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In this work, the performance of visual detection methods is improved from an aspect of combining information
from different channels. The efforts are two-fold: 1) combining motion information with appearance information,
and 2) combining visual and spatial information encoded among the local image features of the same object.
Three detection methods are proposed, and the most important component is a voting system in each method.
The first detection method is developed for real-time applications. By making time-consuming steps deal with
fewer instances, the method combines motion information with appearance information efficiently, and gives
promising results in real time. The second method extends the Implicit Shape Model to incorporate motion
information, and outperforms the state-of-the-art method on two datasets. The third method does pyramid
matching during training and detection for efficiency, makes full use of the visual and spatial information of
local image features, and gives robust detection results efficiently.
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1 Introduction

Visually detecting objects of interest from a com-
plex scene is a basic perceptual skill in human beings
and other animals. And successful object detection
methods play fundamental roles in many application
areas, which include video surveillance, driving assis-
tance, image retrieval, etc.

Most modern detection methods fall into two cat-
egories. Some follow the sliding-window schema, and
detect objects by consider whether each of the sub-
images contains an instance of the target object. The
other methods infer object centers based on local im-
age features in a bottom-up manner. These methods
start with detection of object parts, and then make
inferences about the target objects’ states, like posi-
tion, or label. In this paper, efforts are also made to
improve performance of detection methods. These ef-
forts try to explore how to use the information which
previous methods do not make full use of. Roughly,
the efforts belong to two categories, the first category
is exploring approaches of efficiently and effectively
combing of motion information with appearance in-
formation, and the second category is exploring how
to combine visual and spatial information encoded in
local image features of the same object.

For fusion of information from different channels,
voting systems are employed. Voting is preferred for
its robustness in using local information, and its in-
ference procedure’s capability to use global informa-
tion. Many methods for detection mainly use either
appearance information or motion information. Fol-
lowing some previous work [11], the first two methods
will address that when well combining the informa-
tion from these two channels, detection performance
will be better.

The first method is developed mainly for real-

time applications under limited computational pow-
er. This method can be considered as a three-step
method. The first step deals with keypoints. It takes
original data as input, and outputs keypoint clusters
as detection hypotheses. This step detects, verifies,
and clusters keypoints. The second step takes these
keypoint clusters as input, verifies them by their ap-
pearance and motion information, and outputs the
ones which pass verifications as detection results. The
last step feeds the detection results from step two into
a voting system. Since detection results are connect-
ed by their belonging trajectories, voting along the
temporal dimension is responsible for giving the final
decision of each object, when it disappears from the
scene. Motion information plays a very important
role in the method. The target objects are consid-
ered as possessing both particular appearance pat-
terns and motion patterns. When the second step
verifies the detection hypotheses using appearance in-
formation, a biased classifier is used. This classifier
produces more false alarms to pursue higher detection
rate. Then motion information is used to filter out
the false alarms. Motion information in the form of
trajectories also connects weak inferences and feeds
the weak inferences into a voting system for the final
results. In addition, the pipeline of this method is
optimized in a hierarchical way. In the pipeline, the
later one step is, the more time-consuming it is, and
the fewer instances it will deal with. The method
performs well under simple scene, i.e., data collect-
ed by infrared cameras in a tunnel environment, and
gives promising detection results in the experiments.
However, the performance of this method under com-
plicated scene is not promising. And then we propose
the second method.

The second method belongs to methods based on
Hough transform. It extend the Implicit Shape Mod-
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el [16] to combine motion information. For training,
image features together with labels and offsets to ob-
ject centers of sample images are considered as codes,
and inserted into a codebook. For detection, image
features are detected on the target image, and then
matched against the codebook using image feature
as key. The matched codes will indicate the labels
and object centers. During the detection step, this
method firstly do motion analysis, which results in
grouping results of the image features on the target
image. The grouping results are used during the in-
ference for labels and centers of the target objects.
It is assumed that image features with the same mo-
tion pattern, here in the same motion group, should
belong to the same object. The inference procedure
then prefers the label and position inferences with
more consistence in the same motion group. On t-
wo datasets, the proposed method outperforms the
state-of-the-art method.

While the second method performs well under com-
plicated scene, it is relatively slow. This is due to the
time-consuming property of methods based on Hough
transform. The third method aims at improving the
efficiency of the second method. Also it tries to flat-
ten the gap of appearance and positional information.
This method does not use motion information. In
methods based on Hough transform, image features
are used as key to query similar codes from the code-
book, and in the third method, both appearance and
position are used as key. The bottom-up property of
Hough transform also ignore the relationship between
different image features. Actually, the mutual infor-
mation encoded in the image features of the same
object is very informational. The third method con-
siders objects as point sets of, i.e., of 12-dimensional,
while the first 10 dimensions are appearance informa-
tion, and the last 2 dimensions are positional infor-
mation. The training step is almost the same with
Hough-transform methods, except for how a few pa-
rameters are trained. At the detection step, instead
of using the appearance information of one single fea-
ture for querying, the point set of a sub-image is used
for querying. Pyramid Matching is used for acceler-
ating the querying. The procedure ensures the full
use of the visual and spatial information encoded in
the image features of the same object. While giv-
ing promising detection results on two datasets, this
method is confirmed to be much more efficient than
the second method.

The paper is organised as follows. 2 reviews relat-
ed work. 3 introduces the method aimed at efficient
detection by combining motion and appearance in-
formation. 4 proposes the method that extends the
Implicit Shape Model to incorporate motion informa-
tion, and the method groups object parts for detec-
tion. 5 presents the method which detects by Pyra-
mid Match Score. 6 concludes.

2 Related Work

Detection is drawing a lot of attention [4, 6, 8, 13,
18, 22, 23, 26, 3, 5, 7, 15, 16, 17, 19, 20, 21], and it
will continue to. While some methods are unique and
very heuristic.

Instead of proposing class-specific methods, [2] tries
to evaluate how like a sub-image contains an ob-
ject of any class. In the method objects are de-
fined by very general properties, which include having
closed boundary, being different from surroundings,
and sometimes being unique and salient in the image.
By combining saliency detection, color contrasting,
edge detection, and image segmentation methods in
a Bayesian framework, they give convincing perfor-
mance in general-purpose object detection. Bag of
image features [10] is an important advance for ob-
ject detection. Before the method, potential objects
are described using feature extracted from raw pix-
els, while the method describes objects using object
components. In the work following, [25] added a bi-
ased sampling component for describing each object.
Instead of being described by one group of features,
the objects are described by several groups of fea-
tures, and then decisions are made using multi-label
multi-class classification. Some pioneer methods also
detect or recognize objects in 3D space. The method
proposed in [12], tracks keypoints of the same objec-
t, generate features which include 3D information of
the object accordingly, and feed the features to deci-
sion step. And the results are very appealing. Also
excellent performance of deep learning inspires new
methods to reconsider object representations. The
discover of invariants and learning of a detector from
unlabeled data are explored by [14].

Three methods are proposed in the paper. The
methods contribute to decision making in object de-
tection. These methods try to improve existing vot-
ing systems to easily employ information in multi-
ple channels or try to accelerate the decision mak-
ing procedure by employing good mechanisms. The
methods proposed in this paper try to contribute to
object detection by proposing effective and efficient
mechanisms to combining information from multiple
channels in robust voting systems. These efforts are
encouraged by the human beings’ amazing visual ca-
pabilities, these efforts try to act at a high abstraction
level, and these efforts belong to the very challenging
topic of decision making in object detection.

3 Efficient Voting along Time Axis

The pipeline of the first method is designed for ef-
ficiency. The method deals with the large amounts
of information contained in one image, following a
hierarchical manner. The later a step is, the more
time-consuming it is, and the fewer instances it deals
with. The advantage of this method is its ability to
give promising detection results from cluttered data
in real time. In addition, this method successfully
combines bottom-up and classification methods, as
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Figure 1: Keypoint detection, verification, and cluster-
ing. On the left, keypoints represented in yellow are de-
tected on images. In the middle, yellow represents the
keypoints pass verifications, while purple represents the
keypoints fail to pass verifications. On the right, the
keypoints which pass verifications are clustered, and blue
rectangles represent candidate objects.

well as combines both appearance and temporal in-
formation.

3.1 Method Outline

The method is a three-step method. The first step
of candidate object localization deals with keypoints.
It takes original data as input, and outputs keypoint
clusters as detection hypotheses. The second step
of candidate object verification takes these keypoint
clusters as input, verifies them by their appearance
and motion information, and labels them as positive
or negative. In the third step of voting along time
axis, keypoint clusters connected by the same trajec-
tory will vote for whether the trajectory is positive or
negative when the trajectory ends, and this gives the
final detection results.

3.1.1 Candidate Object Localization

There are a huge amount of information contained
in even one frame of a video collected by cameras.
In time-critical tasks, not all pixels in each frame are
processed, instead keypoints can be detected, and ver-
ified. The appearance of keypoints belong to local
features. Still the number of keypoints is large, and
association of keypoints along time dimension is not
feasible due to the constrain of time consumptions.
Clustering the keypoints on the frame is feasible and
will indicate the locations of target objects. Thus in
this step, keypoints are detected from the input im-
ages, verified using appearance model, and then clus-
tered to indicate candidate object locations, as shown
in Figure 1.

3.1.2 Candidate Object Verification

The number of candidate objects in the form of key-
point clusters is smaller compared with the number
of keypoints. Expensive global appearance feature is
feasible, and expensive association along time axis is
also feasible. By assuming certain motion patterns of
the target objects, the trajectories can also be used
to verify candidate objects. Thus in this step, candi-
date objects are verified by appearance and motion,
as shown in Figure 2.

Figure 2: Candidate object verification by appearance
and motion. On the left, blue rectangles represent the
candidate objects given by the previous steps. In the mid-
dle, the blue rectangle represents that the candidate ob-
ject is decided as positive by appearance, and purple rect-
angle represents negative by appearance. On the right,
yellow circle represents that the candidate object is de-
cided as positive by motion, and white circle represents
negative by motion.

Positive

Negative

Positive 3

Negative 1

Figure 3: Voting along time axis. Local decisions vote
along trajectories for positive and negative. In the exam-
ple, there are 3 positive votes and 1 negative votes.

3.1.3 Voting along Time Axis

Trajectories not only connects the candidate ob-
jects, but also connects the local decisions made ac-
cording to appearance and motion. To refine the re-
sults, when each trajectory ends, voting is employed,
as shown in Figure 3.

3.2 Implementation on Data Collected by In-
frared Cameras in Tunnels

The method is implemented to detect emergency
telephone indicators in tunnels. The implementation
aims to perform detection in real time, and serve as
an effective unit in positioning automobiles in tunnel
environment. In a tunnel environment, in addition
to emergency telephone indicators, a lot of noisy ob-
jects also appear, e.g. ordinary lights, other vehicles,
and other vehicles’ shadows. And some of the noisy
objects cannot even be distinguished from the target
objects by appearance , as shown in Figure 4.

3.2.1 Candidate Object Localization

The method employs a simple yet useful method to
detect keypoints. Firstly, points are uniformly sam-
pled for an offset of 6 in width, and 7 in height (the
length of an emergency telephone indicator is larger
than its width). In this manner the magnitude of in-
stances is reduced by nearly two orders. Then points
that pass the test, which verifies them by setting in-
tensity thresholds, are considered as keypoints. Here
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(a) (b)

Figure 4: Original data and detection results. In (a),
the red arrow points to the target object: emergency tele-
phone indicator, and the green arrows point to noisy ob-
jects. In (b), red rectangles mark detection hypotheses la-
beled as positive using appearance information, and green
rectangles mark negative ones. Yellow trajectories mark
detection hypotheses labeled as positive using temporal
information, and white trajectories mark negative ones.

a Gaussian distribution is assumed for the intensities
of the points.

The detected keypoints don’t just belong to emer-
gency telephone indicators, but also belong to the
background. To verify the keypoints, the appearance
of the sub-image around each keypoint is used. In-
tensity histograms are used to describe the appear-
ance. The k -means method is used to modeling the
histograms.

After the verification step, the keypoints are used
to build a minimum spanning tree (mst) using the
pairwise Euclidean distance between two keypoints.
Then the mst is split by cutting edges larger than a
threshold. This results in a grouping of the keypoints.

3.2.2 Candidate Object Verification

For each keypoint cluster, the smallest bounding
rectangle is considered a detection hypothesis.

The hypotheses are firstly verified by their appear-
ance. An Adaboost machine is trained using intensity
histograms. In this step, to emphasize the Adaboost
machine’s performance on the positive training ex-
amples, the initial weights of the positive training ex-
amples are set to be 7 times as large as the weights
of the negative training examples. Since in practice,
whether each keypoint cluster is a target object is
decided by both appearance and motion information.
The difficulties of excluding noisy objects can be left
for later steps.

Not all noisy detection hypotheses can be excluded
by using appearance. To futher verify keypoint clus-
ters, the keypoint clusters are tracked through frames
to generate trajectories. In this case of keypoint clus-
ter tracking, the problem is relatively simple, since
no occlusion occurs. The problem of tracking is mod-
eled by finding the best data association hypothesis
between the trajectory set and detection response set.

The temporal information encoded in the trajec-
tories is used to further verify the keypoint clusters.
A linear model is used to fit each trajectory, and the
Pearson Correlation Coefficient(PCC) of the fitting is

the criteria for the decision.
For each keypoint cluster on the current frame,

there exists a label given by the Adaboost machine
according to its appearance, and the likelihood of fit-
ting its trajectory to a straight line. For each keypoint
cluster, it is considered an emergency telephone indi-
cator if and only if its label which is given by the
Adaboost machine is positive, its trajectory is long
enough, and the likelihood of fitting its trajectory to
a straight line is large enough.

3.2.3 Voting along Time Axis

Each trajectory not only connects the detection re-
sponses, but also connects the decisions for detection
responses made by their appearance and motion pat-
terns. The target objects and noisy objects actually
appear in successive frames, and even if we make a
wrong decision on one frame, we can expect to re-
cover from this mistake based on the results of other
frames. The final results are based on the trajectories
of decisions. When one trajectory ends, if more than
80% of the decisions it connects are positive, then this
trajectory is considered positive.

The procedure is as follows: 1) each detection re-
sult along a trajectory which encodes local appear-
ance and motion patterns votes for whether the tra-
jectory is positive or not, and 2) if the voting per-
centage is larger than a threshold, a final decision is
made that the object is positive.

3.3 Experimental Results

The method is tested based on detection perfor-
mance and efficiency. Two experiments and their re-
sults are reported.

3.3.1 Dataset One

To collect data, infrared cameras are mounted on
top of the experimental vehicle, and then we take sev-
eral tours of the Awagatake tunnel. All models are
trained using data from one tour, while evaluated on
data from another tour. Firstly, all emergency tele-
phone indicators are marked in the form of rectangles
on all frames from the training tour. On a laptop with
Intel Core2 Duo 2.8GHz processors, the method deals
with real data at a frame rate of 34 frames per second,
and this fulfills real-time requirements. The detection
rate and false alarm rate is evaluated on 250 frames,
as shown in Table 1.

Total number 113
Correctly labeled 102
Miss detections 11
False alarms 21
Detection rate 90%
False alarm rate 19%

Table 1: Detection rate and false alarm rate.

4ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-CVIM-192 No.31
2014/5/16



3.3.2 Dataset Two

The results of the first experiment is not satisfac-
tory, and then the second experiment is carried out.
A better far infrared camera is used, and the zoom of
the camera is adjusted for better images. Then with
the new camera mounted on top, the experimental
vehicle took several tours of the Awagatake tunnel.
Being the same with experiment one, all models are
trained using data from one tour, and evaluated on
data on another tour. The detection rate and false
alarm rate are evaluated on the keypoint clusters, as
shown in Table 2.

Total number 472
Correctly labeled 468
Miss detections 4
False alarms 22
Detection rate 99.2%
False alarm rate 4.4%

Table 2: Detection rate and false alarm rate.

The results on the trajectories of decisions are also
evaluated. When one trajectory ends, if its length is
larger than 15, and over 80% of the last 15 decisions
it connects are positive, it is considered as positive.
The method correctly detects all the 22 emergency
telephone indicators with no false alarms. The detec-
tion rate is 100%, and the false alarm rate is 0%.

3.4 Section Conclusion

This section proposes an object detection method,
which performs well in simple scenarios by combining
appearance and motion information in a very efficient
way. The method makes use of appearance and mo-
tion information of the target objects in a hierarchi-
cal manner. With careful optimization of detection
pipeline, the method gives promising results in real
time.

4 Common Fate Hough Voting

The second method is inspired by the common fate
principle, which is a mechanism of visual perception
in human beings, and which states tokens moving
or functioning in a similar manner tend to be per-
ceived as one unit. The method embeds the principle
in an Implicit Shape Model (ISM). In the method,
keypoint-based object parts are firstly detected and
then grouped by their motion patterns. Based on the
grouping results, when the object parts vote for ob-
ject centers and labels, each vote belonging to the
same object part is assigned a weight according to
its consistency with the votes of other object parts
in the same motion group. Afterwards, the peak-
s, which correspond to detection hypotheses on the
Hough image formed by summing up all weighted
votes, become easier to find. Thus our method per-
forms better in both position and label estimations.

(a) (b)

(c) (d)

Figure 5: Merit of the proposed method. (a) Original
image. (b) Motion grouping results. Some parts are en-
larged to show details. (c) Original Hough image. (d)
Hough image formed using this method. The grids in (c)
and (d) correspond to the grids in(a).

Experiments show the effectiveness of the method in
terms of detection accuracy.

4.1 Common Fate Hough Transform

A Hough transform can be simply considered as
the transformation from a set of object parts, {e},
to a confidence space of object hypotheses, C(x, l).
Where x is the coordinate of the object center, and
l the label. Let e denote an object part observed on
the current image. The appearance of e is matched a-
gainst the codebook, and e activates N best matched
codes from the trained codebook. Each code contain-
s the appearance, its offset to the object center, and
the class label. According to the N matched codes,
e casts N votes. Each vote Ve is about the object
center that generates e. The position of the object
center casted by a vote, V , is denoted by xV , while
the class label is lV . Based on the N votes of e, the
confidence that a position x̃ is the center of an object
with class label l̃ is given by,

C(x̃, l̃; e) =
N∑
i=1

B(x̃, l̃;V ie )w(V ie ) . (1)

Here B(x̃, l̃;V ie ) is the blurring function. And w(V ie )
is the weight of V ie .

The idea of the proposed method is that, the weight
term, w(V ie ), is defined by the motion grouping re-
sults of all the object parts. The blurring function is
defined as,
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B(x̃, l̃;V ) =

{
0 if lV 6= l̃ or |x̃− xV | > d

G(x̃;xV , σ) otherwise
.

(2)
Here G(x̃;xV , σ) is a Gaussian function that fixes

the spatial gap between x̃ and xV. Let M be the
total number of object parts on the image, then by
summing up over all the object parts, the confidence
of x̃ being the center of an l̃-class object is given by,

C(x̃, l̃) =
M∑
j=1

C(x̃, l̃; ej)w(ej)

=
M∑
j=1

N∑
i=1

B(x̃, l̃;V iej
)w(V iej

)w(ej) .

(3)

A uniform weight is assumed for each object part,
and w(ej) = 1

M . By considering C(x̃, l̃) as the evalu-

ation score of the Hough space (x̃, l̃), the task of esti-
mating object centers and labels converts to finding,
and then validating, the local maxima of the Hough
image.

4.1.1 Common Fate Weights

To meet the challenges of separating near object-
s, separating similar different-class objects, and using
a noisy codebook, different weights are assigned to
the votes of each object part by considering the mo-
tion grouping results of the object parts. In this sub-
section, when given some grouping results, how the
results are combined into a Hough transform frame-
work is introduced.

Let γ = {g} denote the grouping results, where g is
a group of object parts. Assume em ∈ g and en ∈ g.
Those votes of em which are more “agreeable” than
the votes of the other objects in g are assigned larger
weights. Towards this end, the relationship between
the votes of em and the votes of en needs to be given
in advance. This relationship is named support. The
support from Ven to Vem is defined based on Venand
the confidence that Vem ’s voted center is correct, as,

S(Ven → Vem) = B(xVem
, lVem

;Ven) , n 6= m .

Here B(xVem
, lVem

;Ven) is defined in (2). This mea-
sures the coherence of the two votes from different
object parts. Then, the support from en to Vem is
defined based on en, and the confidence that Vem ’s
voted center is correct, as,

S(en → Vem
) = C(xVem

, lVem
; en)

=
N∑
i=1

S(V ien
→ Vem

)w(V ien
) , n 6= m .

And the support from g to Vem is defined by the
confidence that Vem ’s voted center is correct based

on the votes of all the other object parts excluding
its belonging object part in g, as,

S(g→ Vem
) =

∑
ei∈g−{em}

C(xVei
, lVem

; ei)w(ei)

=
1

M

∑
ei∈g−{em}

S(ei → Vem
) .

By assuming all object parts in the same motion
group are from the same object, which means motion
grouping gives good results, the estimations for center
position and class label given by every object part
should be consistent with that given by the motion
group. Thus for a particular vote of em, i.e., Ṽem

, a
weight is assigned to it by considering its consistence
with g and the consistence of em’s other votes with
g, as:

w(Ṽem) =
S(g→ Ṽem

) + ∆
N

N∑
i=1

S(g→ V iem
) + ∆

=

∑
ej∈g−{em}

N∑
k=1

S(V kej
→ Ṽem

)w(V kej
) + M∆

N

N∑
i=1

∑
ej∈g−{em}

N∑
k=1

S(V kej
→ V iem

)w(V kej
) +M∆

.

(4)
Here, ∆ is a small constant for preventing zeros.

Notice w(Ṽem
) is defined using w(V kej

) - the weights
of the votes of the other object parts in g. In or-
der to determine w(Ṽem

), uniform weights are firstly
assigned to the votes of each object part in g, i.e.,
w(V kej

) = 1
N . Then new weights are calculated based

on the uniformly assigned weights. The weights of
votes used to form the Hough image are the iterative-
ly converged weights. The grouping result γ = {g},
can be replaced by grouping results based on other
information, for example our method utilizes motion
to group the voting elements.

4.2 Detection

Following [3], the optimal result for the problem
is given by greedy maximization. The largest local
maximum of all the local maxima is chosen to be the
center of a true object, and then the object parts be-
longing to the chosen object center are excluded from
the object part set. A new Hough image, where new
objects are found, is formed using the remaining ob-
ject parts. And this procedure ends when the object
part set is empty, or when the confidence of the cho-
sen object is lower than a given threshold.

4.3 Experimental Results

In experiments, advantage of the method is verified
in terms of detection accuracy. The method is tested
on the P-campus dataset with [3] as a benchmark,
and then tested on a dataset of several animals.
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Figure 6: (a) Precision-recall curves (red: the proposed
method, blue: the benchmark method). (b) Confusion
matrices (upper: the proposed method, down: the bench-
mark method).

4.3.1 P-campus

For comparison, detection is done on the Hough
images formed with and without motion grouping re-
sults. The same codebook and the same parameter
settings are used for forming and searching over both
Hough images. The votes of each object part are
assigned uniform weights in the benchmark method,
while weights defined in (4) are assigned in the pro-
posed method.

4.3.2 Wild-scene

In order to show that our method can be used for
general purposes, we test our method on complicat-
ed scenes, especially, complicated background. Even
in these cases, our method works well, which shows
robustness of our method. A mini dataset is built
upon leopards and tigers of the family Felidae. The
proposed method successfully localizes and labels all
the leopards and tigers, while the benchmark method
miss-detects three leopards.

4.4 Section Conclusion

The computational ability of human beings is lim-
ited, while the ability to detect is far beyond ma-
chines. Thus, it is very possible that this detection
ability benefits from multiple perceptual mechanism-
s. By using one of these mechanisms, we propose a
detection method. By embedding motion grouping
results into the voting schema of Hough transform,
the method is capable to distinguish near objects’
positions, to distinguish similar objects’ labels, and
to maintain detection rate with a noisy codebook.
The success of this method further demonstrate the
advancement of perceptual mechanisms in human be-
ings. And the success of this method will help with
detection methods in ITS areas.

5 Fast Voting by Pyramid Match

The key to the third method is how to define a
match score for two point sets. Here pyramid match-

ing procedure is employed, not only for efficiency,
but also for combining visual and spatial informa-
tion from local features in an effective manner. The
visual-spatial space is divided from fine to coarse. Un-
der a certain dividing parameter, points from the two
matching point sets are considered as match if they
fall into the same grid, and they are excluded from
the respective point sets. The procedure continues till
one point set is empty. Then the numbers of matched
pairs under each dividing method is counted, and a
weighted sum of all these numbers are considered as
the match score for two point set, which will be re-
ferred to as Pyramid Match Score, or PMS for short.
The weights under all dividing methods are learned
during training, and how to divide the visual-spatial
space is of great importance.

5.1 Pyramid Match Score

The typical procedure of pyramid matching is first-
ly reviewed, and how a match score between two point
sets by using pyramid matching is defined. Then
based on the defined matric, how from the training
examples, a super template can be learnt and how
the super template can be used for object detection
in a test image is proposed. In the definition of the
matching score, there are parameters very important,
finally how these parameters are estimated is intro-
duced.

5.1.1 Pyramid Matching

The Pyramid Matching method is designed to
find the best one-one match between two point set-
s in a heuristic manner. Given two point set-
s, S1 = {u1, u2, ..., um}, ui ∈ Rd and S2 =
{v1, v2, ..., vn}, vi ∈ Rd , there exists a best one-one
matching π∗ that minimizes the sum of L1 -distances
between matched pairs,

π∗ = arg min
π

∑
ui∈S1

||ui − vπ(i)||1 .

Here m ≤ n, and π maps each feature ui in S1 to a
unique feature vπ(i) in S2.

The best matching exists, and can be found by
simple brute-force enumeration. Sub-optimal solu-
tion can be found by heuristic methods. The Pyra-
mid Matching method is straightforward. Divide
the point space from fine to coarse, find pairs of
points from different point sets in the same grid under
the current dividing parameter, exclude the matched
pairs, and continue this procedure until the smaller
point set is empty. The Pyramid Matching method is
very efficient, and its time complexity is bounded by
O(dmL) [9]. Here d is the number of dimensions in
each point set, m is size of the smaller point set, and
L is number of dividing methods. In the example of
Figure 7, L is 3.

In [9], pyramid matching helps to define kernel
functions for SVMs. The meaning of pyramid match-
ing is that, it changes how the way to define similarity
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Figure 7: Pyramid matching procedure. The pyramid
matching method divides the 2D space from fine to coarse
in the 2D space. Notice, the triangle points belong to
point set one, and the circle points belong to point set
two. In the left, each dimension is divided into 4, results
in totally 16 grids, and 0 matched point pairs are found.
In the middle, each dimension is divided into 2, results
in totally 4 grids, and two pairs of points belonging to
different point sets are found and excluded. In the right,
since the matched points belonging to matched point pairs
are excluded, then only one point from the second point
set is left. So the number of pairs found under all dividing
methods are, 0, 2, and 0. The pyramid match score is
calculated as a weighted sum of these 0, 2, and 0.

between two objects. Originally two objects are con-
sidered as similar if they both contain certain num-
ber of certain object parts, while the idea of one-one
match will only favor the objects parts which have
corresponding counterparts.

Let γ = {g1,g2, ...,gL} be an ordered set, which
contains all the dividing methods from fine to coarse.
Let N(S1, S2;gi) be the numbers of matched pairs of
points under dividing method gi. Then the pyramid
match score between S1 and S2 on γ is defined by,

P(S1, S2; γ) =

L∑
i=1

ωi ×N(S
(i−1)
1 , S

(i−1)
2 ;gi)

m
. (5)

Here, Si1 and Si2 represent the point set after ex-
cluding the points which are found match after the ith

round matching respectively from S
(i−1)
1 and S

(i−1)
2 .

Actually, S0
1 = S1, and S0

2 = S2.
The procedure is as follows, 1) given the original

S1 and S2, find the point pairs which fall into the
same grid in the space defined by g1, 2) exclude the
matched points respectively from S1 and S2 to give
S1

1 and S1
2 , and 3) continue until i = L or one point

set is empty.
Then how to construct the dividing methods in γ

and how to define the corresponding weight, ωi, for
each gi ∈ γ are left to be defined. And these also
belong to the factors which distinguish the proposed
method from [9].

5.1.2 Training and Detection

The Pyramid Match Score is a matric between t-
wo point sets. In [9], image features are considered
as points, while in the proposed method, each point
encodes both appearance and location information
of each local feature. Each visual-spatial point is

d−dimensional, and, the first (d − 2) dimensions are
SIFT after PCA, while the last 2 dimensions are rel-
ative x− and y− coordinates after considering scale
and width-height ratio changes.

Let p be a visual-spatial point in the point set of
an image, I, and Fp be the image feature of p, which
is (d−2)−dimentional. Let xp and yp be the x− and
y− coordinates of p. Let wI and hI be the width and
height of I. Then

p = [F 1
p , F

2
p , ..., F

d−2
p ,

xp
wI
,
yp
hI

] .

Instead of following [9], PMS does not server as k-
ernel functions for SVMs. And, a procedure similar
to Hough transform is employed. Each training im-
age is considered as a point set. From all the training
images, the method generates a point set as a super
template, ST, following Algorithm 1. This is just a
procedure to collect all points from point sets gener-
ated from training images into one point set.

Algorithm 1 Template Generation

1: ST ← ∅
2: for SItr ∈ {SItr} do
3: ST ← ST + SItr
4: end for
5: return ST

In Algorithm 1, each SItr in {SItr} is the point set
generated from the corresponding training image Itr,
and the + operator is defined on two sets. Actually,
ST plays a role similar to a codebook as in methods
based on Hough transform.

For detection, a most popular pipeline is employed,
as in Algorithm 2. All possible hypotheses are gener-
ated, given by {η}. Each hypothesis, η is a rectangle
in the image where target objects will be detected,
and

η = [xη, yη, wη, hη].

So each η is defined by its starting (x, y) coordinate,
its width, and its height. To generate {η}, the slid-
ing window schema is followed, and it works by enu-
merating all possible rectangles by considering sub-
windows’ positions and sizes. In Algorithm 2, Ω is
the set of final detection results, Pth is a threshold to
accept hypotheses as detections, Ite is a test image,
and Sη is the point set generated by local features
contained in η.

5.1.3 Dividing Visual-spatial Space

What is very important in Algorithm 2 is how to
define the set of dividing methods, γ. In the method
of [9], gi means dividing each dimension of the point
space into 2i intervals. However, the space in [9] is a
pure feature space, while the space here is a visual-
spatial space. And also, in [9], the two point sets both
belong to objects, while here one point set belongs to
the super template.
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Algorithm 2 Detection Procedure

1: Ω← ∅, generate {η} from Ite
2: for η ∈ {η} do
3: Calculate P(Sη, ST; γ)
4: end for
5: Sort {η} by P(Sη, ST; γ) in descending order
6: while P(Sη1 , ST; γ) >= Pth do
7: Ω← Ω + η1

8: {η} ← {η} − η1

9: for η ∈ {η} do
10: for η

′ ∈ Ω do
11: for p ∈ Sη do

12: if (p(d−1),pd) is inside η
′
then

13: Sη ← Sη − p
14: end if
15: end for
16: end for
17: Calculate P(Sη, ST; γ)
18: end for
19: Sort {η} by P(Sη, ST; γ) in descending order
20: end while
21: return Ω

The space-dividing method proposed here divides
the dimensions of visual features and spatial coordi-
nates at different grid sizes. Let

g = g(i, j), i, j ∈ N.

Here g(i, j) is a function which defines how to divide
the visual-spatial space. And i means each dimension
belonging to visual channel is divided in to 2i inter-
vals, and j means each dimension belonging to spatial
channel is divided into 2j intervals. Note, that for a
point, p, the first (d− 2) dimensions belong to visual
channel, while the remaining 2 dimensions belong to
spatial channel. For example, if d = 3, then g(2, 3)
will divide the whole space into (2i)(d−2)×(2j)2 = 256
grids.

In Figure 8, an example is given by considering
visual information as one dimension, and spatial in-
formation as the other dimension. Note, the total
dimension of a point is actually d, while in the exam-
ple it is 2.

About γ, not only its members, but also the order
of its members is important.

Though (5) can be used to calculate a pyramid
match score for two point sets, given any set, γ, still
the dividing methods and the order of the dividing
methods will affect performance. For a largest fine-
ness level, lmax, lmax ∈ N , γ is defined in Algorithm
3.

The size of γ, L = lmax × lmax. For two dividing
methods gi, i ∈ 1, 2, ..., L and gj , j ∈ 1, 2, ..., L, if gi >
gj , then i < j, which means if one dividing method is
finer than the other, it will appear earlier in the set of
dividing methods. There are also dividing methods,
of which the fineness level cannot be compared, i.e.,
g(1, 2) and g(2, 1) as shown in Figure 8.

Algorithm 3 Generation of Dividing Method Set

1: γ ← ∅, r ← 2× (lmax − 1)
2: while r ≥ 0 do
3: if r ≥ lmax − 1 then
4: i← lmax − 1
5: else
6: i← r
7: end if
8: j ← r − i
9: while i ≤ (lmax−1) and i ≥ 0 and j ≤ (lmax−

1) and j ≥ 0 do
10: γ ← γ + g(i, j), i← i− 1, j ← r − i
11: end while
12: r ← r − 1
13: end while
14: return γ

Figure 8: An example set of methods to divide
the visual-spatial space. x− and y− coordinates
represent visual and spatial information respectively.
From left to right, the first line is g(2, 2), g(1, 2),
and g(0, 2). The second line is g(2, 1), g(1, 1), and
g(0, 1). And the third line is g(2, 0), g(1, 0), and
g(0, 0). And γ is defined as an ordered set of all the
dividing methods with different parameters, i.e., γ =
{g(2, 2), g(1, 2), g(2, 1), g(0, 2), g(1, 1), g(2, 0), g(0, 1), g(1, 0), g(0, 0)}.
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5.1.4 Deciding Weights for Dividing Methods

After how to divide the visual-spatial space is de-
cided, the remaining task is, for each dividing method
g, defining a corresponding weight. When talking
about two points which are found in the same grid
under g = g(i, j), there is an upper bound to their
L1-distance, which is given by

Dub = (d− 2)× 1

2i
+ 2× 1

2j
,

if unit length is assumed for all (pkmax − pkmin), k ∈
{1, 2, ..., d}. Since the first (d− 2) dimensions of each
grid under g(i, j) possess length of 1

2i , while the last

2 dimensions possess length of 1
2j .

Following [9], for two point from different point set-
s, if they are in the same grid under g(i, j), which
means G(pS1 ; g(i, j)) = G(pS2 ; g(i, j)), the visual d-

ifference between pS1
and pS2

is defined as (d−2)
2i , and

the spatial difference is defined as, 2
2j . A weight, ω,

defined for a dividing method g(i, j) shows the im-
portance of two matched points, and measures how
difficult it is to match under such dividing method.

ωg(i,j) =
√

((d− 2)× 2i)× (2× 2j). (6)

As is seen in (6), the finer one grid is in g(i, j), the
larger a weight will be assigned for it. The weight is
the confidence that the point set belong to a target
object based on a point has corresponding evidence
from the super template under the current g.

5.2 Experimental Results

The key value of the method is the proposed matric
between an object hypothesis and the super template
trained from training examples. Accordingly, two ex-
periments are carried on and the results are reported
in this paper.

5.2.1 UIUC Cars

UIUC cars [1] can be considered as one of the most
famous datasets, and it has been used as benchmarks
in the area of detection.

Performance of the method upon different param-
eters will be evaluated on the UIUC cars, and com-
pared with DPM [6].

In Figure 9, performance are evaluated between the
proposed method, and a state-of-the-art method, DP-
M [6]. The proposed method performs no worse than
DPM, while the training time between the two mod-
els are 1 minute vs 16 hours. In this experiment,
the training speed of the proposed method is 1,000
times faster. Also during the training of the proposed
method, since (6) is used, only the positive training
examples are used, while DPM uses both positive and
negative training examples.

1

0.8

0.6 DPM

0 4

PMS

R
e
c
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ll
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0 0.2 0.4 0.6 0.8 1
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Figure 9: Result evaluation on UIUC cars between PMS
and DPM.

5.2.2 P-campus

The method is also tested on a dataset of pedestri-
ans [24]. For a fair comparison, both training images
and test images are exactly same for method compar-
isons.

In Figure 10, there are the results of comparing
the proposed method with ordinary Hough transfor-
m and common fate Hough transform [24]. It can be
seen that, common fate Hough transform performs
the best since the method employs motion informa-
tion. The proposed method almost perform as well
as the Hough transform on this dataset.

The method detects at a frame rate of 8 frames per
second with multi-thread accelerations, while com-
mon fate Hough transform needs two minutes to deal
with one frame in its old implementation.
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Figure 10: Precision-Recall curves for the method,
Hough transform, and common fate Hough transform.

The training time of the three methods are also
compared. Both Hough transform and common fate
Hough transform spend 483 ms for training, while
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pyramid match score spend 978 ms for training. All
methods spend less than one second for training.

5.3 Section Conclusion

This paper proposes a method to efficiently and
effectively combine visual and spatial information
of the local image features. Experiments show the
method is comparable with state-of-the-art detection
methods on benchmark datasets. What make the
method different are: 1) pyramid matching between
a codebook and an object hypothesis, 2) the set of
methods to dividing the visual-spatial space, and 3)
the way to define or learn weights for corresponding
dividing method.

The underlying principle of PMS, which is defined
by the order of dividing methods in Algorithm 3, is
that use the template to explain every visual-spatial
point of an object hypothesis at the best visual-
spatial level.

To the best of the author’s knowledge, this is the
first attempt of pyramid matching between a code-
book and an object hypothesis.

6 Conclusion

In 3, a method to efficiently combine motion and
appearance information is proposed. The method
gives promising results under simple scenarios. To
improve the results of 3 on complex scenarios, in 4,
the Hough transform framework is extended to incor-
porate motion information, and performs well on two
datasets. Still the Hough transform framework it-
self is troublesome when considering about efficiency.
This lead to the method of 5, which is a new voting
system, and is very different in the using of visual
and spatial information. The method’s effectiveness
is proven by experiments, and also it is theoretically
promising.

Visual object detection by computers is still and,
in near future, continues to be a very open problem.
A very hopeful effort would be combining motion,
appearance and location information of local features
in a robust voting system.

This paper focuses on improving voting-based de-
tection methods’s detection performance by fusion of
information of different channels. And in practice,
the efficiency of voting is an obstacle, which lead to
a new efficient voting system. The method of 3 us-
es voting to summarise local visual and motion pat-
terns. The simple appearance model and the linear
assumption for motion make it only suitable for par-
ticular application cases. The method performs well
in detection thermal features in tunnels. The method
of 4 extends the implicit shape model with motion.
This method does not have assumptions for motion
model, instead, online motion information are used
for clustering local visual patterns, which results in
better voting results. Though performing promising-
ly, the method’s efficiency is prevented by the time
consuming property of voting systems. In 5, a new

voting system is proposed, by proposing new visual-
spatial space dividing method for pyramid matching,
the speed of voting is highly enhanced.

Thus detection performance is improved by com-
bining motion information with appearance informa-
tion in voting, and voting efficiency is improved by
proposing new voting mechanisms in the paper.
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