous color regions is useful for
guiding the placement of strokes in the semi-supervised method derived from the
unsupervised algorithm.

In matting methods based on rough strokes such as in Fig. 1 (b), places of
strokes are crucial for the performance of object extraction. Levin, et al. 4) have
recently presented a guiding scheme for placement of strokes in their matting
method where strokes are required to be drawn in both of foregrounds and back-
grounds as is in other existing methods. Their theoretical analysis of the guiding
scheme is excellent, however, their scheme requires for users to examine two
eigen-images and the guidance is not so easy to execute practically.

In this paper, we present a similar guiding scheme for our matting method. Our
scheme exploits an iterative solution process in an unsupervised object extraction
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4 Natural Image Matting

method. Our guiding scheme utilizes only the first eigen-image and so is simpler
and faster than Levin’s scheme.

2. Unsupervised Extraction of Homogeneous Color Regions

The main scheme proposed in this paper is a method for semi-supervised object
extraction from an image. This semi-supervised matting method is derived from a
novel graph-spectral algorithm for unsupervised cluster extraction from an image.
The distinct point in our method is that our algorithm is a cluster extraction type
in contrast to the cluster partitioning type algorithms 13),14) used in almost all
matting methods. We use here a term clusters as regions in an image with
homogeneous colors.

2.1 Unsupervised Cluster Extraction
Let the similarity between pixels i and j be sij = e−‖ai−aj‖2/σ2

a−‖ci−cj‖2/σ2
c

where ai is the spatial position of pixel i and ci = [Ri, Gi, Bi]T is its color. We
set sii = 0 as is common in graph spectral methods. We set the free parameters
σa and σc also in a popular way of graph spectral methods as σa = D̄a where
D̄a is the average of spatial distances between pixels in the window around the
pixel i and σc = D̄c where D̄c is the average of color distances from every color
of pixels in the strokes to its fifth nearest neighbor colors.

Connected components of pixels linked with large sij are homogeneous color
regions, i.e. clusters. An image generally includes multiple clusters which corre-
spond to objects or sub-regions in an object. The fraction xi of pixel i belonging
to such clusters can be evaluated with

max
∑

i

∑
j∈Wi

sijxixj

subj.to
∑

i

dix
2
i = 1

(1)

where di = max{∑j sij , ε} and Wi is a (2p+1)× (2p+1) square window around
pixel i. This equation expresses an unsupervised extraction of a cluster from an
image. If two pixels i and j are connected with large sij , then their xi and xj

become large simultaneously, i.e. they are extracted as the members in a cluster
which is hence composed of a connected component of such tightly linked pixels.

The novelty in Eq. (1) lies in di = max{∑j sij , ε} which differs from the basic
graph spectral algorithm of cluster extraction type 12) where di = 1 and also
differs from the spectral clustering of cluster partitioning type as is shown in the
next subsection. If we set ε sufficiently large, then di = ε and Eq. (1) reduces to
the basic graph spectral algorithm 12) because 1 in the constraint

∑
i dix

2
i = 1 in

Eq. (1) has no more means than a constant, i.e.,
∑

i dix
2
i = 1 in Eq. (1) can be

written as
∑

i dix
2
i = const . where const . is an arbitrary constant.

The basic graph spectral algorithm with di = 1 12), however, can extract only
spherical clusters. In contrast, its extended form in Eq. (1) can extract arbitrarily-
shaped clusters as is also mentioned in the next subsection.

The solution of Eq. (1) is a stationary point of its Lagrange function:

max
x

min
λ

∑
i

∑
j∈Wi

sijxixj − λ

(∑
i

dix
2
i − 1

)
(2)

Differentiating this function with x = [x1, . . . , xm]T and set the derivative to
zero, we get the solution of Eq. (2) as a generalized eigenvector of Sx = λDx

where S = [sij ] is the similarity matrix and D = diag(d1, . . . , dm).
Thus the solution of Eq. (1) is the first eigenvector of the normalized similarity

matrix D−1S. Every element in the first eigenvector is nonnegative, hence it can
be used for the membership. If ε = 0, then the first, i.e. maximal, eigenvalue is
1. When ε > 0, the maximal eigenvalue becomes smaller than 1, however still
nearly equal to 1.

A simple scheme for computing x is the power method:

x
(ξ+1)
i =

∑
j s̃ijx

(ξ)
j√∑

k dk

(∑
j s̃kjx

(ξ)
j

)2
(3)

where s̃ij = sij/di and ξ is an iteration counter.
Note that xi denotes the fraction of datum i belonging to the cluster and is

not the membership itself which must satisfies max{xi} = 1. Therefore, after the
convergence of the iteration of Eq. (3), we normalize xi as x̃i = xi/maxk{xk}
which is then the membership of pixel i in the cluster. If we incorporate this
normalization into Eq. (1), they are collectively expressed as
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max
∑

i

∑
j∈Wi

sijxixj
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∑
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2
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(4)

where xi takes the values between 0 and 1 in contrast to Eq. (1) where xi takes
small values 0 ≤ xi � 1.

2.2 Relationship with Spectral Clustering
The above scheme is a graph-spectral method of cluster extraction type. An-

other type is the spectral clustering of cluster partitioning type. The spectral
clustering is based on the Laplacian eigenmap expressed by

min
∑

i

∑
j∈Wi

sij(xi − xj)2

subj.to
∑

i

fix
2
i = 1

(5)

where fi =
∑

j∈Wi
sij . Equation (5) is rewritten as

max
∑
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sijxixj
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i

fix
2
i = 1

(6)

which has the same form as Eq. (1) with the only difference that di =
max{∑j sij , ε} in Eq. (1) while fi =

∑
j sij in Eq. (6).

The solution of Eq. (6) is the first eigenvector of F−1S where F =
diag(f1, . . . , fm) of which eigenvalue is 1. This eigenvector coincides with the so-
lution of Eq. (5) which is the last eigenvector of the normalized Laplacian matrix
with the minimal eigenvalue 0. In the spectral clustering such as the normalized
cuts, this principal eigenvector is discarded and the second eigenvector is used
for the clustering. As is well known, the spectral clustering algorithm can deal
with arbitrarily-shaped clusters.

This is the essential difference between our method and the spectral clustering.
In our method, the first eigenvector is used as the membership, while the spectral
clustering uses the second eigenvector of which some elements are positive and

some are negative, hence it cannot be used for the memberships.
Equation (1) reduces to the spectral clustering when ε = 0 while becomes the

basic graph spectral method for cluster extraction if ε is sufficiently large. Mixing
of these two extreme cases leads to Eq. (1) which is a new graph spectral method
of cluster extraction type and is able to extract arbitrarily-shaped clusters.

Thus the introduction of ε > 0 in Eq. (1) is crucial in our method for utilizing
its solution as the memberships and extracting clusters of arbitrary shapes. The
value of ε acts as a threshold for the degree

∑
j sij of graph node i. If the degree

is greater than ε, node i is included in a homogeneous region. For most images
we experimented, its adequate value is 1 ≤ ε ≤ 10 hence we set it manually in
this range, usually ε = 5.

2.3 Experimental Example
For instance, Fig. 2 (b) illustrates memberships for an image in Fig. 2 (a) ex-

tracted with the above unsupervised method. We set p = 5 and set the pa-
rameters σa and σc to the average distances between data as mentioned above.
Their values are σa = 10, σc = 10. We set ε heuristically to the value for ad-
equately dissecting homogeneous regions as ε = 5. In Fig. 2 (a), homogeneous
color regions exist in background areas in addition to the object (white peacock).
Region boundaries are vague because the membership is extremely fuzzy.

As is seen in this result, this unsupervised method cannot delineate a specific
object, e.g. the white peacock. So, this unsupervised scheme is generally insuf-
ficient for object extraction. Exceptional cases are images satisfying both the
following two conditions:
(1) Objects are composed of only inhomogeneous color regions.
(2) Background colors are homogeneous.

We can extract objects from such exceptional images by using the above un-

(a) image of peacock (b) memberships

Fig. 2 Homogeneous color regions.
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(a) image of spider web (b) memberships

Fig. 3 Example of image of unsupervisedly extractable objects.

supervised method. An image of spider webs in Fig. 3 (a) is such an example of
easily extractable objects. Its memberships are shown in Fig. 3 (b) of which nega-
tive is the membership of objects since plotted x̃i in Fig. 3 (b) is the membership
in homogeneous color regions which are backgrounds in this case.

3. Semi-supervised Extraction of Objects

We next derive a semi-supervised cluster extraction technique from the above
unsupervised method. In our semi-supervised matting method, it is sufficient for
strokes to be drawn in only one of the object and the background. If we draw
strokes in the object, then the object is extracted directly. Conversely if we draw
strokes in the background areas, then the background is extracted, from which we
can get the object as the complement of the background. Users can freely select
regions in which he/she draws strokes simpler and easier. This is favorable for
some images, for instance, including thin line objects such as the web in Fig. 3.

3.1 Semi-supervised Cluster Extraction
Let T be an area, that is a subset of pixels, of strokes drawn by a user. We fix

the value of xi to 1 at pixels i ∈ T . Then the normalization constraint in Eq. (1)
or in Eq. (4) becomes unnecessary and the Lagrange multiplier λ in Eq. (2) can
be fixed to an arbitrary value. The most appropriate setting is λ = 1 because
the maximal eigenvalue λ in Eq. (2) corresponding to the solution of Eq. (1) is 1
as was mentioned in Section 2.1.

If we fix λ in Eq. (2) to 1, then Eq. (2) becomes

max
x

∑
i/∈T

∑
j∈Wi

sijxixj −
∑
i/∈T

dix
2
i (7)

We solve this equation also with the iteration:

x
(ξ+1)
i =

∑
j∈Wi

s̃ijx
(ξ)
j (i /∈ T ) (8)

As this iteration proceeds, the membership xi propagates from stroke area T to
its surroundings. We call this process the membership propagation which is the
main routine in our matting method.

Note that xi in Eq. (7) takes the values between 0 and 1, i.e. this xi is the
membership itself, as the same as in Eq. (4).

3.2 Relationship with Label Propagation
This membership propagation resembles the label propagation popularly used

for semi-supervised learning for pattern recognition 15),16). The label propagation
is derived from the Laplacian eigenmap in Eq. (5). Since the minimal eigenvalue
of the Laplasian is 0 as was mentioned in Section 2.2, the semi-supervised form
of Eq. (5) becomes

min
∑

i

∑
j∈Wi

sij(xi − xj)2 (9)

which is the equation for the label propagation which is equivalent to a random
walk 16) used for the image matting 6).

Thus the label propagation or random walk is a semi-supervised form of the
spectral clustering of cluster partitioning type such as the normalized cuts. The
label function xi is harmonic 16). The regression of harmonic functions needs
labels to be given in both of the foreground and the background. On the other
hand, our membership propagation given by Eq. (7) is derived from the graph
spectral method of cluster extraction type given by Eq. (1). The membership
function is not harmonic and the membership propagation corresponds to a lazy
random walk. Our method allows labels to be given only at one of the foreground
and the background regions.

3.3 Projection of Color Vector
In the random walk matting 6), color vectors are projected with the locality

preserving projections (LPP) which is an unsupervised dimensionality reduc-
tion method, hence neglects the supervisory information given by user’s strokes.
We utilize that information here with the supervised dimensionality reduction
method. We adopt the linear discriminant analysis (LDA) with which we project
colors to 1-dimensional subspace. The procedure is summarized as follows:
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(1) Dilate strokes to surrounding areas with similar colors.
(2) Set a dilated region as one class and the remaining area as the other class
and execute the standard LDA for two classes to compute a projection vector q.
By using the obtained q, project the color of every pixel to fi = qT ci.
(3) By using fi, construct the pixel similarity sij = e−‖ai−aj‖2/σ2

a−(fi−fj)
2/σ2

f and
compute xi by using Eq. (8).

The dilation in the first step is a popular morphological filtering technique. By
this dilation, the strokes are broadened to get the area T as wide as possible. This
broadening of strokes increases the stability and reliability of the LDA. Before
projecting the colors with LDA, we transform the color space from RGB to more
uniform CIELAB space.

The projection vector q in the second step is calculated as follows:
1) We transform the color space from RGB to CIELAB as ci = [li, ai, bi]T .
2) We next calculate their averages c̄1 and c̄2 in each class, and centralize ci in
each class as c̃1i = ci − c̄1 and c̃2i = ci − c̄2.
3) Covariance matrices Ā1 and Ā2 of colors for each class are given by averaging
the covariance matrices at each pixel: A1i = c̃1ic̃

T
1i and A2i = c̃2ic̃

T
2i. We finally

average these two covariance matrices as Ā = (n1Ā1 +n2Ā2)/(n1 +n2) where n1

and n2 are the numbers of pixels in each class.
4) The projection vector q is given by q = A−1p where p = c̄1−c̄2. This concludes
the LDA procedure.

Projection of each color ci by the vector q obtained with this LDA increases
the discriminability between two classes, i.e. the object and the background.
Therefore the similarity sij in the above third step is more suitable for the object
extraction than the original sij computed directly from the pixel colors ci.

If we use the original color space ci, then we get an unsatisfactory matte shown
in Fig. 4 (b) for the image in Fig. 2 (a) even if we draw a long stroke in the
background as is shown in Fig. 4 (a). The projection of the color space with the
LDA is effective for our method. Similar effectiveness of color space projection
has also been reported for the random walk matting which uses the LPP for the
projection 6).

Another role of the LDA in our method is acceleration of the convergence of
Eq. (8). Since our method is iterative, setting of initial values is crucial for the

(a) long stroke (b) memberships

Fig. 4 Mattes obtained with original color space.

computational time needed for the convergence of xi. We use the above LDA also
for this setting of initial values of xi as x

(0)
i = 1/(1 + e−γ(fi−δ)) which is a rough

estimation of the membership xi from the projected value fi. This sigmoidal
function enhances the separation between two regions and serves for fast conver-
gence of the iteration. Additionally, in order to speed up the computation of each
step of the iteration of Eq. (8), we use a fast algorithm based on an approximate
spatial decomposition of sij

17). Furthermore in order to save the computation,
we stop the iteration at pixels where xi becomes greater than 0.99 or below 0.01,
and the iteration is continued only at the remaining pixels.

4. Placement of Strokes

Through the above iteration, the membership propagates easily within homoge-
neous color regions whereas they are hardly infiltrated into inhomogeneous areas.
Therefore, initial strokes must be drawn on each inhomogeneous region in addi-
tion to homogeneous ones within a prescribed area (either object or background)
to be extracted.

4.1 Guideline for Drawing Strokes
Since inhomogeneous segments are usually narrow, it is easy to draw strokes as

bridging over or touching into them. Thus the guideline is stated as: Choose one
of the object and the background regions and draw strokes in the inhomogeneous
areas in the selected region in the way that they touch a homogeneous area.

A little amount of strokes are sufficient owing to the effective propagation of
memberships as described above. Especially in Eq. (8), rough and sparse strokes
are sufficient owing to high propagation capability of memberships due to broad
windows Wi in our method. This broad window is another new point utilized in
our method.
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Note that the strokes should not be drawn in boundaries between objects and
backgrounds. If the strokes are drawn there, then the membership propagates
into both of the object and the background areas and we fail to extract the object.

4.2 Detection of Inhomogeneous Area
This guideline for placement of strokes requires detection of inhomogeneous

regions in an image. Fortunately, as was shown in Section 2.3, the unsupervised
algorithm in Section 2.1 can be utilized for this purpose. However its full con-
vergence needs many iteration steps and obtained eigen-images are too fuzzy to
visually detect inhomogeneous regions. For instance, convergence to Fig. 2 (b)
requires 300 iterations of Eq. (3). In order to save computational time, we set
ε in di excessively large for inhomogeneous regions to be extracted sufficiently
and quickly, this fast convergence enables us to stop the iteration of Eq. (3) early
before its full convergence.

Figure 5 illustrates 10-th iterant x
(10)
i for Fig. 2 (a) binarized as xi = 1 if

x
(10)
i > 0.001 else xi = 0. Black areas in Fig. 5 are inhomogeneous regions.
4.3 Drawing of Strokes
The procedure for drawing strokes is summarized as:

1) We execute the unsupervised algorithm and display the binarized 10-th iterant
x

(10)
i .

2) We choose one of the object and the background regions where strokes can be
drawn easily.
3) We draw some strokes in every major black area in the selected region in the
way that they touch a white area.

An example of strokes placed in the background area following this procedure
is shown in Fig. 6 (a) from which the membership propagates into the whole
background area. Obtained membership of the object (peacock) are illustrated
in Fig. 6 (b) which is better than Fig. 4 (b) even though the total area of strokes

Fig. 5 Inhomogeneous regions (black areas).

is lesser in Fig. 6 (a) than Fig. 4 (a).
Other examples of strokes are shown in the left column in Fig. 7 where the

right column shows binarized x10
i . Figures 7 (c) and (e) were experimented with

other existing methods 3),4). The number of pixels marked in Figs. 7 (c) and (e)
is smaller than other methods 3),4).

Memberships obtained with the strokes shown in Fig. 7 are illustrated in Fig. 8
where the left column shows initial values and the right are converged ones. Thus
we can get mattes by using our method with strokes shorter and lesser than other
methods where they must be drawn in both objects and backgrounds.

(a) strokes (b) memberships

Fig. 6 Strokes (left) and obtained memberships (right).

(a) spider lilly (b) 10-th iterant

(c) snapshot of girl (d) 10-th iterant

(e) flame (f) 10-th iterant

Fig. 7 Strokes in other example images.
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Fig. 8 Memberships.

5. Experiments

Mattes extracted with our method are compared with those obtained with the
method of Wang, et al. 3) and of Levin, et al. 4) for the images shown in Fig. 9
where the upper left is the image of a girl in Fig. 7 (c) and the upper right is
the image of fire flames in Fig. 7 (e), lower three images are new ones. Extracted
mattes are shown in Fig. 10 where the left are the mattes obtained with our
method, the middle are those of Wang, et al. 3) and the right are those of Levin,
et al. 4). The results for the first example of a girl are nearly the same for all
methods. For the second image of fire flames, the method of Levin, et al. fails
to extract the flame at the upper left side. For the third image of rabbit doll,
the method of Wang, et al. and that of Levin, et al. extract extra portions at
the middle left in the background. Finally the wheel and the ball in the last two
images are extracted crisply with our method. This tendency of crispness of the
matte which is often observed in our method, however, deteriorates transparent
mattes or gradual boundaries as is revealed below.

Finally, mattes obtained with our method are shown in Fig. 11 for all the im-

Fig. 9 Example images for comparison.

Fig. 10 Extracted mattes.
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Fig. 11 Benchmark images.

ages in the homepage “http://juew.org/data/data.htm” of Jue Wang. In Fig. 11,
the original color images are shown in the left column, the mattes obtained with
our method are shown in the middle column and the ground truth mattes given
in the homepage are shown in the right column. Our method is inclined to blur

fine structures such as thin hair lines and discretize the transparency or gradual
change of mattes at hair peripheries or see-through objects. The performance of
our method also deteriorates if close colors exist in both objects and backgrounds.
The last three images in Fig. 11 are such examples which are hard for our method
to extract objects in them. We interactively increase strokes in these images.

6. Conclusion

We have presented a semi-supervised image matting method and a guiding
scheme for the placement of strokes for the method. Some features of our method
are summarized as:
(1) Membership propagation over holes or gaps owing to broad windows.
(2) Strokes are sufficient to be drawn in either object areas or backgrounds.
(3) Facilitation of object extraction by projection of colors with the LDA.
(4) Effective initial values for membership propagation.
(5) Simple guidance for placement of strokes.

Although the second feature of sufficiency for strokes drawn only in one of
objects and background is a merit in our method, it deteriorates the accuracy
of the mattes near transparent boundaries. Especially our method is hard to
extarct obejcts including colors close to those in backgrounds. Refinement and
improvement for coping with these difficulties in our method are future subjects.
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