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This paper presents a new technique for recognizing musical instruments in polyphonic
music. Since conventional musical instrument recognition in polyphonic music is performed
notewise, i.e., for each note, accurate estimation of the onset time and fundamental frequency
(F0) of each note is required. However, these estimations are generally not easy in polyphonic
music, and thus estimation errors severely deteriorated the recognition performance. Without
these estimations, our technique calculates the temporal trajectory of instrument existence
probabilities for every possible F0. The instrument existence probability is defined as the
product of a nonspecific instrument existence probability calculated using the PreFEst and
a conditional instrument existence probability calculated using hidden Markov models. The
instrument existence probability is visualized as a spectrogram-like graphical representation
called the instrogram and is applied to MPEG-7 annotation and instrumentation-similarity-
based music information retrieval. Experimental results from both synthesized music and real
performance recordings have shown that instrograms achieved MPEG-7 annotation (instru-
ment identification) with a precision rate of 87.5% for synthesized music and 69.4% for real
performances on average and that the instrumentation similarity measure reflected the actual
instrumentation better than an MFCC-based measure.

1. Introduction

The goal of our study is to enable users to
retrieve musical pieces based on their instru-
mentation. The types of instruments that are
used are important characteristics for retriev-
ing musical pieces. In fact, the names of cer-
tain musical genres, such as “piano sonata”
and “string quartet”, are based on instru-
ment names. There are two strategies for
instrumentation-based music information re-
trieval (MIR). The first allows users to directly
specify musical instruments (e.g., searching for
a piano solo or string music). This strategy is
useful because, unlike other musical elements
such as chord progressions, specifying instru-
ments does not require any special knowledge.
The other strategy is Query-by-Example, where
once users specify a musical piece that they like,
the system searches for pieces that have simi-
lar instrumentation to the specified piece. This
strategy is also particularly useful for automati-
cally generating playlists for background music.

The key technology for achieving the above-
mentioned MIR is to recognize musical instru-
ments from audio signals. Although musical in-
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strument recognition studies mainly dealt with
solo musical sounds in the 1990s 1), the num-
ber of studies dealing with polyphonic music
has been increasing in recent years. Kashino,
et al. 2) developed a computational architecture
for music scene analysis called OPTIMA, which
recognizes musical notes and instruments based
on the Bayesian probability network. They sub-
sequently proposed a method that identifies the
instrument playing each musical note based on
template matching with template adaptation 3).
Kinoshita, et al. 4) improved the robustness of
OPTIMA to the overlapping of frequency com-
ponents, which occurs when multiple instru-
ments are played simultaneously, based on fea-
ture adaptation. Eggink, et al. 5) tackled this
overlap problem with the missing feature the-
ory. They subsequently dealt with the prob-
lem of identifying only the instrument play-
ing the main melody based on the assump-
tion that the main melody’s partials would suf-
fer less from other sounds occurring simultane-
ously 6). Vincent, et al. 7) formulated both mu-
sic transcription and instrument identification
as a single optimization based on independent
subspace analysis. Essid, et al. 8) achieved F0-
estimation-less instrument recognition based on
a priori knowledge about the instrumentation
for ensembles. Kitahara, et al. 9) proposed tech-
niques to solve the above-mentioned overlap

214



Vol. 48 No. 1 Instrogram: Probabilistic Representation of Instrument Existence 215

problem and to avoid musically unnatural er-
rors using musical context.

The common feature of these studies, except
for Refs. 7) and 8), is that instrument identi-
fication is performed for each frame or each
note. In the former case 5),6), it is difficult to
obtain a reasonable accuracy because temporal
variations in spectra are important characteris-
tics of musical instrument sounds. In the lat-
ter case 2)∼4),9), the identification system has to
first estimate the onset time and fundamental
frequency (F0) of musical notes and then ex-
tract the harmonic structure of each note based
on the estimated onset time and F0. Therefore,
the instrument identification suffers from errors
of onset detection and F0 estimation. In fact,
correct data for the onset times and F0s were in-
troduced manually in the experiments reported
in Refs. 3) and 9).

In this paper, we propose a new technique
that recognizes musical instruments in poly-
phonic musical audio signals without using
onset detection or F0 estimation as explicit
and deterministic preprocesses. The key con-
cept underlying our technique is to visualize
the probability that the sound of each tar-
get instrument exists at each time and with
each F0 as a spectrogram-like representation
called an instrogram. This probability is de-
fined as the product of two kinds of proba-
bilities, called nonspecific instrument existence
probability and conditional instrument exis-
tence probability, which are calculated using the
PreFEst 10) and hidden Markov models, respec-
tively. The advantage of our technique is that
errors due to the calculation of one probabil-
ity do not influence the calculation of the other
probability because the two probabilities can be
calculated independently.

In addition, we describe the application of
the instrogram technique to MPEG-7 annota-
tion and MIR based on instrumentation sim-
ilarity. To achieve the annotation, we intro-
duced two kinds of tags to the MPEG-7 stan-
dard. The first is designed to describe the prob-
abilities directly, and the second is designed
to obtain a symbolic representation such as an
event whereby a piano sound occurs at time t0
and continues until t1. Such a representation
can be obtained using the Viterbi search on a
Markov chain with states that correspond to
instruments. To achieve the MIR based on in-
strumentation similarity, the distance (dissim-
ilarity) between two instrograms is calculated

using dynamic time warping (DTW). A sim-
ple prototype system of similarity-based MIR
is also achieved based on our instrumentation-
based similarity measure.

2. Instrogram

The instrogram is a spectrogram-like graph-
ical representation of a musical audio signal,
which is useful for determining which instru-
ments are used in the signal. In a basic format,
an instrogram correponds to a specific instru-
ment. The instrogram has horizontal and ver-
tical axes representing time and frequency, and
the intensity of the color of each point (t, f)
shows the probability p(ωi; t, f) that the target
instrument ωi is used at time t and at an F0
of f . An example is presented in Fig. 1. This
example shows the results of analyzing an au-
dio signal of “Auld Lang Syne” played on the
piano, violin, and flute. The target instruments
for analysis were the piano, violin, clarinet, and
flute. If the instrogram is too detailed for some
purposes, it can be simplified by dividing the
entire frequency region into a number of subre-
gions and merging the results within each sub-
region. A simplified version of Fig. 1 is given
in Fig. 2. The original or simplified instrogram
shows that the melodies in the high (approx.
note numbers 70–80), middle (60–75), and low
(45–60) pitch regions are played on flute, violin,
and piano, respectively.

Fig. 1 Example of the instrogram☆.

☆ Color versions of all figures are available at:
http://winnie.kuis.kyoto-u.ac.jp/˜kitahara/
instrogram/IPSJ07/
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Fig. 2 Simplified (summarized) instrogram for Fig. 1.

3. Algorithm for Calculating Instro-
gram

Let Ω = {ω1, · · · , ωm} be the set of target
instruments. We then have to calculate the
probability p(ωi; t, f) that a sound of the in-
strument ωi with an F0 of f exists at time t
for every target instrument ωi ∈ Ω. This prob-
ability is called the instrument existence prob-
ability (IEP). Here, we assume that multiple
instruments are not being played at the same
time and at the same F0, that is, ∀ωi, ωj ∈ Ω:
i �= j =⇒ p(ωi∩ωj ; t, f) = 0. Let ω0 denote the
silence event, which means that no instruments
are being played, and let Ω+ = Ω ∪ {ω0}. The
IEP then satisfies

∑
ωi∈Ω+ p(ωi; t, f) = 1. When

the symbol “X” denotes the union event of all
target instruments, which stands for the exis-
tence of some instrument (i.e., X = ω1 ∪ · · · ∪
ωm), the IEP for each ωi ∈ Ω can be calculated
as the product of two probabilities:

p(ωi; t, f) = p(X; t, f) p(ωi|X; t, f),
because ωi ∩ X = ωi ∩ (ω1 ∪ · · · ∪ ωi ∪ · · · ∪
ωm) = ωi. Above, p(X; t, f), called the nonspe-
cific instrument existence probability (NIEP), is
the probability that the sound of some instru-
ment with an F0 of f exists at time t, while
p(ωi|X; t, f), called the conditional instrument
existence probability (CIEP), is the conditional
probability that, if the sound of some instru-
ment with an F0 of f exists at time t, the in-
strument is ωi. The probability p(ω0; t, f) is
given by p(ω0; t, f) = 1 − ∑

ωi∈Ω p(ωi; t, f).
3.1 Overview
Figure 3 shows an overview of the algorithm

for calculating an instrogram. Given an audio
signal, the spectrogram is first calculated. The
short-time Fourier transform (STFT) shifted by

Fig. 3 Overview of our technique for calculating the
instrogram.

10 ms (441 points at 44.1 kHz sampling) with
an 8,192-point Hamming window is used in the
current implementation. We next calculate the
NIEPs and CIEPs. The NIEPs are calculated
using the PreFEst 10). The PreFEst models the
spectrum of a signal containing multiple musi-
cal instrument sounds as a weighted mixture of
harmonic-structure tone models at each frame.
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For CIEPs, on the other hand, the temporal
trajectory of the harmonic structure with every
F0 is modeled with L-to-R HMMs because the
temporal characteristics are important in rec-
ognizing instruments. Once the time series of
feature vectors are obtained for every F0, the
likelihoods of the paths in the chain of HMMs
are calculated.

The advantage of this technique lies in the
fact that p(ωi; t, f) can be estimated robustly
because the two constituent probabilities are
calculated independently and are then inte-
grated by multiplication. In most previous
studies, the onset time and F0 of each note
were first estimated, and then the instrument
for the note was identified by analyzing spec-
tral components extracted based on the results
of the note estimation. The upper limit of
the instrument identification performance was
therefore bound by the precedent note estima-
tion, which is generally difficult and not robust
for polyphonic music ☆. Unlike such a notewise
symbolic approach, our non-symbolic and non-
sequential approach is more robust for poly-
phonic music.

3.2 Nonspecific Instrument Existence
Probability

The NIEP p(X; t, f) is estimated by using the
PreFEst on the basis of the maximum likeli-
hood estimation without assuming the number
of sound sources in a mixture. The PreFEst,
which was originally developed for estimating
F0s of melody and bass lines, consists of three
processes: the PreFEst-front-end for frequency
analysis, the PreFEst-core for estimating the
relative dominance of every possible F0, and
the PreFEst-back-end for evaluating the tem-
poral continuity of the F0. Because the prob-
lem to be solved here is not the estimation of
the predominant F0s as melody and bass lines,
but rather the calculation of p(X; t, f) of every
possible F0, we use only the PreFEst-core.

The PreFEst-core models an observed power
spectrum as a weighted mixture of tone models
p(x|F ) for every possible F0 F . The tone model
p(x|F ), where x is the log frequency, represents

☆ We tested robustness with respect to onset errors in
identifying an instrument for every note using our
previous method 9). Giving errors following a nor-
mal distribution with a standard deviation of e [s]
to onset times, we obtained the following results:

e=0 e=0.05 e=0.10 e=0.15 e=0.20
71.4% 69.2% 66.7% 62.5% 60.5%

a typical spectrum of harmonic structures, and
the mixture density p(x; θ(t)) is defined as

p(x; θ(t)) =
∫ Fh

Fl

w(t)(F )p(x|F )dF,

θ(t) = {w(t)(F )|Fl ≤ F ≤ Fh},
where Fl and Fh denote the lower and upper
limits, respectively, of the possible F0 range,
and w(t)(F ) is the weight of a tone model
p(x|F ) that satisfies

∫ Fh

Fl
w(t)(F )dF = 1. If we

can estimate the model parameter θ(t) such that
the observed spectrum is likely to have been
generated from p(x; θ(t)), the spectrum can be
considered to be decomposed into harmonic-
structure tone models and w(t)(F ) can be in-
terpreted as the relative predominance of the
tone model with an F0 of F at time t. We
can therefore calculate the NIEP p(X; t, f) as
the weight w(t)(f), which can be estimated us-
ing the Expectation-Maximization (EM) algo-
rithm 10). In the current implementation, we
use the tone model given by

p(x|F )=α

N∑
h=1

c(h)G(x; F +1200 log2 h, W),

G(x; m, σ) =
1√

2πσ2
exp

(
− (x − m)2

2σ2

)
,

where α is a normalizing factor, N = 16, W =
17 cent, and c(h) = G(h; 1, 5.5). This tone
model was also used in the earliest version of
the PreFEst 11).

3.3 Conditional Instrument Existence
Probability

The following steps are performed for every
frequency f .

3.3.1 Harmonic Structure Extraction
The temporal trajectory H(t, f) of the har-

monic structure (10 harmonics) of which F0 is
f is extracted.

3.3.2 Feature Extraction
It is important to design features that

will effectively recognize musical instruments.
Although mel-frequency cepstrum coefficents
(MFCCs) and Delta MFCCs are commonly
used in the field of speech recognition studies,
we should design features that are optimized
for musical instrument sounds because musical
instrument sounds have complicated temporal
variations (e.g., amplitude and frequency mod-
ulations). We therefore designed the 28 features
listed in Table 1 based on our previous stud-
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Table 1 Overview of 28 features.

Spectral features

1 Spectral centroid

2 Relative power of fundamental component

3 –10 Relative cumulative power from fun-
damental to i-th components (i =
2, 3, · · · , 9)

11 Relative power in odd and even compo-
nents

12–20 Number of components haveing a dura-
tion that is p% longer than the longest
duration (p = 10, 20, · · · , 90)

Temporal features

21 Gradient of straight line approximating
power envelope

22–24 Temporal mean of differentials of power
envelope from t to t + iT/3 (i = 1, · · · , 3)

Modulation features

25 , 26 Amplitude and frequency of AM

27, 28 Amplitude and frequency of FM

ies 9). For every time t (every 10ms in the im-
plementation), we first excerpt a T -length bit
of the harmonic-structure trajectory Ht(τ, f)
(t ≤ τ < t + T ) from the entire trajectory
H(t, f) and then extract a feature vector x(t, f)
consisting of the 28 features from Ht(τ, f). The
dimensionality is then reduced to 12 dimensions
using principal component analysis with a pro-
portion value of 95%. T is 500 ms in the current
implementation.

3.3.3 Probability Calculation
We train L-to-R HMMs, each consisting of 15

states ☆, for target instruments ω1, · · · , ωm, and
then basically consider the time series of fea-
ture vectors, {x(t, f)}, to be generated from a
Markov chain of these HMMs. Then, the CIEP
p(ωi|X; t, f) is calculated as

p(Mi|x(t, f)) =
p(x(t, f)|Mi)p(Mi)

m∑
i=1

p(x(t, f)|Mi)p(Mi)

,

where Mi is the HMM corresponding to the in-
strument ωi. p(x(t, f)|Mi) is trained from data
prepared in advance, and p(Mi) is the a priori
probability.

In the above formulation, p(ωi|X; t, f) for
some instruments may become greater than
zero even if no instruments are played. Theo-
retically, this does not matter because p(X; t, f)
becomes zero in such cases. In practice, how-
☆ We used more states than those used in usual speech

recognition studies (typically three) because the
notes of musical instruments usually have longer du-
rations than phonemes.

ever, p(X; t, f) may not be zero, especially when
a certain instrument is played at an F0 of an in-
teger multiple or factor of f . To avoid this,
we prepare an HMM, M0, trained with fea-
ture vectors extracted from silent signals (note
that some instruments may be played at non-
target F0s) and consider {x(t, f)} to be gener-
ated from a Markov chain of the m + 1 HMMs
(M0, M1, · · · , Mm). The CIEP is therefore cal-
culated as

p(Mi|x(t, f)) =
p(x(t, f)|Mi)p(Mi)

m∑
i=0

p(x(t, f)|Mi)p(Mi)

,

where we use p(Mi) = 1/(m + 1).
3.4 Simplifying Instrograms
Although we calculate IEPs for every F0,

some applications do not need such detailed
results. If the instrogram is used for retriev-
ing musical pieces that include a certain instru-
ment’s sounds, for example, IEPs for rough fre-
quency regions (e.g., high, middle and low) are
sufficient. We therefore divide the entire fre-
quency region into N subregions I1, · · · , IN and
calculate the IEP p(ωi; t, Ik) for the k-th fre-
quency subregion Ik. Here, this is defined as
p(ωi; t,

⋃
f∈Ik

f), which can be obtained by it-
eratively calculating the following equation be-
cause the frequency axis is practically discrete.

p(ωi; t, f1 ∪ · · · ∪ fi ∪ fi+1)
= p(ωi; t, f1 ∪ · · · ∪ fi) + p(ωi; t, fi+1)

−p(ωi; t, f1 ∪ · · · ∪ fi) p(ωi; t, fi+1),

where Ik = {f1, · · · , fi, fi+1, · · · , fnk
}.

4. Application

Here, we discuss the application of instro-
grams to MPEG-7 annotation and MIR.

4.1 MPEG-7 Annotation
There are two choices for transforming instro-

grams to MPEG-7 annotations. First, we can
simply represent IEPs as a time series of vec-
tors. Because the MPEG-7 standard has no tag
for the instrogram annotation, we added several
original tags, as shown in Fig. 4. This example
shows the time series of eight-dimensional IEPs
for the piano (line 16) with a time resolution
of 10 ms (line 6). Each dimension corresponds
to a different frequency subregion, which is de-
fined by dividing the entire range from 65.5 Hz
to 1,048 Hz (line 3) by 1/2 octave (line 4).

Second, we can transform instrograms into a
symbolic representation. We also added several
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1:<AudioDescriptor
2: xsi:type="AudioInstrogramType"
3: loEdge="65.5" hiEdge="1048"
4: octaveResolution="1/2">
5: <SeriesOfVector totalNumOfSamples="5982"
6: vectorSize="8" hopSize="PT10N1000F">
7: <Raw mpeg7:dim="5982 8">
8: 0.0 0.0 0.0 0.0 0.718 0.017 0.051 0.0
9: 0.0 0.0 0.0 0.0 0.724 0.000 0.085 0.0
10: 0.0 0.0 0.0 0.0 0.702 0.013 0.089 0.0
11: 0.0 0.0 0.0 0.0 0.661 0.017 0.063 0.0
12: ......
13: </Raw>
14: </SeriesOfVector>
15: <SoundModel
16: SoundModelRef="IDInstrument:Piano"/>
17:</AudioDescriptor>

Fig. 4 Excerpt of example of instrogram annotation.

1:<MultimediaContent xsi:type="AudioType">
2: <Audio xsi:type="AudioSegmentType">
3: <MediaTime>
4: <MediaTimePoint>T00:00:06:850N1000
5: </MediaTimePoint>
6: <MediaDuration>PT0S200N1000
7: </MediaDuration>
8: </MediaTime>
9: <AudioDescriptor xsi:type="SoundSource"
10: loEdge="92" hiEdge="130">
11: <SoundModel
12: SoundModelRef="IDInstrument:Piano"/>
13: </AudioDescriptor>
14: </Audio>

......

Fig. 5 Excerpt of example of symbolic annotation.

original tags, as shown in Fig. 5. This example
shows that an event for the piano (line 12) at a
pitch between 92 and 130 Hz (line 10) occurs at
6.850 s (line 4) and continues for 0.200 s (line 6).
To obtain this symbolic representation, we have
to estimate the event occurrence and its dura-
tion within every frequency subregion Ik. We
therefore obtain the time series of the instru-
ment maximizing p(ωi; t, Ik) and then consider
it to be an output of a Markov chain, states of
which are ω0, ω1, · · · , ωm. (Fig. 6). The tran-
sition probabilities in the chain from a state
to the same state, from non-silence states to
the silence state, and from the silence state to
non-silence states are greater than zero, and the
other probabilities are zero. After obtaining the
most likely path in the chain, we can estimate
the occurrence and duration of an instrument
ωi from the transitions between the states ω0

and ωi. This method assumes that only one in-
strument is played at the same time in each fre-
quency subregion. When multiple instruments
are played in the same subregion at the same
time, the most predominant instrument will be

Fig. 6 Markov chain model used in symbolic annota-
tion. The values are transition probabilities,
where pst is the probability of staying at the
same state at the next time, which was experi-
mentally determined as 1 − 10−16.

annotated.
4.2 Music Information Retrieval based

on Instrumentation Similarity
One of the advantages of the instrogram,

which is a non-symbolic representation, is to
provide a new instrumentation-based similar-
ity measure. The similarity between two in-
strograms enables the MIR based on instru-
mentation similarity. As we pointed out in the
Introduction, this key technology is important
for automatic playlist generation and content-
based music recommendation. Here, instead
of calculating similarity, we calculate the dis-
tance (dissimilarity) between instrograms by
using DTW as follows:
( 1 ) A vector pt for every time t is obtained

by concatenating the IEPs of all instruments:
pt =(p(ω1;t,I1), p(ω1;t,I2), · · · , p(ωm;t,IN ))′,

where ′ is the transposition operator.
( 2 ) The distance between two vectors, p and

q, is defined as the cosine distance:
dist(p, q) = 1 − (p, q)/||p||·||q||,

where (p, q) = p′Rq, and ||p|| =
√

(p, p).
R = (rij) is a positive definite symmetric ma-
trix. By setting rij with respect to related el-
ements, e.g., violin vs. viola, to a value greater
than zero, one can consider the similarity be-
tween such related instruments. When R is
the unit matrix, (p, q) and ||p|| are equivalent
to the standard inner product and norm.

( 3 ) The distance (dissimilarity) between
{pt} and {qt} is calculated by applying DTW
with the above-mentioned distance measure.

The timbral similarity was also used in previous
MIR-related studies 12),13). The timbral simi-
larity was calculated on the basis of spectral fea-
tures, such as MFCCs, directly extracted from
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(a) FL–VN–PF (b) VN–CL–PF (c) PF–PF–PF

(d) PF–CL–PF (e) PF–VN–PF (f) VN–VN–PF

Fig. 7 Results of calculating instrograms from “Auld Lang Syne” with six
different instrumentations. “FL–VN–PF” means that the treble, mid-
dle, and bass parts are played on flute, violin, and piano, respectively.

complex sound mixtures. Such features some-
times do not clearly reflect actual instrumen-
tation, as will be implied in the next section,
because they are influenced not only by instru-
ment timbres but also by arrangements, includ-
ing the voicing of chords. On the other hand,
because instrograms directly represent instru-
mentation, this will facilitate the appropriate
calculation of the similarity of instrumentation.
Moreover, instrograms have the following ad-
vantages:
Intuitiveness The musical meaning is intu-

itively clear.
Controllability By appropriately setting R,

users can ignore the differences between pitch
regions within the same instrument and/or
the difference between instruments within the
same instrument family.

5. Experiments

We conducted experiments on obtaining in-
strograms and symbolic annotations for both
audio data generated on a computer and the
recordings of real performances. In addition,
we tested the calculation of the similarity be-
tween instrograms for the real performances.

5.1 Use of Generated Audio Data
We first conducted experiments on obtain-

ing instrograms from audio signals of trio mu-
sic “Auld Lang Syne” used by Kashino et al 3).
The audio signals were generated by mixing au-
dio data from RWC-MDB-I-2001 14) (Variation
No. 1) according to a standard MIDI file (SMF)
that we input using a MIDI sequencer based on
Kashino’s score. The target instruments were
the piano (PF), violin (VN), clarinet (CL), and
flute (FL). The training data for these instru-
ments were taken from the audio data in RWC-
MDB-I-2001 with Variation Nos. 2 and 3. The
time resolution was 10 ms, and the frequency
resolution was every 100 cent. The width of
each frequency subregion for the simplification
was 600 cent. We used HTK 3.0 for HMMs.

The results are shown in Fig. 7. When we
compare (a) and (b), (a) has high IEPs for the
flute in high-frequency regions while (b) has
very low (almost zero) IEPs. In contrast, (a)
has very low (almost zero) IEPs for the clarinet
and (b) has high IEPs. Also, (d) has high IEPs
for the clarinet and almost zero IEPs for the
violin whereas (e) has high IEPs for the violin
and almost zero IEPs for the clarinet. In the
case of (c), the IEPs only for the piano are suf-
ficiently high. Although both (e) and (f) are
played on the piano and violin, the IEPs for
the violin in the highest frequency region are
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different. This correctly reflects the difference
between the actual instrumentations.

Based on the instrograms obtained above, we
conducted experiments on symbolic annotation
using the method described in Section 4.1. We
first prepared ground truth (correct data) from
the SMF used to generate the audio signals and
then evaluated the results based on the recall
rate R and precision rate P given by

R =

m∑
i=1

N∑
k=1

(
# frames correctly

annotated as ωi at Ik

)

m∑
i=1

N∑
k=1

(
# frames that should be

annotated as ωi at Ik

) ,

P =

m∑
i=1

N∑
k=1

(
# frames correctly

annotated as ωi at Ik

)

m∑
i=1

N∑
k=1

(
# frames annotated

as ωi at Ik

) .

The results are shown in Table 2. We achieved
a precision rate of 78.7% on average. Although
the recall rates were not high (14–38%), we con-
sider the precision rates to be more important
than the recall rates for MIR; a system can use
recognition results even if some frames or fre-
quency subregions are missing, whereas false re-
sults have a negative influence on MIR.

We also evaluated symbolic annotation by
merging all the frequency subregions; in other
words, we ignored the differences between fre-
quency subregions. This was because instru-
ment annotation is useful even without F0 in-
formation for MIR. For example, a task such as
searching for piano solo pieces can be achieved
without F0 information. The evaluation was
conducted based on the recall rate R′ and pre-
cision rate P ′. The recall and precision rates
for this evaluation are given by

R′=
∑

i(#frames correctly annotated as ωi)∑
i(#frames that should be annotated as ωi)

,

P ′=
∑

i(#frames correctly annotated as ωi)∑
i(#frames annotated as ωi )

.

The results are listed in Table 3. The average
precision rate was 87.5% and the maximum was
95.4% for FL–VN–PF. The precision rates for all
pieces were over 80%, while the recall rates were
approximately between 30 and 60%.

5.2 Use of Real Performances
We next conducted experiments on obtaining

Table 2 Results of symbolic annotation for “Auld
Lang Syne.”

Recall Precision

FL–CL–PF 28.7% 63.4%
FL–PF–PF 38.5% 89.4%
FL–VN–PF 37.2% 89.5%
PF–CL–PF 22.2% 79.3%
PF–PF–PF 26.0% 93.5%
PF–VN–PF 24.2% 76.6%
VN–CL–PF 21.4% 63.6%
VN–PF–PF 14.3% 76.1%
VN–VN–PF 30.2% 76.9%

Average 27.0% 78.7%

Table 3 Results of symbolic annotation for “Auld
Lang Syne”(all frequency subregions merged).

Recall Precision

FL–CL–PF 36.0% 80.3%
FL–PF–PF 56.8% 87.6%
FL–VN–PF 44.5% 95.4%
PF–CL–PF 40.5% 84.4%
PF–PF–PF 62.2% 91.4%
PF–VN–PF 40.5% 88.1%
VN–CL–PF 29.2% 87.6%
VN–PF–PF 34.9% 86.7%
VN–VN–PF 40.8% 85.3%

Average 42.8% 87.5%

Table 4 Musical pieces used and their
instrumentations.

(i) No. 12, 14, 21, 38 Strings
Classical (ii) No. 19, 40 Piano+Strings

(iii) No. 43 Piano+Flute

Jazz (iv) No. 1, 2, 3 Piano solo

instrograms from the recordings of real perfor-
mances of classical and jazz music taken from
the RWC Music Database 15). The instrumen-
tation of all pieces is listed in Table 4. We only
used the first one-minute signal for each piece.
The experimental conditions were basically the
same as those in Section 5.1. Because the target
instruments were the piano, violin, clarinet, and
flute, the IEPs for the violin should also be high
when string instruments other than the violin
are played, and the IEPs for the clarinet should
always be low. The training data were taken
from both RWC-MDB-I-2001 14) and NTTMSA-
P1 (a non-public musical sound database) ☆.

The results, shown in Fig. 8, show that (a)
and (b) have high IEPs for the violin while

☆ The database called NTTMSA-P1 consists of iso-
lated monophonic tones played by two different in-
dividuals for each instrument. Every semitone over
the pitch range is played with three different inten-
sities for each instrument.
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(a) RM-C No. 12 (Str.) (b) RM-C No. 14 (Str.) (c) RM-C No. 40 (Pf.+Str.)

(d) RM-C No. 43 (Pf.+Fl.) (e) RM-J No. 1 (Pf.) (f) RM-J No. 2 (Pf.)

Fig. 8 Results of calculating instrograms from audio signals of real perfor-
mances. RM-C stands for RWC-MDB-C-2001 and RM-J stands for
RWC-MDB-J-2001.

(e) and (f) have high IEPs for the piano. For
(c), the IEPs for the violin increase after 10 sec,
whereas those for the piano are initially high.
This reflects the actual performances of these
instruments. When (d) is compared to (e) and
(f), the former has slightly higher IEPs for the
flute than the latter, although the difference is
unclear. In general, the IEPs are not as clear as
those for signals generated by copy-and-pasting
waveforms of RWC-MDB-I-2001. This is be-
cause the acoustic characteristics of real per-
formances have greater variety. This could be
improved by adding appropriate training data.

We also evaluated the symbolic annotation
for these real-performance recordings. The
evaluation was only conducted for the case in
which all frequency subregions were merged be-
cause it is difficult to manually prepare a re-
liable ground truth for each frequency subre-
gion ☆. The results are listed in Table 5. The
average precision rate was 69.4% and the max-
imum was 84.3%, which were lower than those
for synthesized music. This would also be be-
cause of the great variety in the acoustic charac-
☆ Although the SMF corresponding to each piece is

available in the RWC Music Database, it cannot be
used because the SMF and audio signal are not syn-
chronized.

Table 5 Results of symbolic annotation for real
recordings (all frequency subregions merged).

Recall Precision

RM-C No. 12 78.0% 63.4%
14 76.0% 74.0%
19 45.1% 65.6%
21 89.9% 70.0%
38 65.1% 64.0%
40 50.8% 71.5%
43 49.7% 84.3%

RM-J No. 1 62.1% 72.0%
2 75.6% 69.3%
3 45.9% 59.7%

Average 63.8% 69.4%

teristics of real performances. The recall rates,
in contrast, were higher than those for synthe-
sized music because the same instrument was
often simultaneously played over multiple fre-
quency subregions, in which the instrument was
regarded as correctly recognized if it was recog-
nized in any of these subregions.

5.3 Similarity Calculation
We tested the calculation of the dissimilari-

ties between instrograms. The results, listed in
Table 6 (a), can be summarized as follows:
• The dissimilarities within each group were

generally less than 7,000 (except Group (ii)).
• Those between Groups (i) (played on

strings) and (iv) (piano) were generally
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Table 6 Dissimilarities in Instrumentation between musical pieces.

(a) Using IEPs (instrograms)

(i) (ii) (iii) (iv) 3-best-similarity
C12 C14 C21 C38 C19 C40 C43 J01 J02 J03 pieces

C12 0 C21, C14, C38
C14 6429 0 C21, C12, C38
C21 5756 5734 0 C14, C12, C38
C38 7073 6553 6411 0 C21, C14, C38
C19 7320 8181 7274 7993 0 C21, C12, C38
C40 8650 8353 8430 8290 8430 0 J02, J01, C43
C43 8910 9635 9495 9729 8148 8235 0 J01, J02, J03
J01 9711 10226 10252 10324 8305 8214 6934 0 J02, J03, C43
J02 9856 10125 10033 10610 8228 8139 7216 6397 0 J01, C43, J03
J03 9134 9136 8894 9376 8058 8327 7480 6911 7223 0 J01, J02, C43

(b) Using MFCCs

(i) (ii) (iii) (iv) 3-best-similarity
C12 C14 C21 C38 C19 C40 C43 J01 J02 J03 pieces

C12 0 C21, C40, J02
C14 17733 0 C43, C12, J02
C21 17194 18134 0 C12, J01, J02
C38 18500 18426 18061 0 J01, J02, C21
C19 17510 18759 18222 19009 0 J02, C12, J03
C40 17417 19011 18189 19099 18100 0 C12, J02, J01
C43 18338 17459 17728 18098 18746 18456 0 J01, C14, J02
J01 17657 17791 17284 17834 18133 17983 16762 0 J02, C43, J03
J02 17484 17776 17359 18009 17415 17524 17585 15870 0 J01, J03, C21
J03 17799 18063 17591 18135 17814 18038 17792 16828 16987 0 J01, J02, C21

Note: “C” and “12” of “C12”, for example, represents a database (Classical/Jazz) and a piece number, respectively.

greater than 9,000, and some were greater
than 10,000.

• Those between Groups (i) and (iii) (pi-
ano+flute) were also around 9,000.

• Those between Groups (i) and (ii) (pi-
ano+strings), (ii) and (iii), and (ii) and (iv)
were around 8,000. As one instrument is
commonly used in these pairs, these dis-
similarities were reasonable.

• Those between Groups (iii) and (iv) were
around 7,000. Because the difference be-
tween these groups is only the presence of
the flute, these were also reasonable.

For comparison, Table 6 (b) lists the results
obtained using MFCCs. The 12-dimensional
MFCCs were extracted every 10ms with a 25-
ms Hamming window. No Delta MFCCs were
used. After the MFCCs were extracted, the
dissimilarity was calculated using the method
described in Section 4.2, where {pt} was a
sequence of 12-dimensional MFCC vectors in-
stead of IEP vectors. Comparing the results
with the two methods, we can see the following
differences:
• The dissimilarities within Group (i) and

the dissimilarities between Group (i) and
the others for IEPs differed more than
those for MFCCs. In fact, all the three-

best-similarity pieces from those in Group
(i) belonged to the same group, i.e., (i),
for IEPs, while those for MFCCs contained
pieces out of Group (i).

• None of the three-best-similarity pieces
from the four pieces without strings
(Groups (iii) and (iv)) contained strings for
IEPs, whereas those for MFCCs contained
pieces with strings (C14, C21).

We also developed a simple prototype system
that searches pieces that have similar instru-
mentation to that specified by the user. The
demonstration of our MIR system and other
materials will be available at: http://winnie.

kuis.kyoto-u.ac.jp/˜kitahara/instrogram/IPSJ07/.

6. Discussion

This study makes three major contributions
to instrument recognition and MIR.

The first is the formulation of instrument
recognition as the calculation of NIEPs and
CIEPs. Because the calculation of NIEPs in-
cludes a process that can be considered to be
an alternative to the estimation of onset times
and F0s, this formulation has made it possi-
ble to omit their explicit estimation, which is
difficult for polyphonic music. Based on simi-
lar motivations, Vincent, et al. 7) and Essid, et
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al. 8) proposed new instrument recognition tech-
niques. Vincent, et al.’s technique involves both
transcription and instrument identification in a
single optimization procedure. This technique
is based on a reasonable formulation and is
probably effective but has only been tested on
solo and duo excerpts. Essid, et al.’s technique
identifies the instrumentation, instead of the
instrument for each part, from a pre-designed
possible-instrumentation list. This technique is
based on the standpoint that music usually has
one of several typical instrumentations. They
reported successful experimental results, but
identifying instrumentations other than those
prepared is impossible. Our instrogram tech-
nique, in contrast, has made it possible to
recognize instrumentation without making any
assumptions about instrumentation for audio
data, including synthesized music and real per-
formances that have various instrumentations.

The second contribution is the establishment
of a graphical representation of instrumenta-
tion. Previous studies on music visualization
were generally based on MIDI-level symbolic
information 16),17). Although spectrograms and
specmurts 18) are useful for visualization of au-
dio signals, it is difficult to recognize instrumen-
tation from them. Our instrogram representa-
tion provides visual information on instrumen-
tation, which should be useful for generating
music thumbnails and other visualizations such
as animations for entertainment.

The third contribution is the achievement of
an MIR based on instrumentation similarity.
Although both timbral similarity calculation
and instrument recognition have been actively
investigated, no attempts of calculating the in-
strumentation similarity on the basis of instru-
ment recognition techniques have been made,
because previous instrument recognition have
aimed to determine the instruments that are
played in given signals. The instrogram, which
represents instrumentation as a set of continu-
ous values, is an effective approach to designing
a continous similarity measure.

7. Conclusion

We described a new instrogram represen-
tation obtained by using a new musical in-
strument recognition technique that explicitly
uses neither onset detection nor F0 estimation.
Whereas most previous studies first estimated
the onset time and F0 of each note and then
identified the instrument for each note, our

technique calculates the instrument existence
probability for each target instrument at each
point on the time-frequency plane. This non-
note-based approach made it possible to avoid
adverse influences caused by errors of the onset
detection and F0 estimation.

In addition, we presented methods for apply-
ing the instrogram technique to MPEG-7 anno-
tation and the MIR based on instrumentation
similarity. Although the note-based outputs
of previous instrument recognition were diffi-
cult to apply to continuous similarity calcula-
tion, our instrogram representation provided a
measure for similarities in instrumentation and
achieved MIR based on this measure.

The instrogram is related to Goto’s study on
music understanding based on the idea that
people understand music without mentally rep-
resenting it as a score 19). Goto claims that
good music descriptors should be musically in-
tuitive, fundamental to a professional method
of understanding music, and useful for various
applications. We believe that the instrogram
satisfies these requirements and therefore in-
tend to apply it to the professional score-based
music understanding as well as various applica-
tions including MIR.
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Appendix

A.1 Experiment on Notewise Instru-
ment Recognition

This Appendix presents the results of an ex-
periment on notewise instrument recognition.
The problem that we deal with here is to de-
tect a note sequence played on a specified in-
strument. We first estimate the onset time
and F0 of every note using harmonic-temporal-
structured clustering (HTC) 20). For every
note, we then calculate the likelihood that the
note would be played on the specified instru-
ment using our previous instrument identifica-
tion method 9). Finally, we select the note that
has the maximal likelihood every time. Note
that we assume that multiple notes are not
simultaneously played on the specified instru-
ment. We used “Auld Lang Syne” played on
the piano, violin, and flute as a test sample.
This was synthesized by mixing audio data from
the RWC-MDB-I-2001 14) similarly to the exper-
iment reported in Section 5.1. Only if a de-
tected note is actually played on the specified
instrument and at the correct F0 (note num-
ber) and the error of the estimated onset time
is less than e [s], the note is judged to be cor-
rect. Recognition was evaluated through the
following:

R =
# correctly detected notes

# notes that should be detected
,

P =
# correctly detected notes

# detected notes
.

The results are shown in Table 7. Recognition
especially for the violin and flute was not suf-
ficiently accurate. Although the results of this
experiment cannot be directly compared with
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Table 7 Results of experiment on notewise approach.

e = 0.2 e = 0.4 e = 0.6
PF VN FL PF VN FL PF VN FL

R 59% 36% 31% 59% 42% 34% 60% 47% 48%
P 86% 26% 17% 86% 24% 19% 87% 27% 27%

those obtained using our approach because they
were evaluated in different ways, we can see that
the notewise approach is not robust.
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