
Vol. 47 No. 12 IPSJ Journal Dec. 2006

Regular Paper

Comparative Study on the Self-Similarity of TCP Reno and TCP Vegas

Peter Ivo Racz,† Takahiro Matsuda† and Miki Yamamoto††

Self-similar traffic patterns have been observed in many measurements of Internet traffic.
Self-similarity is very detrimental to the performance of packet networks and recent research
has focused on understanding and reducing its amount in Internet traffic. TCP Reno has
been identified as being one of the primary sources of self-similarity. We explore the potential
of another version of TCP in this paper to reduce the degree of self-similarity in aggregated
TCP traffic. We decompose both TCP Reno and TCP Vegas to demonstrate and explain
their underlying mechanisms, and separately measure what effects congestion-avoidance and
timeouts/exponential backoff mechanisms have on the self-similarity in aggregated TCP flows.
We reveal how TCP Vegas reduces the degree of self-similarity and eventually completely
eliminates it from aggregated TCP flows at low levels of packet loss. However, at high levels
of packet loss we show that TCP Vegas is detrimental, because it increases the degree of
aggregated TCP-flow self-similarity.

1. Introduction

Self-similarity is a ubiquitous property of net-
work traffic. It represents a correlation prop-
erty of traffic volume over a wide range of time
scales, i.e., Long Range Dependence (LRD).
Traffic of a self-similar nature is detrimental.
Its effects range from high queue-buffer overflow
rates to long delays and persistent periods of
congestion 1). For example, when traffic is self-
similar, excessive packet loss cannot be reduced
by increasing the buffer size at the bottleneck
link because self-similar traffic is bursty for all
time scales. Because of self-similarity’s negative
effects on the performance of networks, under-
standing its nature and reducing it has been the
focus of attention in the networking commu-
nity 2). However, the sources of self-similarity
must first be identified to reduce it in network
traffic.

Recent research has identified various origins
of self-similarity in different protocol layers. In-
ternet applications like HTTP have exhibited
self-similar traffic, due to the heavy-tailed file-
size distributions of transmitted files 3). The
transport layer – such as the transport con-
trol protocol (TCP) – also actively participates
in modifying the degree of self-similarity of
the traffic arriving from the applications 4),5).
Recent research has shown that both aggre-
gated and single TCP flows have significant self-
similar properties 6). The network itself also

† Graduate School of Engineering, Osaka University
†† Department of Electrical Engineering and Com-

puter Science, Kansai University

plays an important role by amplifying or re-
ducing the degree of self-similarity. The queu-
ing techniques used by routers and switches 2)

and the applied traffic filters 7) all affect self-
similarity. It has also been demonstrated that
self-similar flows induce this phenomenon in
other flows, which originally had no self-similar
properties when sharing the same queue 8).
That is, the overall degree of self-similarity of
traffic results from the interaction of all these
causes.

Finding the sources of self-similarity in the
TCP protocol can help to reduce its overall
presence in network traffic because its TCP-
related causes are present regardless of causes
on other levels. However, research thus far
has solely focused on the TCP Reno ver-
sion of TCP. It has been shown that TCP-
related self-similarity is due to TCP Reno’s
built-in congestion-avoidance and retransmis-
sion schemes. It may be of interest to learn
how the congestion-avoidance and retransmis-
sion schemes of other versions of TCP proto-
cols perform to reduce the TCP-related self-
similarity in network traffic.

We examine the potential of another version
of TCP in this paper i.e., TCP Vegas, to re-
duce the TCP-related causes of self-similar traf-
fic. TCP Vegas is a transport layer proto-
col introduced by Brakmo, et al. 9). TCP Ve-
gas has more than 10 new traffic control tech-
niques compared to TCP Reno 10). Our inter-
est in TCP Vegas lies in its proactive conges-
tion avoidance technique and its capabilities for
recovering from multiple packet-loss scenarios
using multiple fast retransmissions 9). Various

3319



3320 IPSJ Journal Dec. 2006

studies have focused on evaluating TCP Vegas’s
performance and fairness issues. Research has
demonstrated that TCP Vegas can achieve sig-
nificantly higher throughput compared to TCP
Reno 9),10). However, TCP Vegas may fail to
achieve a fair share of bandwidth among indi-
vidual flows 11).

The purpose of this paper was to evaluate
the feasibility of TCP Vegas from the viewpoint
of self-similarity whereas all other researchers
have focused on its feasibility from the view-
point of throughput and fairness. Because the
Reno version of TCP is a popular protocol on
the Internet and IP networks, we investigated
and modeled what effect introducing TCP Ve-
gas into such networks would have and stud-
ied how it would affect the self-similarity of ag-
gregated TCP flows. We identified the under-
lying mechanisms responsible for both the ad-
vantages and disadvantages of introducing TCP
Vegas into such networks.

The rest of the paper is organized as fol-
lows. Section 2 gives a brief overview of self-
similarity and the Hurst parameter. Section 3
describes the simulation environment. Sec-
tion 4 presents the simulation results. Section 5
analyses what effect the congestion-avoidance
and timeout/exponential backoff techniques of
TCP Reno and TCP Vegas has on the degree
of self-similarity of single and aggregated flows.
Section 6 summarizes our findings.

2. Definition of Self-Similarity

This section gives a short introduction and
points out further references on self-similarity,
the Hurst parameter, and the method of mea-
surement that we applied.

Self-similarity is a mathematical property
that have been found in the measurement of
networks 12). Self-similar processes have vari-
ous mathematical definitions that capture the
various properties of self-similarity. The follow-
ing definition expresses how the variations in
self-similar processes decay slowly with aggre-
gation.

Traffic is self-similar with Hurst parameter H
(0 < H < 1) if for all k > 0 and t ≥ 0,

Y (t) = k−HY (kt) (1)
where Y (t) is the traffic volume in the function
of time and “=” means equality in the sense of
distribution.

One of the most important properties of self-
similar traffic from the networking point of view

is its burstiness for all time scales. Both non-
self-similar and self-similar traffic have bursti-
ness on short time scales. Increasing the time
scale decreases the burstiness of non-self-similar
traffic but leaves self-similar traffic bursty even
on the longest time scale. Traffic with such
properties will cause persistent congestion, high
packet-loss rates, and long delays as described
in Section 1.

We used the Hurst parameter (H) in this
paper to quantify the degree of traffic self-
similarity. It can describe the traffic’s degree
of self-similarity as a single parameter. H has
values of 1 > H > 0.

Throughout this paper, we focus on if H falls
in the range between 1 > H > 0.5. Traffic
with the Hurst parameter within this range is
self-similar and long-range dependent causing
congestion and high packet loss. The closer H
is to one, the stronger the self-similarity and
the more negative the properties of the traffic.

When H = 0.5, the traffic is non-self-similar
and does not have the negative properties asso-
ciated with self-similarity.

When 0.5 > H > 0, the traffic is self-similar,
but short-range dependent. Short-range depen-
dent self-similar traffic does not have the neg-
ative properties associated with long-range de-
pendent self-similar traffic.

Various estimators can be used to provide es-
timates of self-similarity and the Hurst param-
eter 13),14). Throughout this paper, we have
used Veitch and Abry’s wavelet-based estima-
tor, which is freely available for academic pur-
poses 15). The variance-time method 4),13) is an-
other popular means of measurement that is
prone to the periodicity of the TCP protocol.
Our goal with using the wavelet estimator was
to eliminate the effect TCP’s periodicity had on
the value of the measured Hurst parameter.

3. Simulation Environment

This section describes the simulation environ-
ment used throughout this paper. We used the
ns2 network simulator 16) to create an aggre-
gated TCP flow consisting of 4–150 single TCP
flows that crossed the bottleneck topology in
Fig. 1. The TCP receivers are attached di-
rectly to the bottleneck, and the senders are
connected via a feeder link. Although these
feeder links impose no bandwidth restrictions,
they have different propagation delays making
the end-to-end delays uniformly distributed be-
tween 100–150 ms.



Vol. 47 No. 12 Comparative Study on the Self-Similarity of TCP Reno and TCP Vegas 3321

The buffer size, transmission speed, and link
delay of the bottleneck link were set accord-
ing to Table 1; however, our simulations re-
vealed that the findings in this paper are valid
for a wide range of these parameters. We have
already discussed the effects these parameters
have on the aggregated TCP flow in detail 17).

We gradually increased the ratio of TCP Ve-
gas flows in the aggregated flow between 0−90%
in consecutive experiments to examine what ef-
fect it had on the aggregated flow.

We employed greedy data sources on both
the TCP Vegas and TCP Reno flows because
Vegas flows carrying data from greedy sources
extensively operate in their inventive conges-
tion avoidance mode. Also, the effect of greedy
sources on the self-similarity of TCP flows is
very limited, because these sources constantly
generate packets that must wait for TCP to
open its usable window before transmission.

All simulations were run for a duration of
2200 s, where we discarded the first 400 s of
data to avoid transients. The flows were com-
menced randomly during the first 30 s of each
simulation. We measured the Hurst parameter
for each single and aggregated TCP flow along
with packet loss at the bottleneck link for all
simulations.

There are currently networks that operate on
very low packet-loss rates, i.e., < 1%, due to
the ever-increasing performance of networking
equipment. However, live measurements taken
on the Internet have also revealed packet-loss
levels far above 1% 18),19). The scope of the

Fig. 1 TCP Reno and TCP Vegas flows share
bottleneck link.

Table 1 Parameters and assumptions for simulation.

Number of flows 4–150
Ratio of TCP Vegas flows (%) 0–90
Link delay (ms) 100–150
Link speed (Mbps) 3
Buffer size (packets) 35
Packet size (bytes) 1040
Queuing algorithm FIFO

simulations discussed in this paper was to ex-
amine the self-similar behavior of TCP traffic
when TCP flows compete for network resources.
That is why we set the simulation parameters
so that the TCP flows yielded a packet loss of
1% < p < 20%.

4. Evaluation of Hurst Parameter for
Aggregated and Single TCP Flows

This section presents the results of our sim-
ulations and describes our observations, while
Section 5 discusses our analyses and explains
the underlying mechanisms.

As a result of aggregation, the Hurst param-
eter for the aggregated TCP flow has lower val-
ues than its composite single TCP flows accord-
ing to Fig. 2. While the aggregated TCP flow
is mostly short-range dependent (H < 0.5), the
single TCP flows are mostly long-range (H >
0.5) dependent. Short-range dependent traffic
is amenable to statistical multiplexing and does
not have the detrimental effects of long-range
dependent traffic on the performance of net-
works. Aggregated flow is mostly short-range
dependent, because it fully utilizes the capacity
of the bottleneck link, which limits the variance
of the arrival process. At high packet-loss lev-
els, the aggregated flow reveals a trend to in-
crease, which confirms the findings by Ref. 5)
and Ref. 18). At low packet-loss levels, the
Hurst parameter demonstrates increased val-
ues, which even go beyond H = 0.5. This
phenomenon will be discussed in more detail
in Section 5.1.

Figure 3 plots the Hurst-parameter curves
for aggregated TCP flows, which consist of 20%,
40%, and 70% TCP Vegas flows while the re-
mainder of the flows are TCP Reno. Figure 4
shows the average Hurst parameter for compos-

Fig. 2 Hurst parameter for aggregated TCP Reno
flow and its composite single flows.



3322 IPSJ Journal Dec. 2006

ite single TCP Reno and TCP Vegas flows. The
following facts can be observed from Figs. 3 and
4:
(A)For p < 6%, the Hurst-parameter curve

for the aggregated flow decreases as the
TCP Vegas ratio of the aggregated flow in-
creases, where p stands for packet loss rate
throughout this paper. When 20% of the
flows were TCP Vegas, no effect was yet no-
ticed by comparing Fig. 3 with Fig. 2. How-
ever, at 40% TCP Vegas, the elevated part
of the Hurst-parameter curve significantly
decreases. At 70%, the TCP Vegas flows
completely eliminate the increased levels of
the Hurst parameter.

(B) For p > 6%, the Hurst-parameter curve for
the aggregated flow slightly increases as the
TCP Vegas ratio of the aggregated flow in-
creases according to Fig. 3.

(C) Figure 4 shows that the Hurst parameter
for single TCP Reno flows are higher than
that for corresponding single TCP Vegas
flows for p < 10%. Increasing the TCP

Fig. 3 Hurst parameter for aggregated TCP flow con-
sisting of 20%, 40%, and 70% TCP Vegas flows
while remainder is TCP Reno.

Fig. 4 Hurst parameter for single TCP Reno and sin-
gle TCP Vegas flows that make up aggregated
flows in Fig. 3.

Vegas ratio of the aggregated flow decreases
the value of the Hurst parameter for both
single TCP Reno and TCP Vegas flows for
p < 7%.

5. In-depth Considerations into Effect
of TCP Congestion Control

We focus on traffic-control techniques for sin-
gle TCP Reno and TCP Vegas flows in this sec-
tion to discuss how TCP Vegas decreases and
increases the self-similarity of an aggregated
TCP flow (i.e., facts A and B).

Guo, et al. 4) have shown through analyses
that the self-similarity of a single TCP flow is
a result of the exponential-backoff algorithm.
Figueiredo, et al. 6) added that the congestion
avoidance technique also contributes to self-
similarity in aggregated TCP flows.

To understand the roles of congestion-
avoidance and exponential backoff/timeout
techniques in the self-similarity of aggregated
TCP traffic, we separated their effects on single
TCP Reno and TCP Vegas flows. We deter-
mined their level of influence and the packet-
loss range where these transport-control tech-
niques were dominant.

To eliminate the interaction between single
flows in a bottleneck link, we ran a single
Reno/Vegas flow across a bottleneck link in a
separate simulation (Fig. 5). Packet loss was
randomly generated at the aggregating router.
All other parameters remained unchanged from
the simulation described in Fig. 1 and Table 1.

To measure what effect the timeout/expo-
nential backoff technique had, we derived mod-
ified TCP flows where the effects of congestion-
avoidance and slow-start techniques were elim-
inated. After identifying the timeouts in the
congestion window trace of the single flows, we
modified the throughput trace so that the de-
rived TCP flow generated packets with a con-
stant bit rate between two adjacent timeouts.
The constant bitrate was calculated so that the
original and the modified flow would transfer
the same amount of traffic during the simula-
tion period. Figure 6 plots the congestion win-
dow for the reference TCP flow and the trans-
mission rate for the modified TCP flow.

To measure what effects congestion avoidance

Fig. 5 Single TCP Reno/Vegas flow crosses
bottleneck link with random packet loss.



Vol. 47 No. 12 Comparative Study on the Self-Similarity of TCP Reno and TCP Vegas 3323

Fig. 6 Congestion window for reference TCP Reno
flow (above) and transmission rate of modi-
fied TCP Reno flow (below) with effects of
congestion-avoidance technique eliminated.

Fig. 7 Congestion window for reference TCP Reno
flow (above) and transmission rate of modified
TCP Reno flow (below) with effects of timeout
and exponential backoff techniques eliminated.

had, we derived another type of TCP flow that
had the effects of timeouts and the exponen-
tial backoff technique eliminated. We modified
the original flow so that the modified TCP flow
would enter slow-start immediately after en-
countering a timeout (see Fig. 7). We assumed
that the effects of slow-start, fast retransmis-
sion, and fast recovery would be marginal com-
pared to the effect of congestion avoidance.

The “t” and “t′” in Figs. 6 and 7 mark two
consecutive timeouts in the original TCP flow.
Timeouts were identified as the time between
the departure of the packet transmitted from
the TCP sender, which its retransmission timer
eventually expired, and the departure of the
first packet in the slow-start phase after the
timer had expired. Any packets retransmitted
during this time interval were ignored for the
sake of simplicity.

Figures 8 and 9 plot the Hurst-parameter
curves for the original TCP Reno and TCP
Vegas flows, and also the two modified
flows reflecting the Hurst parameters of their
congestion-avoidance and exponential back-
off techniques. We can see that both the
congestion-avoidance and exponential back-
off/timeout techniques contribute to the self-
similarity of both types of TCP flows. When
the Vegas flows decrease the degree of self-
similarity in the aggregated flows (i.e., fact A),

Fig. 8 Contribution of congestion-avoidance and ex-
ponential backoff techniques to self-similarity of
single TCP Reno flow.

Fig. 9 Contribution of congestion-avoidance and ex-
ponential backoff techniques to self-similarity of
single TCP Vegas flow.

the influence of the congestion-avoidance tech-
nique is dominant. Whereas in the packet-loss
range where the Vegas flows increase the degree
of self-similarity in aggregated flows (i.e., fact
B), the timeout and exponential backoff tech-
niques are dominant.

5.1 Effect of Congestion Avoidance
This section focuses on how TCP Reno’s and

TCP Vegas’s congestion-avoidance technique
affects the Hurst parameter of the aggregated
TCP flow at the low packet-loss level (i.e., fact
A).

The single TCP Reno flows in Fig. 4 show
an increased value for p < 6% (Vegas ratio
< 70%) compared to the single TCP Reno flow
in Fig. 8. This is due to the difference in the
packet-loss mechanism. Packets from the Reno
flow in Fig. 8 were dropped randomly while
the single TCP flows in Fig. 4 suffered packet
loss due to overflow in the FIFO queue at the
bottleneck link as seen in Fig. 1. Figure 10
plots the time distribution between two con-



3324 IPSJ Journal Dec. 2006

Fig. 10 Distribution of time between two consecutive
packet drops that occur in single TCP flows
for different packet-dropping schemes.

secutive packet losses for the single TCP Reno
flows in Fig. 4 (Vegas ratio 20%) and Fig. 8 for
p = 2.5% packet loss. The distribution curve
for the single TCP Reno flow in Fig. 10, which
was part of the aggregated flow, shows frequent
short (dt < 0.2 s) and long (dt > 2 s) time in-
tervals between consecutive lost packets com-
pared to the single TCP flow, whose packets
were dropped randomly. This indicates multi-
ple packet losses followed by longer packet-loss-
free periods, which are typical of synchronized
TCP Reno flows.

Synchronization is a phenomenon where in-
dividual TCP flows encounter packet loss, and
as a result they decrease their throughput
at the same time. Synchronization is a re-
sult of TCP Reno’s congestion-avoidance tech-
nique 20). Figure 11 shows a trace of the
synchronized congestion windows of the single
TCP Reno flows captured during the simulation
described by Fig. 1. At time t0 the TCP Reno
flows over flooded the queue, and cut their con-
gestion windows causing a sudden drop in the
volume of aggregated traffic. This synchroniza-
tion in TCP flows is the cause of the elevated
Hurst-parameter curve for the single TCP Reno
flows in Fig. 4 and also the aggregated TCP flow
in Fig. 3 for p < 6%. This is because when long-
range-dependent single Reno flows increase and
cut their throughput at the same time they be-
come synchronized, and the aggregated Reno
flow will also demonstrate long-range depen-
dence.

We will next discuss how adding TCP Vegas
flows to the aggregated flow decreases its Hurst
parameter. Comparing the Hurst parameters of
single Vegas flows in Figs. 4 and 9 reveals that
the Vegas flows remain short-range-dependent

Fig. 11 Congestion window for TCP Reno and Vegas
flows crossing bottleneck in Fig. 1.

(H < 0.5) for p < 6% even when they cross the
bottleneck link with Reno flows. This is be-
cause the TCP Vegas flows do not synchronize
with the TCP Reno flows. Due to their intu-
itive congestion-avoidance technique, they do
not have to keep increasing their throughput
to detect congestion in the network. Instead
TCP Vegas measures the change in the round-
trip-time to detect network congestion and lin-
early increases or decreases its throughput ac-
cordingly 9). The synchronized packet loss of
the Reno flows does not affect the TCP Vegas
flows, because the packet bursts of TCP Vegas
do not arrive at the queue synchronized with
the packet bursts of TCP Reno flows. Also,
the TCP Vegas flow’s packet bursts are smaller
than the bursts of the TCP Reno flows just be-
fore the queue is flooded. The smaller bursts
contribute to reducing the probability of packet
loss. Figure 11 also shows that after the TCP
Reno flows cut their throughput at t0, the TCP
Vegas flows detect the new network resources
that have become available and increase their
throughput at time t1, thus actively prevent-
ing synchronization from occurring and reduc-
ing the synchronization-related fluctuations in
aggregated traffic. Therefore, increasing the
TCP Vegas ratio of the aggregated TCP flow
reduces the increased Hurst-parameter value of
the single TCP flows in Fig. 4 for p < 6%. It
also reduces the degree and eventually elimi-
nates the aggregated TCP flow’s self-similarity
for p < 6% (i.e., fact A).

5.2 Effect of Timeout and Exponential
Backoff

This section discusses how the timeout and
exponential backoff mechanisms of TCP Ve-
gas are responsible for the elevated level of the
Hurst parameter of the aggregated TCP flow



Vol. 47 No. 12 Comparative Study on the Self-Similarity of TCP Reno and TCP Vegas 3325

Fig. 12 Distribution of OFF periods in TCP Reno and
TCP Vegas flows at p = 12% packet loss.

when p > 6% in Fig. 3 (i.e., fact B).
As discussed in Section 5, the timeouts and

the exponential backoff mechanisms for both
TCP Reno and TCP Vegas are dominant when
p > 6%, according to Figs. 8 and 9. Under these
conditions, the TCP flow can be modeled with
the ON/OFF process model used previously in
Section 5 and described in Fig. 6. The OFF
times correspond to the timeout periods, and
the ON times correspond to those time inter-
vals where the TCP is in congestion-avoidance
mode 18). The TCP in this model transmits
with a constant average bit rate during ON
times, while the TCP flow does not transmit
during OFF times.

Figure 12 plots the distribution in OFF-
period length in TCP Vegas and TCP Reno
flows at p = 12% packet-loss rate, where the
ON/OFF model can be applied according to
Figs. 8 and 9. We can see from Fig. 12 that
TCP Vegas has about 25% fewer OFF periods,
i.e., tOFF < 1 s. This is due to the ability of
TCP Vegas to recover from multiple packet-
loss scenarios with greater efficiency 9). TCP
Vegas, however, has more frequent, longer last-
ing (tOFF > 2 s) timeouts than TCP Reno ac-
cording to Fig. 12. Long-tailed distribution and
self-similarity are strongly related. Aggregated
ON/OFF processes are where the ON or OFF
periods are heavy-tailed and form aggregated
flows with long-range-dependent properties 18).
That is, when the TCP Vegas ratio of the ag-
gregated flow is increased, the more frequent,
longer lasting timeouts and exponential back-
offs of TCP Vegas increase the Hurst parame-
ter for the aggregated TCP flow (i.e., fact B) as
shown in Fig. 3.

The source of TCP Vegas’s increased number

Fig. 13 Left: Exponential backoff mechanisms in TCP
Reno and TCP Vegas. Right: Exponential
backoff mechanism only in TCP Vegas.

of exponential backoffs is that it activates its
exponential-backoff mechanism more frequently
than TCP Reno due to its new traffic-control
technique.

When consecutive retransmitted packets are
lost, both TCP Reno and TCP Vegas func-
tion similarly. They activate their exponential-
backoff traffic-control techniques. The left side
of Fig. 13 illustrates a scenario that both TCP
Reno and TCP Vegas could encounter. When
the RTO of a retransmitted packet expires,
both TCP Reno and TCP Vegas retransmit
the lost packet and exponentially increase the
length of the retransmitted packet’s RTO. The
RTO of the retransmitted packet and every fol-
lowing lost packet are exponentially increased
until the segment is successfully transmitted.
Consecutive losses of retransmitted packets re-
sult in timeouts with exponentially increasing
lengths of up to 64 s.

The exponential-backoff mechanism of TCP
Vegas is not only activated when consecutive
retransmitted packets are lost but also in mul-
tiple packet-loss scenarios. As previously men-
tioned, TCP Vegas is capable of recovery with-
out timing out when multiple packets are lost
in a congestion window of data using multiple
fast retransmissions. The right side of Fig. 13
illustrates a scenario that only TCP Vegas can
encounter. Each retransmission of a lost packet
further increases the value of the exponential-



3326 IPSJ Journal Dec. 2006

backoff mechanism’s backoff parameter. When
Vegas succeeds in recovering all the lost packets
and acknowledges new data, no timeouts occur.
If Vegas manages to recover some of these, but
not all lost packets in a round, Vegas times out.
The length of this timeout is exponentially pro-
portional to the number of retransmitted seg-
ments since TCP Vegas has entered the fast
retransmission stage. The exponential-backoff
mechanism is only reset when new data are ac-
knowledged.

Contrary to TCP Vegas, TCP Reno has no
traffic-control mechanism to handle multiple
packet losses. TCP Reno is mostly capable of
recovering the loss of single packets 21) and in
multiple-loss scenarios, like the one illustrated
on the right of Fig. 13, TCP Reno times out.

6. Conclusions

We investigated the benefits and drawbacks
of introducing TCP Vegas into contemporary
IP networks in this paper. We demonstrated
that adding TCP Vegas flows to aggregated
TCP flows can both increase and decrease the
degree of self-similarity in aggregated TCP traf-
fic.

To find the underlying reasons, we decom-
posed individual TCP Reno and TCP Vegas
flows and discovered that TCP Vegas’s intuitive
congestion avoidance is responsible for its posi-
tive effects while its timeout/exponential back-
off techniques are responsible for its negative
effects.

The positive effects appear at low levels of
packet loss, where TCP Vegas decreases the
Hurst parameter of aggregated TCP flows,
by crossing bottleneck links unaffected, while
synchronized long-range-dependent TCP Reno
flows over flood the queue. The TCP Vegas
flows also decrease the Hurst parameter of the
aggregated traffic by immediately utilizing the
bandwidth left behind by the TCP Reno flows
when they simultaneously halve their through-
put or enter timeout.

At higher packet-loss rates, TCP Vegas in-
creases the degree of self-similarity in aggre-
gated TCP Reno flows. When TCP Vegas is re-
covering from multiple packet-loss scenarios, its
exponential-backoff mechanism introduces less
frequent but longer timeouts than TCP Reno.
These timeouts are responsible for the increased
Hurst parameters of both single TCP Vegas
flows and aggregated TCP flows containing a
TCP Reno and Vegas mix.

In future research, we intend to improve
the retransmission-timeout mechanism for TCP
Vegas by modifying the TCP Vegas implemen-
tation of the ns2 16) network simulator.

Unfortunately, TCP Vegas is not always a
practical transport protocol because it may fail
to achieve a fair share of bandwidth when Ve-
gas and Reno flows coexist. However, prac-
tical transport protocols, e.g., TCP Veno 22),
which is a combination of TCP Reno and Ve-
gas mainly used in wireless networks, have been
proposed. Since these protocols are partially
based on TCP Vegas, we are confident that
our findings can be applied to such protocols
as well.

Acknowledgments The authors would
like to thank Biplap Sikdar Ph.D of the Rens-
selaer Polytechnic Institute, Troy, NY, USA for
his valuable comments.

References

1) Paxson, V. and Floyd, S.: Wide Area Traffic:
The Failure of Poisson Modeling, IEEE/ACM
Trans. on Networking, pp.71–86 (1997).

2) Sikdar, B., Chandrayana, K., Vastola, K.S.
and Kalyanaraman, S.: On Reducing the De-
gree of Second-Order Scaling in Network Traf-
fic, Proc. IEEE GLOBECOM, pp.2594–2598
(2002).

3) Crovella, M. and Bestavros, A.: Self-similarity
in World Wide Web traffic: Evidence and pos-
sible causes, IEEE/ACM Trans. Networking,
Vol.5, No.6, pp.835–846 (1997).

4) Guo, L., Crovella, M. and Matta, I.: How does
TCP generate Pseudo-self-similarity?, Proc.
Int. Workshop on Modeling, Analysis and Sim-
ulation of Computer and Telecommunications
Systems (2001).

5) Veres, A. and Boda, M.: The chaotic nature
of TCP congestion control, Proc. IEEE INFO-
COM (2000).

6) Figueiredo, D.R., Liu, B., Misra, V. and
Towsley, D.: On the Autocorrelation Structure
of TCP Traffic, Tech. Rep., Computer Science
Technical Report, 00-55, University of Mas-
sachusetts (2000).

7) Procissi, G., Gerla, M., Kim, J., Lee, S. and
Sanadidi, M.: On Long Range Dependence and
Token Buckets, SPECTS (2001).

8) Veres, A., Kenesi, Z., Molnar S. and Vattay,
G.: On the propagation of long-range depen-
dence in the Internet, Proc. ACM SIGCOMM,
pp.243–254 (2000).

9) Brakmo, L.S., O’Malley, S.W. and Peterson,
L.: TCP Vegas: New Techniques for Conges-
tion Detection and Avoidance, Proc.ACM SIG-



Vol. 47 No. 12 Comparative Study on the Self-Similarity of TCP Reno and TCP Vegas 3327

COMM, pp.24–35 (1994).
10) Hengartner, U., Bollinger, J. and Gross, T.:

TCP Vegas Revisited, Proc. IEEE INFOCOM
(2000).

11) Mo, J., La, R.J., Anantharam, V. and
Walrand, J.: Analysis and Comparison of
TCP Reno and Vegas, Proc. IEEE INFOCOM
(1999).

12) Willinger, W., Taqqu, M., Sherman, R.
and Wilson, D.: Self-similarity through high-
variability: Statistical analysis of Ethernet
LAN traffic at the source level, Proc.ACM SIG-
COMM, pp.100–113 (1995).

13) Karagiannis, T., Faloutsos, M. and Molle, M.:
A User-Friendly Self-Similarity Analysis Tool,
ACM SIGCOMM Comp. Comm. Rev., Vol.33,
pp.81–93 (2003).

14) Abry, P. and Veitch, D.: Wavelet Analysis of
Long-Range Dependence Traffic, IEEE Trans.
Inf. Theory, Vol.4, No.1, pp.2–15 (1998).

15) Veitch, D. and Abry, P.: A Wavelet-based
Joint Estimator for the Parameters of Long-
Range Dependence, IEEE Trans. Inf. (1999).

16) ns2 simulator. http://www.isi.edu/nsnam/ns
17) Racz, P.I., Matsuda, T. and Yamamoto, M.:

Contribution of the Application, Transport,
and Network Layers to the Self-Similarity of
Internet Traffic, IPSJ Journal, Vol.46, No.12,
pp.3109–3122 (2005)

18) Sikdar, B. and Vastola, K.S.: On the Con-
tribution of TCP to the Self-Similarity of
Network Traffic, Lecture Notes in computer
Science (Proc. IWDC ), Vol.2170, pp.596–613
(2001).

19) Padhye, J., Firoiu, V., Towsley, D. and
Kurose, J.: Modeling TCP Throughput: A Sim-
ple Model and its Empirical Validation, Proc.
ACM SIGCOMM, pp.303–314 (1988).

20) Floyd, S. and Jacobson, V.: Random Early
Detection Gateways for Congestion Avoidance,
IEEE/ACM Trans.on Networking, Vol.1, No.4,
pp.397–413 (1993).

21) Fall, K. and Floyd, S.: Simulation-based Com-
parisons of Tahoe, Reno and SACK TCP,
Comp. Commun. Rev. (1996).

22) Fu, C.P. and Liew, S.C.: TCP Veno: TCP
Enhancement for Transmission Over Wireless
Access Networks, IEEE J. on Select. Areas in
Comm., Vol.21, No.2 (2003).

(Received March 30, 2006)
(Accepted September 14, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.783–791.)

Peter Ivo Racz received
his B.E. and M.E. in electrical
and communication engineering
from the Technical University of
Budapest (TUB) in Hungary in
1996 and 1999. He joined Cisco
Systems Japan K.K. in 2005,

where he is presently a systems engineer. He is
concurrently working toward his Ph.D. at the
Department of Communications Engineering of
Osaka University. His research interests include
QoS and analysis of Internet traffic.

Takahiro Matsuda received
his B.E. with honors, M.E., and
Ph.D. in communications engi-
neering from Osaka University
in 1996, 1997, and 1999. He
joined the Department of Com-
munications Engineering at the

Graduate School of Engineering of Osaka Uni-
versity in 1999. He has been a lecturer in the
Division of Electrical, Electronic, and Informa-
tion Engineering at the Graduate School of En-
gineering of Osaka University since May 2005.
His research interests include performance anal-
ysis and the design of communication networks
and wireless communications. He is a member
of IEICE and IEEE.

Miki Yamamoto received
his B.E., M.E., and Ph.D.
in communications engineering
from Osaka University in 1983,
1985, and 1988. He joined the
Department of Communications
Engineering at Osaka University

in 1988. He moved to the Department of Elec-
trical Engineering and Computer Science of
Kansai University in 2005, where he is a profes-
sor. He visited the University of Massachusetts
at Amherst in 1995 and 1996 as a visiting pro-
fessor. His research interests include multicast
communications, high-speed networks, wireless
networks, and the evaluation of performance of
these systems. He is a member of IEEE, ACM,
and IEICE.


