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Copyright protection is a major issue in online content-distribution services and many key-
management schemes have been proposed for protecting content. Key-distribution processes
impose large burdens even though the communications bandwidth itself is restricted in the
distribution of mobile content provided to millions of users. Mobile devices also have low
computational capacities. Thus, a new scheme of key management, where the load on the
key-distribution server is optimal and loads on clients are practical, is required for services.
Tree-based schemes aim at reducing the load on the server and do not take reducing the
load on clients into account. The load on clients is minimized in a star-based scheme, on
the other hand, while the load on the server increases in proportion to the number of clients.
These structures are far from being scalable. We first discuss a relaxation of conventional
security requirements for key-management schemes in this paper and define new requirements
to improve the efficiency of the schemes. We next propose the τ -gradual key-management
scheme. Our scheme satisfies the new security requirements and loads on the server, and it
has far fewer clients than conventional schemes. It uses an intermediate configuration between
that of a star- and a tree-structure that allows us to continuously change it by controlling
the number of clients in a group, mmax. The scheme can be classified as τ -star-based, τ -tree-
based, or τ -intermediate depending on the parameter, mmax. We then present a quantitative
evaluation of the load on the server and clients using all our schemes based on practical
assumptions. The load on the server and that on clients involves a trade-off with the τ -
intermediate scheme. We can construct an optimal key-management structure according to
system requirements using our schemes, while maintaining security. We describe a concrete
strategy for setting parameter mmax. Finally, we present general parameter settings by which
loads on both the server and clients using the τ -intermediate scheme are lower than those
using the τ -tree-based scheme.

1. Introduction

The high-speed mobile Internet has recently
been expanded to include 3G mobile services.
Digital-content delivery that provides music,
movies, and games for mobile phones has be-
come a major service for mobile users. Pay-
broadcasting is expected to become a new mo-
bile service of particular importance in the near
future. Copyright protection is a major issue
with these services. It is easy to duplicate dig-
ital content and because it requires little effort
to do so illegal content is being widely circu-
lated. Encrypting digital content is one solu-
tion to prevent illegal copying and generate in-
come from clients. Many schemes for manag-
ing encryption keys have been proposed. These
schemes are called key-management schemes.
However, existing key-management schemes are
not ideal for the content-distribution services
required by mobile devices.
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The load on the client is low in the star-
based scheme 6), which is an existing key-
management configuration using a logical star-
structure. The load on the server, however, in-
creases in proportion to the number of clients
(see Section 2.2.1) and this scheme is far from
scalable. The tree-based scheme 16), on the
other hand, which is an existing configuration
using a logical tree-structure, reduces the load
on the server to a logarithmic order for the num-
ber of clients.

However, the tree-based scheme is still not
ideal. First, it only reduces the load on the key-
management server while the star-based one
only reduces that on clients. We cannot con-
struct an optimal key-management structure
for a changing mobile environment using these
existing schemes. Thus, new key-management
schemes based on an intermediate structure
between that of the star and tree configura-
tions are required. Second, the current se-
curity requirements are too strict. The key-
management server must update keys whenever
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a client joins or leaves to satisfy security re-
quirements (Section 2.2.2). The tree-based and
star-based schemes are designed to satisfy two
security requirements i.e., Backward Security
(BS) and Forward Security (FS). BS involves
joining clients not obtaining any old shared
keys, and FS involves leaving clients not ob-
taining any shared keys, which are distributed
after the client leaves. The load on the server
and client increases in proportion to the num-
ber of joins and leaves in both key-management
schemes. The load will be too high for mobile
devices with low computational capacities when
there is an extremely large number of clients.
For example, a client must receive 39,900 mes-
sages per second in the worst case assuming
that the total number of clients is 1,000,000,
the degree of the tree is 2, and 1,000 clients join
and leave every second. Thus, relaxed security
requirements are required to improve efficiency.

We first discuss relaxing conventional secu-
rity requirements in this paper and then de-
fine new security requirements to improve ef-
ficiency. We then propose our τ -gradual key-
management scheme, which satisfies the new
security requirements and imposes far fewer
loads on the server and the client than con-
ventional schemes. The scheme has a hybrid
star- and tree-structure, and can be contin-
uously changed by controlling the number of
clients in a group, mmax. Finally, we evalu-
ate the loads on the server and the clients in
these schemes and discuss the trade-off that
has to be made between these loads with the
τ -intermediate scheme.

We can construct an optimal key-management
structure that satisfies system requirements us-
ing a hybrid scheme while maintaining security.
Furthermore, the loads imposed on both clients
and servers by the τ -intermediate scheme are
lower than those by the τ -tree-based configura-
tion under certain conditions.

2. Related Work

Broadcast encryption was first proposed by
Berkovits 5). Fiat, et al. 10) formalized the basic
definition of broadcast encryption. Since then,
many key-management schemes have been pro-
posed. Existing key-management schemes can
be classified into two types, .i.e., stateless and
stateful.

As the clients’ keys in a stateless scheme
are never updated, extremely secure devices for
storing each client’s keys can be configured in-

expensively. Numerous stateless schemes have
been proposed for this reason. However, gener-
ating a pre-shared key in stateless schemes de-
pends on the maximum number of clients and
the size of the message increases as the number
of clients leaving the service increases. Thus,
stateless schemes are not suitable for long-term
or large-scale services.

We do not need to consider the maximum
number of clients in stateful schemes, on the
other hand. The size of the message also does
not depend on the number of clients leaving the
service. As stateful schemes are suitable for
long-term and large-scale services, we investi-
gated these for key management.

2.1 Stateless schemes
The content-encryption key is only based on

the content-distribution message and the pre-
shared key for each client. That is, keys for
each client are distributed when they join the
service and are never updated.

Many stateless schemes have been pro-
posed 1)∼4),8),9),11),13),14).

2.2 Stateful schemes
The content provider uses a shared key as

the content-encryption key. Each client has
a shared key; key-encryption keys necessary
for encrypting the shared key and other key-
encryption keys. The shared key and key-
encryption keys are upgraded. Therefore, the
state of a client during key updates will affect
his or her ability to decrypt future keys.

Many stateful schemes have been pro-
posed 6),7),12),15)∼17).

The simplest one is the star-based scheme 6).
All clients use a shared key, and the key is up-
dated when a client joins or leaves. Wong, et
al. 17) and Wallner, et al. 16) proposed a primary
tree-based scheme. The shared key was as-
signed to the root node and the key-encryption
keys to the interior nodes. Individual client
keys were also assigned to leaf nodes. Each
client had keys assigned to all nodes along the
shortest path from the root node to the leaf
node. Chang, et al. 7) and Kim, et al. 12) im-
proved their schemes using Boolean Function
Minimization and Diffie-Hellman key exchange.
Finally, Pinkas 15) proposed a scheme for reduc-
ing the number of update messages needed by
a previously off-line member.

Details on the star-based and tree-based
schemes are set out below. Each client shares an
individual key with the key-management server
and trusts the server.
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2.2.1 Star-based Scheme
A client has two keys, i.e., a shared key and

an individual key.
Join Process The server updates the current

shared key. It then encrypts the updated
shared key with the old shared key and sends
it to existing clients. The server also en-
crypts the key with the individual key of a
new client, and sends it to this client.

Leave Process The server updates the cur-
rent shared key. It then encrypts the updated
shared key with each individual key and sends
it to each client.
2.2.2 Tree-based Scheme
This scheme uses a logical k-ary tree called

the key-management tree. Each node of the
tree corresponds to a key for clients, and does
not correspond to a real entity such as a router.
The shared key is assigned to the root node
of the tree, the individual keys of the client
are assigned to leaf nodes, and key-encryption
keys are assigned to intermediate nodes. A
client has logk N keys assigned to the ances-
tor nodes of the node where its individual key
is assigned. (N is the total number of clients
and k is the degree of the tree.) In this scheme,
the server directly sends messages (encrypted
key) to clients.
Join Process The server updates the shared

key and all the key-encryption keys assigned
to the ancestor nodes of the node where the
individual key of a new client is assigned. It
then encrypts each updated key with the old
keys and sends them to existing clients who
have the old keys. Finally, it encrypts these
keys with the individual key of the new client,
and sends the encrypted keys to this client.

Leave Process The server updates the shared
key and all the key-encryption keys assigned
to the ancestor nodes. It then encrypts all the
updated keys with keys assigned to the child
nodes, and sends them to existing clients who
have the child keys. It finally encrypts these
keys with the individual key of the new client,
and sends the encrypted keys to this client.

3. Issues

3.1 Requirements for Mobile Services
We assumed content-distribution services for

mobile devices where charges were levied on
usage-based rates. Clients usually use services
in their free time such as when commuting and
when the service utility time is short. Gener-
ally, these services have the following character-

istics:
• Their number of clients is extremely large.
• Their communication bandwidth is re-
stricted.
• The computational capacities of their
clients are low.
• Their clients frequently join and leave since
the service utility time is short.

Thus, a new key-management scheme for dis-
tributing mobile content should satisfy the fol-
lowing requirements.
• The load on the key-management server
needs to be optimal.
• The load on the client needs to be practical.

The first requirement is necessary to minimize
the cost of communication. This is mandatory
for mobile-content distribution where the com-
munication bandwidth is restricted. The sec-
ond requirement is needed for mobile devices
with low computational capacities. However,
we can reduce the total cost of communication
by sharing various processes with clients if mo-
bile devices have sufficient margin for computa-
tional capacities. We should thus minimize the
load on the server while considering the load on
the client.

3.2 Problems with Existing Schemes
The existing schemes suffer from two prob-

lems.
First, they are either based on the star or the

tree structure. The load on the client is low
in the former. However, the server must issue
N types of messages (encrypted keys) when a
client leaves in the star-based scheme, where N
is the number of clients (mobile devices).

The load on the server is extremely high,
and this scheme is far from scalable. The
server only needs to issue about logk N types
of messages when a client joins or leaves in
tree-based schemes, where k is the degree of
the tree. These schemes are more efficient
than those that are star-based. However, the
shared key and the key-encryption keys are up-
dated every time a client joins or leaves. Some
schemes 7),12),15) reduce the size of the messages
used for updating keys. However, these schemes
do not reduce the frequency with which the
keys need updating and do not take the load
on clients into consideration. If we apply the
scheme to large-scale services, clients frequently
join or leave and keys must be updated often.
Therefore, a large load is imposed on clients,
and these schemes are not ideal for devices such
as mobile phones that have low computational
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capacities.
Second, current security requirements are too

strict. A valid client in content-distribution
services can obtain common content-encryption
keys from key-management messages at the
same time as being charged a fee for the con-
tent. An illegal client could try to obtain an
old content-encryption key from an old key-
management message sent before he or she
joins, or try to obtain a new key from a message,
which will be sent after he leaves. It should be
noted that anyone can obtain encrypted con-
tent but only valid paying clients can obtain
the content-encryption key.

Many existing key-management schemes, in-
cluding those that are star- and tree-based, sat-
isfy following two requirements:
Backward Security (BS) No joining client

can obtain any shared keys that were dis-
tributed in the past. More formally, a client
that joined at time t0 cannot obtain any
shared keys at time t < t0.

Forward Security (FS) No leaving client
can obtain shared keys that will be dis-
tributed in the future. More formally, a client
that left at time t0 cannot obtain any shared
keys at time t > t0.
These requirements are impractical for large-

scale mobile-broadcasting services. We as-
sumed a tree-based key-management scheme
where there were N = 1,000,000 clients, and the
degree of the tree was k = 2 with 1,000 clients
joining and 1,000 clients leaving every second.
Under this assumption, the server must issue
79,700 messages, and a client must receive at
most 39,900 messages per second in the worst
case. When a client joins, the server updates
all the logk N keys, which are assigned to the
ancestors of the node where the individual key
of the new client will be assigned. The server
then encrypts each updated key with two keys,
i.e., the key before update and the individual
key of the new client. Thus, the server must
issue 2 logk N encrypted keys. The new client
and siblings of the new client, whose individ-
ual key is assigned to the sibling nodes, must
also receive logk N keys. When, a client leaves,
the server updates all the logk N keys, which
the leaving client has. The server then en-
crypt each updated key with k keys assigned
to child nodes. The server must thus issue
k logk N encrypted keys and sibling clients of
the leaving clients receive logk N keys. Thus,
the server must issue (2 logk N + k logk N) ·

1,000 = 79,700 messages. A client must re-
ceive (logk N + logk N) · 1,000 = 39,900 mes-
sages in the worst case. The load on the server
is heavy and the load on the clients in partic-
ular is too heavy for mobile devices with low
computational capacities.

4. Overview of τ -Gradual
Key-Management Scheme

We propose the τ -gradual key-management
scheme. However, the current requirements are
too impractical for large-scale mobile-content
distribution services as discussed in Section 3.2.
Therefore, we relaxed the BS and FS require-
ments and defined new ones, i.e., ε1-gradual
Backward Security and ε2-gradual Forward Se-
curity.
ε1-gradual Backward Security (ε1-gBS)

No client that joined at time t0 can obtain
any shared keys at time t < t0 − ε1 (ε1 ≥ 0).
We have denoted this by ε1-gBS throughout
the rest of this paper.

ε2-gradual Forward Security (ε2-gFS)
No client that left at time t0 can obtain any
shared keys at time t > t0 + ε2 (ε2 ≥ 0). We
have denoted this by ε2-gFS throughout the
rest of this paper.
ε1 and ε2 are parameters and these can be de-

termined by service providers. ε1-gBS is identi-
cal to BS and ε2-gFS is identical to FS if ε1 = 0
and ε2 = 0. It is both realistic and necessary
to relax these requirements. We can use the
broadcasting service for mobile phones as an
example. A service provider is not overly con-
cerned if a client watches free content for peri-
ods exceeding a few tens of seconds for a service
that is charged for every hour.

The τ -gradual key-management scheme sat-
isfies the new requirements. This scheme also
uses an intermediate structure between that
of a star and a tree, i.e., group keys are pro-
posed using the star-based scheme, and shared
key and key-encryption keys are managed using
the tree-based scheme. The structure is con-
trolled by the maximum number in a group,
mmax. The scheme can also be classified as
τ -star-based, τ -tree-based, or τ -intermediate
depending on mmax. The structure is iden-
tical to the conventional star-structure when
mmax = 1, and is identical to the conventional
tree-structure when mmax = N (N is the to-
tal number of clients). We called the new con-
figuration the τ -star-based and the τ -tree-based
scheme in these cases. Finally, we called it the
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Fig. 1 τ -gradual key-management scheme.

τ -intermediate scheme when 1 < mmax < N .
Figure 1 shows the relation between these
three schemes.

5. Detailed Description of τ -Gradual
Key-Management Schemes

We will now give a detailed description of
the proposed schemes. They use a logical key-
management structure as in the existing con-
figurations. Additionally, each client shares an
individual key with the key-management server
and trusts this server.

5.1 τ -Star-based Scheme
The key-management server updates the

shared key every τ seconds, and it does not up-
date the key when a client joins or leaves.
( 1 ) Join Process

The server encrypts the current shared key,
K1, with the individual key of a joining client,
and sends it to the client.

( 2 ) Key Update Process
The server updates the shared key. The
server then encrypts the shared key with each
individual key and sends it to each client.
(Note that the shared key is not updated
when a client joins or leaves.)
5.2 τ -Tree-based Scheme
The key-management server updates the

shared key and key-encryption keys every τ sec-
onds, and it does not update the keys when a

client joins or leaves.
( 1 ) Join Process

The server encrypts the current shared key,
K1, with the individual key of a joining client
and sends it to the client.

( 2 ) Keys Update Process
The server updates the shared keys and key-
encryption keys assigned to the ancestors of
the nodes, where the individual keys of clients
that have left are assigned.
5.3 τ -Intermediate Scheme
The τ -intermediate scheme consists of the fol-

lowing five processes: preparing, joining, leav-
ing, distributing content, and updating keys.
( 1 ) Preparation Process We will now ex-

plain the preparation process. The key-
management server executes this process only
once, i.e., when the key-management scheme
is started.
Step 1 Create Groups

The server creates mmax-client-groups G1,
G2, . . . , and Gn, where n = �N/mmax�.

Step 2 Generate Group Keys
The server generates group keys KG1 , KG2 ,
. . . , and KGn

, which are shared among all
the clients in each group. The server en-
crypts the group keys with each individual
key, and sends it to each client.

Step 3 Construct Tree
The server constructs a complete k-ary tree
with height h = �logk n�, then removes
n − kh leaf nodes where n �= kn. This
tree is the key-management tree for the
proposed scheme. The server then assigns
group keys KG1 , KG2 , . . . , and KGn

to
the leaf nodes of the tree. The server next
generates a shared key, K1, and key en-
cryption keys K2, K3, . . . , and Ki. The
server assigns the shared key to the root
node (node 1), and the key-encryption keys
to the interior nodes (nodes 2, 3, . . . , i).
The shared key and key-encryption key are
shared among clients belonging to groups
whose group key is assigned to the descen-
dant leaf nodes. The shared key, K1, is
used as the content-encryption key since all
the clients share this key.

Step 4 Distribute Keys
The server sends the shared key and the
key-encryption key generated in Step 3 to
the clients belonging to the groups, G1, G2,
. . . , and Gn. The keys are encrypted with
the key-encryption keys or the group keys
assigned to the child nodes. The server
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then sends them to clients who have the
encryption key.

( 2 ) Joining Process The server does not
update keys but encrypts the shared key, K1,
with the individual key of a joining client, and
sends it to the client.

( 3 ) Leaving Process The server does not
update keys, but sets a revocation flag on the
group from which the client left. The flag in-
dicates that the group is going to be revoked
in the next key-updating process.
Figure 2 has an example. Let the maximum
number of clients in a group, mmax, be eight.
The server sets the flag on groups G3, G5,
and G6 since the numbers of clients in these
groups is smaller than mmax.

( 4 ) Content Distribution Process The
server encrypts content with the shared key,
K1, and sends it to all the clients.

( 5 ) Key Updating Process The server up-
dates keys every τ (τ > 0) seconds. The
server updates the keys according to the fol-
lowing steps:
Step 1 Revoke Groups

The server revokes groups on which flags
have been set. The server then discards
the group keys of the revoked groups.
Groups G3, G5, and G6 in our example are
revoked (see Fig. 2).

Step 2 Reconstruct Groups
The server creates new mmax-client-groups
from joining clients and clients in the re-
voked groups. It then generates group keys
for the new groups. The server encrypts
the group keys with an individual key for
each client, and sends it to each client.
There are 21 clients in revoked groups G3,
G5, and G6 and two joining clients in Fig. 2.
The server creates two 8-client groups, G9

and G10, and a 7-client group, G11.
Step 3 Reconstruct Tree

The server assigns new group keys to the
leaf node of the tree. The new group keys
are assigned to nodes where the group keys
of the revoked groups were assigned. If no
groups were revoked in Step 1, the server
adds new leaf nodes to the tree, and assigns
the new group key to them. In this case,
the server transforms the leaf node with the
least depth into an intermediate node. The
server then adds two leaf nodes to this in-
termediate node for the new group and ex-
isting groups whose group key was assigned
to the group.

Fig. 2 Key updating process.

In the example in Fig. 2, the server assigns
group keys KG9 , KG10 , and KG11 to nodes
to which group keys KG3 , KG5 , and KG6

were respectively assigned.
Step 4 Updating Keys

Keys assigned to all the ancestors of the
nodes, to which the new group keys were
assigned, are updated.
In the example in Fig. 2, the server updates
the shared key, K1, and key encryption
keys, K2 and K3, since they were assigned
to the ancestors of the nodes for the new
group keys.

Step 5 Redistributing Keys
The server encrypts the updated keys, and
sends them to clients. The updated keys
are encrypted with the keys assigned to the
child nodes, as in Step 4 of the preparation
process.
In the example in Fig. 2, the server encrypts
the shared key, K ′

1, with key-encryption
keys, K ′

2 and K ′
3, and K4 and sends them

to the clients belonging to groups in sets
{G1, G2, G9}, {G4, G10, G11}, and {G7,
G8}, respectively.
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6. Analysis

We will now present a quantitative method
of evaluation for determining the efficiency of
the schemes. We will also give an analysis of
the security of the τ -gradual key-management
scheme.

6.1 Efficiency
We compared the existing and new schemes

under the following assumptions:
• The total number of clients was N .
• The average watching time was T .
• N/T clients joined and random N/T clients
left per second.
• The degree of the key-management tree was
k.
• The maximum number of clients in a group
was mmax.
We defined the load on the key-management

server Ls by the average number of messages
that the server issued per second. Next, we de-
fined the load on the clients, Lc, by the maxi-
mum number of messages that a client received
per second. Each message was an encrypted
shared key, an encrypted key-encryption key,
or an encrypted group key.

6.1.1 τ -Star-Based Scheme
The key-management server issues messages

when a joining client joins and the server up-
dates the shared key.
( 1 ) Joining Process

The server issues N/T messages for joining
clients per second, and the joining clients re-
ceive one message.

( 2 ) Key Updating Process
The server issues N messages, and a client
receives one message in this process. Thus,
the server issues N/τ messages per second,
and a client receives 1/τ messages.

Therefore, we have,

Ls,τ−star(N ; τ ) = N

(
1
T

+
1
τ

)
,

and,

Lc,τ−star(N ; τ ) =
2
τ

.

6.1.2 τ -Tree-Based Scheme
The key-management server issues messages

when a joining client joins or when it updates
the shared keys.
( 1 ) Joining Process

The server issues N/T messages per second to
joining clients, and the joining clients receive
one message.

( 2 ) Leaving Process

The height of the tree is logk N . The server
must issue updates about τ logk N keys, since
Nτ/T clients leave in τ seconds. The server
then encrypts each updated key with the k
group keys or the k key-encryption keys as-
signed to the child nodes. The server is-
sues f(Nτ/T, k, logk N) messages. Function
f(n; k, h) indicates the number of messages
that the server issues when n clients leave,
where k is the degree of the key-management
tree and h is the height of the tree. f is given
by

f(n; k, h) =
kn − 1
k − 1

+ nk(h − logk n).
(See Theorem 1 in Appendix.) That is, the
server issues f(Nτ/T, k, logk N)/τ messages
per second, and a client whose individual key
is assigned to sibling nodes receives logk N
messages.
Therefore, we have:

Ls,τ−tree(N ; k, τ) =
N

T
+

f
(

Nτ
T , k, logk N

)
τ

,

and

Lc,τ−tree(N ; k, τ) =
1 + logk N

τ
.

6.1.3 τ -Intermediate Scheme
The server issues messages when (1) the join-

ing process and (2) the key updating process
(Steps 2 and 4) are executed.
( 1 ) Joining Process

The server issues N/T messages to joining
clients per second and the joining clients re-
ceive one message.

( 2 ) Key Updating Process
( a ) Reconstruct Groups (Step 2)

Approximately Nτ/T groups are revoked
since this process is executed every τ
seconds. That is, there are almost
min(N, Nmmaxτ/T ) clients in the revoked
groups. The server sends new group keys
to the clients. Thus, the server issues
min(N/τ, Nmmax/T ) messages per second
and the clients in the revoked groups re-
ceive one message.

( b ) Redistribute Keys (Step 4)
The height of the tree is logk(N/mmax).
The server must issue f

(
Nτ
T , k, logk

N
mmax

)
messages. Thus, the server issues
f(Nτ

T ,k,logk
N

mmax )
τ messages per second.

Clients whose group keys are assigned to
the sibling nodes of the nodes where the
group keys of the revoked groups are as-
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Table 1 Loads on key-management server and client in key-management schemes.

Server Client

Star-based
N(N+1)

T
2N
T

τ -Star-based scheme N
(

1
T

+ 1
τ

)
2
τ

τ -Intermediate N
T

{
1 + min

(
T
τ

, mmax

)}
+

f
(

Nτ
T

,k,logk
N

mmax

)
τ

1+logk(N/mmax)
τ

τ -Tree-based N
T

+
f( Nτ

T
,k,logk N)

τ
1+logk N

τ

Tree-based
N(k+1) logk N

T
2N logk N

T

Fig. 3 Load on key-management server (where k = 2
and τ=10).

signed, receive logk(N/mmax) messages.
Therefore, we have

Ls,inter(N ; mmax, k, τ)

=
N

T

{
1 + min

(
T

τ
, mmax

)}

+
f(Nτ

T , k, logk
N

mmax
)

τ
and

Lc,inter(N ; mmax, k, τ)=
1+logk(N/mmax)

τ
.

We have listed our results in Table 1; Fig. 3
and Fig. 4 show the loads on the server and
client.

The loads in the τ -intermediate scheme are
almost identical to those in the star-based one
where mmax = N , and are almost identi-
cal to those in the tree-based scheme where
mmax = 1. A trade-off has to be made in the τ -
intermediate scheme between imposing a load
on the server or the clients. We can flexibly
adjust the load on the server and the clients
with the τ -intermediate scheme while maintain-
ing security. For example, we can reduce the
load on clients by assigning a large value to
mmax, where the server has high capacity. We
can reduce the load on the server by assigning a

Fig. 4 Load on client (where k = 2 and τ=10).

small value to mmax, where the capacity of the
clients is high. Furthermore, the loads on both
the server and clients with the τ -intermediate
scheme are lower than those with the tree-based
scheme if:{

mmax = 3 (k = 2, 4)
mmax = 2, 3, . . . , k − 1 (5 ≤ k ≤ T/τ )

;

(see Theorem 2). We have listed an example
in Table 2. The parameters N , τ , k, and T
were set based on actual content-distribution
services for mobile content (see Table 3).

6.2 Security
A joining client receives the current shared

key and the current key-encryption keys from
the server. Since the keys are updated every
τ seconds, the worst-case scenario is that the
joining client can decrypt a message at τ sec-
onds before he or she joins. However, the client
cannot obtain an older key from the old mes-
sage since the current key is encrypted with a
newer key. However, the client cannot obtain
an older key from the old message, since this
message only contains the current key. Thus,
the new schemes satisfy τ -gBS.

The worst-case scenario is that a leaving
client can decrypt a message at τ seconds after
he leaves. However, the group that the leaving
client belonged to is revoked during the next
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Table 2 Trade-off between load on key-management server and client.

Server Client
Star-based 1,000,000,000 2,000
τ -Star-based 101,000 0.20
τ -Intermediate (mmax = 1,000) 98,400 1.10
τ -Intermediate (mmax = 500) 100,000 1.20
τ -Intermediate (mmax = 200) 103,000 1.33
τ -Intermediate (mmax = 100) 105,000 1.43
τ -Intermediate (mmax = 50) 57,000 1.53
τ -Intermediate (mmax = 20) 29,600 1.66
τ -Intermediate (mmax = 10) 21,600 1.76
τ -Intermediate (mmax = 5) 18,600 1.86
τ -Intermediate (mmax = 3) 18,100 1.93
τ -Intermediate (mmax = 2) 18,300 1.99
τ -Tree-based 18,300 2.09
Tree-based 79,700 39,900

Table 3 Parameter setting based on mobile content-
distribution services.

N (total number of clients) 1,000,000
τ (Security parameter [s]) 10
T (Average watching time [s]) 1,000
k (Degree of key-management tree) 2

key updating process and the group key is up-
dated. The leaving client cannot decrypt the
message that includes the new shared key and
the new key-encryption keys. Thus, the new
schemes satisfy τ -gFS.

As a result, the three schemes satisfy τ -gBS
and τ -gFS defined in Section 3.

7. Discussion

We will now explain how to construct an op-
timal key structure.

The parameter τ must be set by the content
provider, since this indicates the period that
a client can watch content free of charge. For
example, the content provider can set τ to a few
seconds or a few tens of seconds. The content
provider will not be overly concerned if clients
watch free content for periods exceeding a few
tens of seconds for a service that charges for
every minute.

Thus, the key distributor can choose an opti-
mal key-management scheme according to sys-
tem requirements while maintaining security.
The security of the τ -gradual key-management
scheme is only dependent on parameter τ . We
will describe a concrete strategy. The load on
clients can be reduced by assigning a large value
to mmax, and the load on the server can be
reduced by assigning a small value to mmax.
Furthermore, the loads imposed on both the
server and client by the τ -intermediate scheme
are lower than those by the τ -tree-based scheme

if {
mmax = 3 (k = 2, 4)
mmax = 2, 3, . . . , k − 1 (5 ≤ k ≤ T/τ )

8. Conclusion

We considered efficient key-management
schemes for mobile devices. The conventional
star-based scheme is far from being scalable and
the conventional tree-based one does not take
the load on clients into account. The latter is
not ideal for devices with low computational
capacity. We relaxed the conventional secu-
rity requirements for key-management schemes,
and defined new requirements, ε1-gBS and ε2-
gFS, to improve their efficiency. We then
proposed a τ -gradual key-management scheme.
Our scheme satisfies the new security require-
ments, τ -gBS and τ -gFS, and the loads imposed
on the server and the clients by this are much
lower than those imposed by conventional star-
based and tree-base schemes. It uses an inter-
mediate configuration between that of a tree-
and star-structure, and can be controlled by
the number of clients in a group, mmax. The
new scheme can be classified as τ -star-based,
τ -tree-based, or τ -intermediate by changing the
parameter, mmax. We presented a quantitative
evaluation of the load imposed on the server
and clients by our schemes based on practi-
cal assumptions. The load on the server and
that on clients involves a trade-off using the τ -
intermediate scheme. We can construct an opti-
mal key-management structure according to the
system requirements using our schemes, while
maintaining security. We described a concrete
strategy for setting parameter mmax. We also
presented general parameter settings in which
the loads imposed on both the server and clients
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by the τ -intermediate scheme were lower than
those by the τ -tree-based one.
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Appendix

Theorem 1. The server issues at most
f(n; k; h) messages in the key updating process
when n keys assigned to leaf nodes are updated.
k is the degree of the key-management tree and
h is the height of the tree. f(n; k, h) is given by:

f(n; k, h) =
k(kn − 1)

k − 1
+ nk(h − logk N).

Proof. The locations of the revoked groups are
random since clients randomly leave the service.
The shared key and all the key encryption keys
assigned to the node in the upper logk n+1 lay-
ers of the tree can be updated. At most, n keys
are updated in each of the last layers. Figure 5
shows how many keys can be updated. In the
upper logk n + 1 layers, at most

1 + k + . . . + n =
kn − 1
k − 1

keys are updated, and in the last h − logk n
layers, at most n(h− logk n) keys are updated.
The server encrypts the updated keys with the
k keys assigned to the child nodes. Therefore,
the server issues at most

f(n; k, h)
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Fig. 5 Keys that can be updated in key-management
tree.

= k

{
kn − 1
k − 1

+ n(h − logk n)
}

=
k(kn − 1)

k − 1
+ nk(h − logk n)

messages.
Theorem 2. The loads imposed on both the
server and a client by the τ -intermediate
scheme are lower than those by the τ -tree-based
scheme if{

mmax = 3 (k = 2, 4)
mmax = 2, 3, . . . , k − 1 (k ≥ 5)

.

Proof. The load imposed on a client by the τ -
intermediate scheme is always lower than that
by the τ -tree-based scheme since:

Dc(mmax; k)
= Lc,τ−tree − Lc,inter

=
1 + logk N

τ
− 1 + logk

N
mmax

τ

=
logk mmax

τ
> 0.

We then investigate the load on the server.
The difference between the loads imposed by
the τ -tree-based scheme and the τ -intermediate
is given by:

Ds(mmax; k)
= Lc,τ−tree − Lc,inter

=

[
N

T
{1+mmax}+

f(Nτ
T , k, logk

N
mmax

)
τ

]

−
[

N

T
+

f(Nτ
T , k, logk N)

τ

]

=
N

T
(k logk mmax − mmax).

Ds(3; k) = log2
9
8 > 0, where k = 2, 4, and,

Ds(2; k) = logk
2k

k2 > 0, D(3; k) > 0, . . . , and,
Ds(k − 1; k) = logk

(k−1)k

kk−1 > 0, where k ≥ 5.
Therefore, the load imposed on the server by
the τ -intermediate scheme is lower than by the
τ -tree-based scheme, if:{

mmax = 3 (k = 2, 4)
mmax = 2, 3, . . . , k − 1 (5 ≤ k ≤ T/τ )

.

We assumed mmax < k ≤ T/τ in this theo-
rem. The assumption is not valid if k > T/τ .
However, this case is not realistic, since T is
much greater than τ . Note that T is the aver-
age time for watching, for example 1000 s, and
τ is the period that the content provider allows
a client to watch content for free, e.g., a few
tens of seconds.
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