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Sequential pattern mining is a useful technique used to discover frequent subsequences as
patterns in a sequence database. Depending on the application, sequence databases vary
by number of sequences, number of individual items, average length of sequences, and av-
erage length of potential patterns. In addition, to discover the necessary patterns in a se-
quence database, the support threshold may be set to different values. Thus, for a sequential
pattern-mining algorithm, responsiveness should be achieved for all of these factors. For
that purpose, we propose a candidate-driven pattern-growth sequential pattern-mining algo-
rithm called FSPM (Fast Sequential Pattern Mining). A useful property of FSPM is that
the sequential patterns concerning a user-specified item can be mined directly. Extensive
experimental results show that, in most cases FSPM outperforms existing algorithms. An
analytical performance study shows that it is the inherent potentiality of FSPM that makes
it more effective.

1. Introduction

Sequential pattern mining is a technique used
to discover frequent subsequences as patterns in
a sequence database. Given a set of sequences
called a sequence database, where each sequence
is a list of items, and given a user-specified
support threshold MinSup, sequential pattern
mining’s task is to find all the frequent sub-
sequences, i.e., the subsequences whose occur-
rence frequency in the sequence database is not
less than MinSup 2). Note that if something is
said to be frequent, we mean its occurrence fre-
quency ≥ MinSup. Sequential pattern mining
algorithms are necessary for numerous applica-
tions. A running example found in Ref. 10) is
given below. A similar application on the Web
can be found in Ref. 12).
Example 1 (Running Example). The CPU,
memory, and hard disk are essential compo-
nents of a computer. The hard disk is far
slower than the CPU and memory, and has be-
come a bottleneck in modern computers. A so-
lution to the bottleneck problem is to discover
the frequently pursued sequences of access re-
quests (i.e., the access patterns) and to imple-
ment a prefetching cache based on those pat-
terns. To do this, sequential pattern mining
is necessary: One user’s access request log for
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one session is represented as a sequence of block
numbers; logs from all users form a sequence
database; users’ access patterns are mined in
this sequence database.

Most earlier algorithms for sequential pat-
tern mining are based on the Apriori prop-
erty 1) that any subsequence of a sequential
pattern must be frequent. Based on this
heuristic, a series of Apriori-based algorithms
such as AprioriAll 2), GSP 15), PSP 11), Spirit 7),
and SPADE 20) was proposed. This series
of algorithms is characterized by the candi-
date generation-and-tests that first generates
a set of candidates and then tests whether
each candidate is sufficiently supported. An-
other series of sequential pattern mining algo-
rithms are pattern growth algorithms such as
FreeSpan 9), WAPTree-based Web mining 6),12),
PrefixSpan 13),14), and SPAM 3),19). PrefixSpan
is a representative one that uses three strate-
gies for efficiently finding sequential patterns 5):
candidate sequence pruning, database parti-
tioning, and customer sequence reducing. With
PrefixSpan there is no need for candidate gener-
ation, and only recursive projects of databases
according to their prefixes are created. Pattern
growth algorithms have been shown to outper-
form the Apriori-based ones 14).

One challenge in sequential pattern mining
is to reduce the cost of scanning a sequence
database. Although PrefixSpan is one of the
fastest algorithms, we found that it suffers from
the cost of redundant scanning of the same
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data. For example, assume that the set of fre-
quent items is {a, b, c, d, e}, and an access
sequence S = bafdecg. PrefixSpan first divides
the database into five subsets according to the
five items: (1) ones with prefix a, (2) ones with
prefix b, ..., and (5) ones with prefix e. Then it
generates patterns. While generating the pat-
terns with prefix a, starting from a, S is scanned
once; and while generating the patterns with
prefix b, starting from b, S is scanned again.
The subsequences containing a are processed
twice. Considering that in the same time the
patterns with prefix a are being generated, we
could also generate patterns containing a, there
is really a lot of wasted work in PrefixSpan that
actually can be avoided.

Motivated by the above observation, we pro-
pose an algorithm called FSPM (Fast Sequen-
tial Pattern Mining). The basic idea of FSPM
is as follows. Given a sequence database SD, we
can mine all the patterns in SD by mining the
patterns containing each frequent item in SD
separately. For each frequent item, we can first
find the set of all such items that head the pat-
terns containing that frequent item, and then
grow patterns from short ones level by level,
starting from that set.

FSPM is a candidate-driven pattern-growth
algorithm. Utilizing the concepts of candidate
set and search space greatly reduces the cost of
growing patterns. FSPM is more efficient than
PrefixSpan. On the one hand, FSPM uses a
two-level problem partitioning strategy to re-
duce the cost incurred by PrefixSpan. For the
above example, FSPM first generates all pat-
terns containing a, and thereafter a need not be
considered. Similarly, after those containing b
have been generated, b need not be considered,
and so on. Thus the wasted work is eliminated.
On the other hand, FSPM uses a level-by-level
pattern-growing strategy to reduce the cost of
recursively projecting databases and make it
possible to generate as many patterns as pos-
sible by scanning the sequence database only
once. This strategy also assures that FSPM
uses memory resources more reasonably. We
found in our experiments that for PrefixSpan,
to recursively project databases costs too much,
and no matter how large a memory a computer
has, it uses only a small part of it, both of which
greatly degrade efficiency. Note that the previ-
ous version of PrefixSpan published in Ref. 13)
introduces a technique called bilevel projection,
which shares FSPM’s objective of reducing the

number of projections. However, since PrefixS-
pan with the bilevel projection is also a PrefixS-
pan algorithm, the differences between PrefixS-
pan and FSPM as stated above still hold.

A useful property of FSPM is that it can
be used to directly discover the patterns that
contain a user-specified item. Algorithms such
as PrefixSpan and SPAM mine a full set of
the patterns that reach a support threshold.
Algorithms in Refs. 10), 16), 18) mine a full
set of the patterns containing no subpatterns
with the same support. Algorithms in Refs. 3),
14) mine the patterns beginning with a user-
specified item. But for the running example, in
addition to all the patterns, the patterns that
contain a specific item are required. To the best
of our knowledge, there have been no efficient
methods developed for this purpose.

Extensive experiments comparing FSPM
with PrefixSpan have been conducted. Per-
formance was evaluated in terms of five fac-
tors, which were chosen based on the follow-
ing consideration. On the one hand, sequence
databases vary mainly in four dimensions. (1)
Depending on, e.g., the size of a sliding win-
dow 4),10),15), sequence databases vary by the
number of sequences. (2) Depending on the
type of application, sequence databases vary by
the number of individual items. For the run-
ning example, the number of individual items is
equal to the number of data blocks on the hard
disk. (3)(4) Depending on the characteristics of
users, sequence databases vary by the average
length of sequences and the average length of
potential patterns. On the other hand, given a
sequence database, a support threshold is nec-
essary so as to extract only the necessary pat-
terns. There are the five factors. The experi-
mental results demonstrate that FSPM is more
effective than PrefixSpan. An analytical per-
formance study shows that it is the inherent
potentiality of FSPM that makes it effective.

The remainder of the paper is organized as
follows: In Section 2, the sequential pattern-
mining problem is defined. In Section 3, FSPM
is stated and formally proved. The experi-
mental results and performance analysis are re-
ported in Section 4. The paper is concluded in
Section 5.

2. Problem Statement

Let I = {e1, e2, · · ·, em} be a set of all items.
A sequence S is an ordered list of items, de-
noted by < e

′
1e

′
2 · · · e

′
n >, where e

′
i ∈ I (i ≤ n).
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The number of instances of individual items in
a sequence is called the length of the sequence.
A sequence with length l is called a length-l se-
quence.

A sequence α = a1a2 · · · alα is called a sub-
sequence of another sequence β = b1b2 · · · blβ ,
denoted as α ⊆ β, if there exist integers 1 ≤
j1 < j2 < · · · < jlα ≤ lβ, such that ai = bji

for
i ≤ lα.

A sequence database, denoted by SD, is a
set of tuples <sid, S>, where S is a sequence,
and sid is its identifier. The support count of
a sequence α, denoted by supportSD(α), is the
number of tuples containing α in SD, defined as
| {<sid, S> | <sid, S> ∈ SD ∧ α ⊆ S} |. The
support of a sequence α, denoted by supSD(α),
is defined as supportSD(α) / | SD |.

Given a real number MinSup (0 ≤ MinSup ≤
1) as support threshold, a sequence α is called a
sequential pattern in SD if supSD(α) ≥ MinSup.
In this case, α is called a MinSup-pattern, or a
frequent pattern, or simply, the pattern.
Problem Statement 1. The problem of se-
quential pattern mining in this paper is as fol-
lows. Given a sequence database SD and a sup-
port threshold MinSup, mine the complete set
of MinSup-patterns of SD.
Example 2. Continuing with the running ex-
ample, let us consider the following hard disk
access log data. Each record in the log is of the
format <UserId, BlkNo>. For simplicity, the
set of BlkNos is assumed to be {a, b, c, d, e, f,
g, h, i}, and the set of UserIds is assumed to be
{100, 200, 300, 400, 500}:
<100, f> <200, c> <200, i> <100, e> <200,
a> <500, b> <300, f> <200, f> <300, c>
<300, b> <100, b> <300, e> <300, a> <300,
d> <400, b> <400, h> <200, e> <400, e>
<200, d> <100, a> <400, c> <100, d> <400,
a> <400, f> <400, d> <500, c> <500, f>

We can divide the log data into access se-
quences based on UserId. The resulting access
sequence database is shown in Table 1. There
is a total of five access sequences. The access
sequence of user 100, febad, is a length-5 se-
quence, while fd and fe are two subsequences
of it. fe is a 60%-pattern because it gets sup-

Table 1 A sequence database SD.

UserId Hard disk access sequences
100 f e b a d
200 c i a f e d
300 f c b e a d
400 b h e c a f d
500 b c f

port from the three access sequences of user 100,
200, and 300.

3. Mining Patterns by FSPM

In this section, accompanied first by explana-
tions using Example 2 (assume MinSup = 0.6),
FSPM is systematically stated. Then, an ex-
ample is given to illustrate it. Finally, consid-
erations for its implementation are presented.

3.1 The Algorithm FSPM
FSPM consists of three main operations: par-

titioning problems into two levels, collecting
support counts in projected databases, and gen-
erating patterns.

3.1.1 Problem partitioning
Suppose that we are mining frequent sequen-

tial patterns in the environment given in Ex-
ample 2 (hereafter, for simplicity we will use
“pattern” instead of “frequent sequential pat-
tern”). Support counts are first collected: {a:4,
c:4, d :4, e:4, b:4, f :5, h:1, i :1}; note that the
order of items is not important. Extracting the
frequent items we have list FIList = <a, c, d, e,
b, f >, each element of which is also a length-1
pattern. According to FIList, we can divide the
set of patterns in SD into six disjoint subsets:
1) the ones that contain a; 2) the ones that
contain c but do not contain a; ....; 6) the ones
that contain f, but do not contain a-b. Accord-
ingly, the patterns related to the six subsets can
be mined by constructing six new databases de-
rived from SD : 1) the sequences containing a;
2) the sequences containing c, but with item a
removed; ...; 6) the sequences containing f, but
with all items before f removed. Motivated by
this idea, the problem of mining patterns can
be divided into a set of subproblems as follows:
Lemma 1 (Level 1 problem partitioning).
Given a sequence database SD. Let FIList =
{x1, x2, · · ·, xn} be a complete list of the fre-
quent items in SD. The set of patterns (re-
call that we use the word “pattern” in place of
the phrase “frequent sequential pattern”) in SD
can be divided into n disjoint subsets. The ith
(i ≤ n) subset, denoted by PSetT(xi), includes
the patterns that contain xi, but do not contain
xj (j < i).
Proof. By the Apriori heuristic, patterns in SD
are solely composed of items in FIList. On the
other hand, for any x ∈ FIList, there exists at
least one pattern containing x: x itself. Thus
the complete set of patterns in SD can be parti-
tioned into such n disjoint subsets that the ith
(i ≤ n) subset includes patterns that contain
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xi, but do not contain xj (j < i). So we have
the lemma.
Corollary 1 (Identifying patterns in SD).
Given a sequence database SD with FIList =
{x1, x2, · · ·, xn}. The complete set of patterns
in SD can be mined by identifying PSetT(xi)
(i ≤ n) separately and in order.

For Example 2, the patterns can be mined by
identifying PSetT(a) = {a, ad, ca, ea, ba, cad,
ead, bad}, PSetT(c) = {c, cd, cf}, PSetT(d)
= {d, ed, fd, fed, bd}, PSetT(e) = {e, fe},
PSetT(b) = {b}, and PSetT(f) = {f} separately
and in order. Next we define some terms related
to identifying patterns.
Definition 1 (Target item, seed, domain).
Given a sequence database SD with FIList =
{x1, x2, · · ·, xn}. Assume we are identifying
PSetT(xi) (i ≤ n). Item xi is called the target
item. The complete set of such sequences in SD
that contain xi, but with xj (j < i) removed, is
called xi’s domain and denoted by Domain(xi).
{xi, xi+1, · · ·, xn} is called a seed set and is
denoted by Seed(xi).

For Example 2, we have six domains: Do-
main(a) = {febad, ciafed, fcbead, bhecafd},
Domain(c) = {cifed, fcbed, bhecfd, bcf}, Do-
main(d) = {febd, ifed, fbed, bhefd}, Domain(e)
= {feb, ife, fbe, bhef}, Domain(b) = {fb, fb, bhf,
bf}, and Domain(f) = {f, if, f, hf, f}. Given
a target item, say item d, PSetT(d) can be
mined in the Domain(d). At that time, we
need to know the complete set of such items
that head patterns in PSetT(d), which is called
the FIRST item set with regard to item d. For
defining and calculating the FIRST we intro-
duce the concepts of prefix and maximal prefix.
Definition 2 (Prefix and maximal prefix).
Given a sequence α = e1e2 · · · elα . ek (k ≤ lα)
is an item in α. A sequence β = e

′
1e

′
2 · · · e

′
k is

called a prefix of α with regard to ek, and is
denoted by α[1 : k] or α[ek] for simplicity, if
and only if e

′
i = ei for i ≤ k. In the case of

ej �= ek (k < j ≤ lα, or k = lα), α[ek] is called
the maximal prefix, denoted by α[ek]max.

For example, given the item c and a se-
quence α = abcdecfg, both abc and abcdec are
its prefixes, and are represented by α[1 : 3] and
α[1 : 6], respectively. The latter is the maximal
prefix, denoted by α[c]max.
Definition 3 (FIRST set). Given a target
item x. Let PSetT(x) = {α1, α2, · · ·, αm}.
Item set {f1, f2, · · ·, fn} is called the FIRST
item set with regard to x, denoted by FIRST(x),

if and only if (1) for any i ≤ n, there exists
j ≤ m, fi = αj [1 : 1]; (2) for any i ≤ m, there
exists j ≤ n, αi[1 : 1] = fj .

For Example 2 we have FIRST(a) = {a, b,
c, e}, FIRST(c) = {c}, FIRST(d) = {b, d, e,
f}, FIRST(e) = {e, f}, FIRST(b) = {b}, and
FIRST(f) = {f}.
Lemma 2 (Calculate FIRST). Let x be the
target item, and Domain(x) = {γ1, γ2, · · ·, γp}.
FIRST(x) is equal to the complete set of fre-
quent items in the maximal prefix set {γ1[x]max,
γ2[x]max, · · ·, γp[x]max }.
Proof. (1) Let e ∈ FIRST(x). By Definition 3
and Lemma 1, e ∈ PSetT(x) if e = x, and ex
∈ PSetT(x) if e �= x. Thus, by the definition
of maximal prefix, e must be frequent in the
maximal prefix set. (2) Let e be frequent in the
maximal prefix set. By Lemma 1, ex (e �= x) or
e (e = x) ∈ PSetT(x). By Definition 3 we know
that e ∈ FIRST(x). So we have the lemma.

Applying this lemma to Example 2, taking a
as a target item, the maximal prefix set {feba,
cia, fcbea, bheca} is found first, then sequences
in it are scanned, and finally, FIRST(a) = {a, b,
c, e} is obtained. When we have obtained the
FIRST, using elements in it we can partition
the pattern mining problem further by Lemma
3 stated below.
Lemma 3 (Level 2 problem partitioning).
Let x be a target item, and FIRST(x) = {f1,
f2, · · ·, fm}. PSetT(x) can be divided into m
disjoint subsets. The ith subset (i ≤ m) con-
tains the patterns with prefix fi, denoted by
PSetF(fi).
Proof sketch. It follows from Definition 3.

For Example 2, taking d as the target item,
we have FIRST(d) = {b, d, e, f}. Accordingly,
PSetT(d) can be divided into four subsets:
PSetF(b) = {bd}, PSetF(d) = {d}, PSetF(e)
= {ed}, and PSetF(f) = {fd, fed}.

In summary, the problem of mining sequen-
tial patterns can be divided into two levels. For
Example 2, the first level is to take each item
in FIList = {a, c, d, e, b, f} as a target item to
generate the corresponding PSetT separately.
Given a target item, its PSetT is generated by
calculating the FIRST set first, and then, in the
second level, generating PSetF for each item in
FIRST.

3.1.2 Collecting Support Counts in
Projected Databases

PSetF can be generated by generating
length-(l+1) patterns from a length-l pattern
that has already been mined. The items that
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qualify for attachment to the length-l pattern,
called the qualified items, are the items that are
sufficiently supported in the projected database
of length-l pattern.
Definition 4 (Projected database). Let α
be a pattern in Domain(x). The α-projected
database, denoted by Domain(x)|α, is the set
of suffixes of sequences in Domain(x) with re-
gard to α. The term suffix is defined as fol-
lows. Given a sequence ϕ = e1e2 · · · en. Let
β = a1a2 · · · am (m ≤ n) be a subsequence of
ϕ, and am = em′ (m ≤ m

′
). Sequence γ =

em′+1em′+2 · · · en is called the suffix of ϕ with
regard to β, and is denoted by γ = ϕ/β.

For example, given ϕ = abcdecfg and β =
abc, decfg is the suffix of ϕ with regard to β, as
represented by abcdecfg/abc.

For Example 2, take d as target item, and f
as α, then Domain(d)|f = {ebd, ed, bed, d}.
Definition 5 (Support count). Let x be a
target item, α be a pattern in Domain(x), and
β be a sequence with prefix α. The support
count of β is the number of sequences γ in
Domain(x)|α such that β ⊆ αγ, denoted by
supportDomain(x)|α(β).

Following the above example, let α = f , β =
fe. By definition, supportDomain(d)|α(β) = 3.
Lemma 4 (Collect support counts). Let x
be a target item, α and β be two patterns in
Domain(x) such that α is a prefix of β. Then
supportDomain(x)(β) = supportDomain(x)|α(β).
Proof sketch 14). This lemma states that to col-
lect the support count of a sequence β, only the
sequences in Domain(x) sharing the same pre-
fix α should be considered. Furthermore, only
those suffixes with the prefix being a super-
sequence of β should be counted. The claim
follows from the related definitions.

Applying this to Example 2, by collecting the
support count of the item e in Domain(d)|f , we
know that e is frequent in Domain(d)|f . There-
fore we can generate pattern fe from f. Simi-
larly we can generate pattern fed from fe by col-
lecting the support count of d in Domain(d)|fe.
These are justified by Lemma 4.

Note that Definition 5 and Lemma 4 are the
same as those given in Ref. 14), except that here
we deal with a target item’s domain, rather
than with the whole database.

3.1.3 Generating Patterns in PSetF
To make sure each generated pattern includes

the target item, and also to be efficient, we
introduce the concepts of candidate set and

search space.
Lemma 5 (Candidate set, search space).
Given a sequence database SD with FIList =
{x1, x2, · · ·, xn}. Let xi (i ≤ n) be the target
item, and α a length-l pattern in Domain(xi).
α+ = {β1, β2, · · ·, βm}, the complete set of
length-(l+1) patterns with prefix α, is to be gen-
erated. The qualified items, QIS(α) = {β1/α,
β2/α, · · ·, βm/α}, need to be determined. The
set of subsequences where QIS(α) is searched is
called the search space and is denoted by SS(α).
The set of items that can be members of QIS(α)
is called the candidate set and is denoted by
CS(α). Candidate set and search space are de-
termined in four cases (called “states”):

1. Find-FIRST (α = Null): In this state,
the FIRST(xi) is determined. SS(Null)
= {γ1[xi]max, γ2[xi]max, · · ·, γp[xi]max},
where {γ1, γ2, · · ·, γp} = Domain(xi).
CS(Null) = Seed(xi).

2. Pre-Target (xi � α): SS(α) = SS(Null)|α.
CS(α) = QIS(α−), where α− denotes the
length-(l-1) prefix of α.

3. Is-Target (xi � α[1 : l − 1] ∧ α[l : l] =
xi): SS(α) = Domain(xi)|α, and CS(α) =
Seed(xi).

4. Post-Target (xi ⊆ α[1 : l − 1]): SS(α) =
Domain(xi)|α. CS(α) = QIS(α−).

Proof. We give a proof for each state.
1. Find-FIRST: SS(α) and CS(α) follow from

Definition 3 and Lemma 2.
2. Pre-Target: Since any pattern has to in-

clude the target item, any item that is not fre-
quent in the maximal prefix set cannot be a
candidate in this state. So we have the SS(α).
On the other hand, assume e ∈ QIS(α), but e /∈
QIS(α−). This means that αe is a pattern, but
α[1 : l − 1]e is not. With the Apriori heuristic,
this is impossible. So we have the CS(α).

3. Is-Target: Since in this state the tar-
get item has been included, any item in Do-
main(xi)|α can be a candidate to generate α+.
So we have the SS(α). Since the QIS needs to
be renewed, we have the CS(α).

4. Post-Target: SS(α) follows from derivation
in State 3, CS(α) in State 2.

So we have the Lemma.
For Example 2, take c as the target item,

Domain(c) = {cifed, fcbed, bhecfd, bcf}. When
generating the FIRST(c), we have SS(Null) =
{c, fc, bhec, bc} and CS(Null) = {c, d, e, f, b}.
Searching SS(Null) we find FIRST(c) = {c}.
Since c is the target item, we enter state 3, and
have SS(c) = {ifed, bed, fd, f} and CS(c) =



3370 IPSJ Journal Dec. 2006

CS(Null). Searching SS(c) we obtain length-2
patterns {cd, cf}. Here we have used the short
pattern c to generate long ones cd and cf. The
pattern growth method is justified as follows.
Lemma 6 (Generate PSetF). Let f be a
member of a given FIRST item set. A pattern
with prefix f belongs to PSetF(f) if and only if
it is generated by the following two steps and it
is in either Is-Target or Post-Target state. (1)
f is the length-1 pattern. (2) Let α be a length-l
pattern (l ≥ 1), and QIS(α) = {q1, q2, · · ·, qp}.
Then {αq1, αq2, · · ·, αqp} is the complete set
of length-(l+1) patterns with the prefix α.
Proof sketch. (Direction if). The two steps
generate a pattern, according to the Apriori
heuristic. The generated pattern has the pre-
fix f , according to Step 1. Since it is in either
Is-Target or Post-Target state, it contains the
target item. By this we show that a pattern is
in PSetF(f) if it is generated by the two steps,
and is in either Is-Target or Post-Target state.
(Direction only-if) Let β = b1b2 · · · bn be any
pattern in PSetF(f). Since β contains the tar-
get item, according to Lemma 5, it must be in
either Is-Target or Post-Target state. Next we
prove that β can be generated by the two steps.
Step 1 assures that subpattern β[1 : 1], which is
the item f , can be generated. Assume β[1 : l] (1
≤ l < n) is the subpattern that has been gener-
ated. By the Apriori heuristic, bl+1 is frequent.
Thus bl+1 ∈ QIS (β[1 : l]), and thus Step 2 can
generate β[1 : l + 1]. By this we show that if a
pattern is in PSetF(f), then it is in either Is-
Target or Post-Target state, and is generated
by the two steps. Thus we have the lemma.

3.1.4 Algorithm FSPM
The algorithm FSPM is given in the next

page, and its correctness and completeness can
be justified on the basis of Theorem 1. We have
also compared the results of FSPM with those
of PrefixSpan using datasets, and found that
they have the same results.
Theorem 1 (FSPM). Given a sequence data-
base SD, a sequence α in SD is a sequential
pattern if and only if FSPM identifies it as a
sequential pattern.
Proof sketch. (Direction if). Given a target
item x, a length-l sequence α (l ≥ 1) is iden-
tified as a pattern by FSPM if and only if α
is a pattern in the projected database of its
length-(l-1) prefix α− in Domain(x). When l
= 1, the length-0 prefix of α is α− = Null,
and the projected database is Domain(x) itself.
So, α is a pattern in Domain(x). When l >

1, according to Lemma 4, supportDomain(x)(α)
= supportDomain(x)|α− (α). Therefore, if α is a
sequential pattern in Domain(x)|α− , it is also
a sequential pattern in Domain(x). Consider-
ing that the above is conducted for every tar-
get item, we have shown that a sequence α is
a sequential pattern if FSPM identifies it as a
sequential pattern.

(Direction only-if). Corollary 1, Lemma 3,
and Lemma 6 guarantee that FSPM identifies
the complete set of patterns in SD.

So we have the theorem.
3.2 An Example for Illustrating FSPM
In this subsection we use Example 2 to illus-

trate FSPM. For the same database SD given
in Table 1 and MinSup = 0.6, FSPM behaves
as follows.

1. Scan SD to find all the frequent items, and
we have FIList = <a:4, c:4, d :4, e:4, b:4,
f :5>. Each item in FIList is a length-1
pattern.

2. Remove from SD the items that are not in
FIList.

3. First take the item a as the target item.
Searching the maximal prefix set {feba, ca,
fcbea, beca} we have FIRST(a) = {a, b, c,
e}, which is used as the Level(1), as shown
in Fig. 1.

4. Stamp each pattern with a state. The state
of item a is stamped with “α[1 : 1] is the
target”, and others with “Target has not
been included”.

5. Grow patterns. For pattern a, the level 2
items (i.e., the items that qualify to be at-
tached to a to form length-2 patterns with
prefix a) are searched for among {d, fed, d,
fd}, and the candidates are in FIList = <a,
c, d, e, b, f >. d is found to be the level
2 item, and it is stamped with the state
“Target has been included”. For pattern b,
the level 2 items are searched for among {a,
ea, eca}, and the candidate set is {a, b, c,
e}. The level 2 item is found to be a, and
it is stamped with the state “α[2 : 2] is the

Fig. 1 Mining sequential patterns level by level.
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target”. Similarly, for both pattern c and
e, the level 2 item is a, and each is stamped
with the state “α[2 : 2] is the target”.

6. Go to level 2. For each level 2 item, FSPM
does the same as stated in Step 5. Then the
length-3 patterns are generated, as shown
in Fig. 1.

7. Finally we have the results for target a:
{a, ad, ba, bad, ca, cad, ea, ead}.

8. For the remaining target items c, d, e, b,
and f, the above operations are repeated.
The results are {c, cd, cf}, {d, ed, fd, fed,
bd}, {e, fe}, {b}, {f}.

Note that PrefixSpan gives the results {a,
ad}, {b, ba, bd, bad}, {c, ca, cd, cf, cad}, {d},
{e, ea, ed, ead}, and {f, fd, fe, fed}. We have
the same pattern set. But they are output in
different order.

3.3 Considerations for Implementa-
tion

One implementation consideration concerns
how to determine the domain of a target item.
Obviously it is inefficient to search the whole
database whenever a new target item is to be
processed. A solution we have used is the data
structure shown in Fig. 2. All frequent items
and their support counts are held in the Header,
one record per frequent item. Starting from the
Link field, all the instances of a frequent item
are linked into a list. Note that this is not a
special data structure like the FP-tree 8), but a
very simple and classic one.

Another consideration concerns how to make
the projected databases fit into the memory.
Given a target item, starting from its FIRST
item set, patterns grow level by level. Since one
short pattern may grow into multiple long ones,
for a large sequence database, the new level
may become too wide to fit into the memory.
A solution we have used is as follows. When
the number of items on a level is larger than a
predefined threshold, the items are divided into
several groups, and patterns grow in the unit of
the group. We found that the size of set FIRST
is a suitable candidate for the threshold. Note

Fig. 2 Data structure used in our implementation.

that second-level problem partitioning gives us
the flexibility to divide a level into groups.

The last consideration concerns how to make
the sequence database fit into the memory. One
technique is to process one target item at a
time, which would take only the necessary se-
quences into the memory. In addition, the vir-
tual memory provided by operating systems can
be utilized. Here, a paging file on a hard disk is
used as an extension of the memory, which can
be as large as the hard disk can provide. But
as our experimental results in the next section
suggest, at that time the bottleneck would then
be the CPU rather than the memory.

4. Performance Study

We have conducted experimental and analyt-
ical performance studies. In this section we dis-
cuss the results of the performance study.

4.1 Analyzing the Efficiency of FSPM
FSPM’s efficiency can be examined based on

its properties.
4.1.1 Level-by-level Pattern Growing
On the one hand, FSPM adopts the pattern-

growing strategy as proposed in Ref. 14).
Therefore, as proved in Ref. 14), FSPM has the
potential to be more efficient than the Apriori-
like algorithms. On the other hand, FSPM
grows patterns in the unit of the level; a level
generally contains a lot of prefixes. What is the
merit of the level-by-level strategy? PrefixS-
pan grows patterns from one prefix at a time.
As the average length of sequences or potential
patterns in a sequence database increases, or
as the support threshold decreases, PrefixSpan
tends to recursively project databases with too
high a frequency. As shown in the next section,
this would seriously degrade PrefixSpan’s per-
formance. By contrast, FSPM tends to be less
affected.

As stated in Section 1, technique bilevel pro-
jection 13) can be used to reduce the number of
projections. Unfortunately, its authors found
that this technique is ineffective 14): “Based on
our recent substantial performance study, the
role of bilevel projection in performance im-
provement is only marginal in certain cases, but
can barely offset its overhead in many other
cases. Thus, this technique is dropped from
the PrefixSpan options and also from the per-
formance study.” They finally proposed Pre-
fixSpan with pseudo projection. Therefore we
will also not consider the bilevel projection any
further and will use PrefixSpan with the pseudo
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projection in our performance study.
4.1.2 Two-level Problem Partitioning
FSPM’s two-level problem partitioning strat-

egy helps greatly to reduce the redundant scan-
ning of sequence data. For sequential pattern
mining, a sequence may be scanned several
times, which would take too much time, and
seriously degrade the efficiency of mining algo-
rithms. A measure of the efficiency would be
how many items on average need to be scanned
to generate one pattern. With FSPM, a tar-
get item need not be considered after it is pro-
cessed. This implies that FSPM generates as
many patterns as possible in one scanning pass,
with the result that FSPM is more efficient
than PrefixSpan. Results given in Section 3.2
support this assertion. Taking the patterns
with subsequence ad as an example, PrefixS-
pan scans a sequence database four times, while
FSPM scans it only once.

4.1.3 Candidate-driven Pattern Min-
ing

The candidate-driven property of FSPM
makes its pattern-growing efficient. When ex-
tending a short pattern to its next level, the
items that are qualified to be appended to that
pattern have to be found by scanning its pro-
jected database. For FSPM, since the candi-
date set is known beforehand and its size is
expected to be small, an efficient solution for
searching for the items is possible, especially if
the candidate set keeps shrinking. This is be-
cause (1) the seed set, which is the initial can-
didate set for a given target item, shrinks as we
process items in FIList one by one, and (2) long
patterns generally tend to be rare 14), implying
that as patterns become longer, qualified items
become rarer, and the candidate set becomes
smaller.

The search spaces keep shrinking too, mak-
ing the candidate-driven property more effec-
tive. As with PrefixSpan, as patterns grow,
sequences in a projected database become
shorter, and the search space shrinks. In ad-
dition, since the candidate set keeps shrink-
ing, the items outside the candidate set are re-
moved from the domain of a target item, and
the search space shrinks.

4.1.4 Reasonable Memory Resource
Usage

Due to its level-by-level pattern-growing
property, compared with PrefixSpan’s genera-
tions of long patterns from one short pattern
each time, FSPM has the potential to use mem-

ory resources more reasonably. For PrefixSpan
and other algorithms, minimizing the usage of
memory resources is a major objective. We
think that minimizing memory use just wastes
the memory resources. In fact, we advocate full
use of the memory resources a computer can
provide. Since sequential pattern mining algo-
rithms are all CPU-bound 3), we believe that
reasonable use of memory resources is essential.
As shown in the next section, this reasonable
use contributes to high performance.

The above analysis indicates why FSPM’s
performance is excellent: it is not because of
implementation tricks; it is inherent in the al-
gorithm itself. Based on the above analysis we
are convinced that FSPM has the potential to
be an effective algorithm.

4.2 Experimental Comparison of
FSPM and PrefixSpan

The main reason we conducted experiments
that compared FSPM with PrefixSpan is its
significant influenence as a sequential pattern-
mining algorithm.

4.2.1 Experimental Environment
The synthetic sequence databases we used

were generated by the IBM data set gener-
ator at the IBM Almaden Research center
(http://www.almaden.ibm.com/software/quest
/Resources/index.shtml). This generator has
been used in most data mining studies.

A real sequence database downloaded from
http://tds.cs.byu.edu/tds/, which is a disk I/O
trace on Redhat Linux OS, collected over 15
consecutive days using a text editor, a compiler,
a browser, email, and a desktop, was also used
to examine performance in terms of the num-
ber of individual items. FSPM functioned as
usual, but PrefixSpan did not function at all.
For PrefixSpan, as explained below, this is be-
cause the number of individual blocks was too
large, as suggested by a piece of a hard disk
access sequence: “14402355 8460075 491549”.

In the experiments, we evaluated perfor-
mance in terms of (1) support threshold, (2)
size of a sequence database, (3) average length
of sequences, (4) average length of potential
patterns, and (5) number of individual items.
Accordingly, we used and varied experimen-
tal parameters as follows. The number of se-
quences in a sequence database, denoted by let-
ter D, varied from 100 K to 500 K in steps of
100 K. The average length of sequences in a
sequence database, denoted by letter S, varied
from 5 to 25 items in steps of 5. The aver-
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age length of potential patterns in a sequence
database, denoted by letter I, varied from 2 to
10 items in steps of 2. The number of individual
items in a sequence database, denoted by letter
N , were 5 K, 10 K, 20 K, 30 K, 40 K, and 50 K.
Combining these parameters we generated a lot
of sequence databases, and got a lot of results.
Some representative ones are discussed below.

We implemented FSPM using g++. For Pre-
fixSpan, we used the pseudo-projection tech-
nique as suggested in Ref. 14), which makes
PrefixSpan faster than SPAM 17). The pro-
gram for PrefixSpan was obtained directly
from its authors’ homepage (http://www-
sal.cs.uiuc.edu/hanj/pubs/software.htm). Note
that PrefixSpan has been demonstrated to have
superior performance compared to earlier algo-
rithms such as those found in Refs. 2), 15), 20).

All experiments were conducted on a 1.5GHz
Pentium PC with 1 GB memory, running Cyg-
win in Microsoft Windows XP. To be fair, for
all experiments the results were obtained by ex-
cluding the effect of the cache in the operating
system.

4.2.2 Experimental Results
The execution time, defined as the interval

from the time the mining process is started until
the time it finished, was used as a performance
metric.
Experiment 1 (Varying support thresh-
olds): Figure 3 shows execution time as
the support threshold increases from 0.05% to
0.25%. Two experimental environments are
considered: a relatively light one resulting in
the first figure and a relatively heavy one re-
sulting in the second figure. For the light
one, corresponding to each support threshold,
<maximum length of patterns, total number
of patterns>s are <1, 1154>, <3, 1725>, <6,
3354>, <10, 10660>, and <12, 50302>, re-
spectively. For the heavy one, they are <2,
901>, <7, 2940>, <11, 7179>, <11, 33804>,
and <14, 355292>, respectively. As shown in
these two figures, FSPM outperforms PrefixS-
pan in both environments. Of particular note
is that the smaller the support threshold was,
the larger the performance difference was.

The maximum memory usages of PrefixSpan
and FSPM are 6.7 MB and 234 MB, respec-
tively, for the light environment, and 29 MB and
611MB, respectively, for the heavy one. These
results demonstrate two facts. (1) FSPM uti-
lizes memory more reasonably than PrefixSpan.
This is simply because we have a memory of

Fig. 3 Comparisons on support thresholds. Database:
S10I4D100KN10000 (the 1st figure) and S15I6
D300KN30000 (the 2nd figure).

1 GB, and we have used it with no waste. (2)
FSPM is less efficient in utilizing memory than
PrefixSpan. However, we don’t think this will
limit FSPM very much, because modern com-
puters generally have a lot of memory resources.
If memory resources really become a problem,
solutions discussed in Section 3.3 can be used.
This was done in Experiment 4, where a paging
file was used. Note that because the explana-
tion of experimental results for memory usage
given here still holds for the remaining experi-
ments, hereafter the results for memory usage
will be given without any explanation.
Experiment 2 (Varying database sizes):
Figure 4 shows execution time as database size
grows from 100 K to 500 K sequences. As above,
the first figure corresponds to a light environ-
ment, and the second to a heavy one. As shown
in the first figure, PrefixSpan slightly outper-
forms FSPM in scalability in this case, since as
a database grows, FSPM’s execution time in-
creases slightly faster than PrefixSpan’s. The
main reason is as follows. In this case, the pat-
tern numbers corresponding to each database
size are 50302, 49668, 49440, 49427, and 49378,
respectively, and remain almost unchanged.
Thus, generating patterns would take approx-
imately the same time for both algorithms.
However, for FSPM there is a preprocessing
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Fig. 4 Comparisons on number of sequences. Support:
0.05%. Database: S10I4D100-500KN10000
(the 1st figure) and S15I6D100-500KN30000
(the 2nd figure).

stage where the data structure is configured,
as shown in Fig. 2. PrefixSpan counts items
and creates projected databases, which is only
a part of FSPM’s preprocessing. Since FSPM’s
preprocessing cost is higher than PrefixSpan’s,
we have the above result. The performance
difference, however, was not very large, since
configuring the data structure would not take
much time. For example, in the heavy envi-
ronment, the pattern numbers corresponding to
each database size are 373345, 353045, 355292,
364366, and 370481, respectively, which change
more than in the previous case. Therefore, the
preprocessing cost is negligible, and FSPM and
PrefixSpan have similar scalability with respect
to the database size.

The maximum memory usages of PrefixSpan
and FSPM are 33.1 MB and 344MB, respec-
tively, for the light environment, and 47.2 MB
and 675 MB, respectively, for the heavy one.
Experiment 3 (Varying the number of in-
dividual items): Figure 5 shows execution
time with the number of individual items rang-
ing from 5 K to 50 K. As shown in these two fig-
ures, PrefixSpan’s execution time increases as
the number of individual items increases, while
the increase has a negligible effect on FSPM’s.
In fact, given the same pattern distribution,

Fig. 5 Comparisons on number of individual items.
Support: 0.05%. Database: S10I4D100KN5K,
10K-50K (the 1st figure) and S15I6D300KN5K,
10K-50K (the 2nd figure).

FSPM is designed so that the number of in-
dividual items in a sequence database does not
affect it. This is because a one-to-one mapping
table, as shown in Fig. 2, which maps the set of
the frequent items onto a so-called large item
set {1, 2, · · ·, number of frequent items}, was
used, and only the large item set is used in the
mining operation.

The maximum memory usages of PrefixSpan
and FSPM are 5.5 MB and 361MB, respec-
tively, for the light environment, and 26.5 MB
and 660 MB, respectively, for the heavy one.
Experiment 4 (Varying the average
length of sequences): Figure 6 shows ex-
ecution time as the average length of sequences
grows from 5 to 25 items. For the first
figure, corresponding to each average length
value, <maximum length of patterns, total
number of patterns>s are <12, 19692>, <12,
50302>, <13, 95038>, <13, 125465>, and <13,
153366>, respectively. For the second, they are
<11, 27947>, <13, 126301>, <14, 355292>,
<14, 575315>, and <15, 797078>, respectively.
As shown in these two figures, for both PrefixS-
pan and FSPM, the longer the average length of
sequences, the longer the execution time. The
effect on FSPM, however, is far smaller than
that on PrefixSpan.
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Fig. 6 Comparisons on average length of sequences.
Support: 0.05%. Database: S5-25I4D100K
N10000 (the 1st figure) and S5-25I6D300K
N30000 (the 2nd figure).

The maximum memory usages of PrefixSpan
and FSPM are 18.3 MB and 356MB, respec-
tively, for the light environment, and 52.4 MB
and 857 MB, respectively, for the heavy one.
Experiment 5 (Varying the average
length of sequential patterns): Figure 7
shows execution time as the average length of
potential patterns grows from 2 to 10 items. For
the first figure, corresponding to each pattern
length value, <maximum length of patterns,
total number of patterns>s are <8, 13628>,
<12, 50302>, <12, 137296>, <18, 1043548>,
and <19, 2368640>, respectively. For the sec-
ond, they are <8, 20024>, <12, 88911>, <14,
355292>, <19, 1539450>, and <19, 3584710>,
respectively. As shown in these two figures, the
execution times of both PrefixSpan and FSPM
increase as average length of sequential patterns
increases. Again, however, FSPM is far less af-
fected than PrefixSpan.

The maximum memory usages of PrefixSpan
and FSPM are 8.7 MB and 296 MB, respec-
tively, for the light environment, and 25.9 MB
and 699 MB, respectively, for the heavy one.
Experiment 6 (Performance with small
sequence databases): Based on Experiment
2, it seems that FSPM’s performance is inferior
to PrefixSpan’s when the sequence database is

Fig. 7 Comparisons on average length of potential se-
quential patterns. Support: 0.05%. Database:
S10I2-10D100KN10000 (the 1st figure) and
S15I2-10D300KN30000 (the 2nd figure).

Fig. 8 Comparisons on support thresholds.
Database: S5I2D100KN5000.

small. To verify this result, the same experi-
ments were done using small databases. The
results are given in Fig. 8, Fig. 9, Fig. 10, and
Fig. 11. First, as shown in Fig. 8, it was found
that FSPM still has shorter execution times
as the support threshold grows from 0.05% to
0.25%. Second, as shown in Fig. 9, in this
case PrefixSpan really does have higher scal-
ability with respect to the database size than
FSPM. As discussed with regard to Experi-
ment 2, this is mainly due to FSPM’s prepro-
cessing cost. Third, as shown in Fig. 10, and as
expected, FSPM’s execution times are shorter
except when the number of individual items is
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Fig. 9 Comparisons on number of sequences. Support:
0.1%. Database: S5I2D100-500KN5000.

Fig. 10 Comparisons on number of individual items.
Support: 0.1%. Database: S5I2D500KN5000,
10000-50000.

Fig. 11 Comparisons on average length of sequen-
tial patterns. Support: 0.1%. Database:
S5I210D100KN5000.

5000. FSPM’s execution time decreases as the
number of individual items increases. This is
because the pattern numbers corresponding to
each database size are 2429, 2461, 2179, 1945,
1839, and 1733, respectively, which is a de-
crease. Finally, as shown in Fig. 11, PrefixS-
pan has shorter execution times with this small
database.

The above results show that for small se-
quence databases, PrefixSpan does outperform
FSPM in some cases.

For Fig. 8 – Fig. 11, the maximum mem-

ory usages of PrefixSpan are 3.1 MB, 13.1 MB,
13.1 MB, and 32.5 MB, and the maximum mem-
ory usages of FSPM are 107MB, 153 MB,
153 MB, and 129 MB.

5. Conclusion

In this paper we addressed the subject of min-
ing sequential patterns in a sequence database
and proposed an effective algorithm called
FSPM. FSPM is characterized by high perfor-
mance in five essential dimensions of sequential
pattern mining: the number of sequences; the
number of individual items; the average length
of sequences; the average length of potential se-
quential patterns; and the support threshold.

FSPM has some interesting and helpful
properties: (1) It is a level-by-level pattern-
growth algorithm. (2) It uses a two-level
problem-partitioning strategy. (3) It conducts
candidate-driven sequential pattern mining. (4)
It can use memory reasonably. FSPM has also
another very useful property: in addition to
mining all patterns satisfying a support thresh-
old, it can directly mine all the patterns related
to an item specified by a user. Other algorithms
can obtain no results until the pattern mining
is finished. FSPM, on the other hand, can take
an item as the target item, and go directly to
finding the result. We have shown that it is the
inherent potential embodied by the above prop-
erties that enables FSPM to perform better.

Extensive experiments have been conducted
to compare FSPM with PrefixSpan. The results
demonstrate that FSPM outperforms PrefixS-
pan in most cases. It was also found that FSPM
requires more memory space than PrefixSpan.
Therefore, for applications where memory is ex-
tremely limited, FSPM would not be a proper
candidate. However, this is not a major disad-
vantage since the memory of modern computers
has been very cheap and very large, and is be-
coming cheaper and larger.

In this paper we have considered sequence
databases that consist only of items. Although
many applications have these kind of databases,
to be more widely used, FSPM must be ex-
tended so that it can deal with a sequence
database in which a sequence consists of item-
sets. This is for future work. Another interest-
ing idea for future work is to enable FSPM to
mine frequent closed subsequences that contain
no subsequences with the same support.
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