WEKO3
アイテム
楽譜情報を用いない歌唱力自動評価手法
https://ipsj.ixsq.nii.ac.jp/records/10100
https://ipsj.ixsq.nii.ac.jp/records/101009e37ebea-c306-4170-adca-fbf76770d239
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2007 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2007-01-15 | |||||||
タイトル | ||||||||
タイトル | 楽譜情報を用いない歌唱力自動評価手法 | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | An Automatic Singing Skill Evaluation Method for Unknown Melodies | |||||||
言語 | ||||||||
言語 | jpn | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | 特集:便利で身近な音楽情報処理 | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
その他タイトル | ||||||||
その他のタイトル | 音楽音響分析 | |||||||
著者所属 | ||||||||
筑波大学大学院図書館情報メディア研究科 | ||||||||
著者所属 | ||||||||
産業技術総合研究所 | ||||||||
著者所属 | ||||||||
筑波大学大学院図書館情報メディア研究科 | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Library, Information and Media Studies, University of Tsukuba | ||||||||
著者所属(英) | ||||||||
en | ||||||||
National Institute of Advanced Industrial Science and Technology (AIST) | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Library, Information and Media Studies, University of Tsukuba | ||||||||
著者名 |
中野, 倫靖
× 中野, 倫靖
|
|||||||
著者名(英) |
Tomoyasu, Nakano
× Tomoyasu, Nakano
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | 本論文では,歌唱力を自動的に評価するシステム開発の第1 段階として,ポピュラー音楽における歌唱力の「うまい」「へた」を,楽譜情報を用いずに自動的に識別する手法を提案する.従来,訓練された歌唱者の歌唱音声に関する音響学的な考察は行われてきたが,それらの研究は歌唱力の自動評価に直接適用されたり,人間による評価と結び付けて検討されたりすることはなかった.本論文では,聴取者の歌唱力評価の安定性を聴取実験によって確認し,そこで得られた結果から歌唱音声に「うまい」「へた」をラベル付けして自動識別実験を行った.そのための特徴量として,歌唱者や曲に依存しない特徴であることを条件に,相対音高とビブラートの2 つを提案する.聴取実験では,22 人の聴取者を被験者とし,聴取者間の評価に相関があった組の割合は88.9%(p < .05)であった.また,600 フレーズのラベル付けされた歌唱音声に対して識別実験を行った結果,83.5%の識別率を得た. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | As a first step towards developing an automatic singing skill evaluation system, this paper presents a method of classifying singing skills (good/poor) that does not require score information of the sung melody. Previous research on singing evaluation has focused on analyzing the characteristics of singing voice, but were not directly applied to automatic evaluation or studied in comparison with the evaluation by human subjects. In order to achieve our goal, two preliminary experiments, verifying whether the subjective judgments of human subjects are stable, and automatic evaluation of performance by a 2-class classification (good/poor ), were conducted. The approach presented in the classification experiment uses pitch interval accuracy and vibrato as acoustic features which are independent from specific characteristics of the singer or melody. In the subjective experiment with 22 subjects, 88.9% of the correlation between the subjects' evaluations were significant at the 5% level. In the classification experiment with 600 song sequences, our method achieved a classification rate of 83.5%. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN00116647 | |||||||
書誌情報 |
情報処理学会論文誌 巻 48, 号 1, p. 227-236, 発行日 2007-01-15 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-7764 |