カメラの移動撮影に基づく 簡便なオンライン3次元計測システムの検討

山尾 創輔¹ 三浦 衛¹ 酒井 修二¹ 伊藤 康一¹ 青木 孝文¹

概要:本稿では,カメラで静止画像を撮影しながら,高精度かつ密な3次元点群を逐次的に計測する簡便 なオンライン3次元計測システムを提案する.これまでに提案されている密な3次元計測手法は,一般的 に入力画像が全て揃ってから計測処理を行う.これらの手法は,画像が追加されるたびに最初から処理を やり直す必要があるため,撮影しながら3次元形状を計測することができない.一方で,提案システムは, 撮影のたびに,(i) Structure from Motion によるカメラパラメータ推定と,(ii) 位相限定相関法に基づく 密な対応付けを実行する.これらの処理は数秒しかかからないので,非同期かつ並列に処理を実行するこ とで,撮影するたびに物体の3次元形状を逐次的に計測することが可能となる.性能評価実験を通して, 従来手法に匹敵する精度でオンライン3次元計測が可能であることを示す.

1. はじめに

近年,3次元プリンタの高性能化・低価格化が急速に進 み,消費者向けの3次元プリンティングが注目されている. しかしながら,非専門家でも3次元プリンティングを利用 できる環境を実現するには,解決すべき技術的な課題がい くつかある.特に重要なものとして,非専門家にとっては, 3次元プリンタに入力する3次元データの作成が困難であ るという問題がある.実世界に存在する物体の3次元デー タを作成するためには,物体の3次元モデルを計測する必 要がある.一般に,対象物体の3次元計測では,レーザス キャンやパターン光投影に基づく計測システムが用いられ る.しかし,このようなシステムは,対象物体に依存する 特別な計測装置が必要となるため、システムの導入費用が 高価になったり,応用範囲が限定されてしまうという問題 がある.そのため,日常生活の場面における実用的な3次 元プリンティング環境を実現するには,誰でも手軽に使え る3次元モデリングシステムが必要となる.

コンピュータビジョンの分野では,簡便で手軽な3次元 モデリングへのアプローチの一つとして,複数枚の画像 からの3次元形状復元に関する研究が古くから盛んである[1-3].近年では,複数枚の静止画像から高精度かつ密 な3次元形状を復元する手法が提案されており[4],複数 枚の静止画像をクラウド上にアップロードすることで3次 元モデルを生成できる Web アプリケーション [5] や,商用 の3次元モデリングシステム [6] も存在する.しかし,こ れらのシステムは,オフラインの処理で構成されているた め,入力画像をすべて用意するまで3次元モデリング処理 を始めることができない.満足する3次元モデルが得られ なければ,入力画像を撮り直したり,新しい画像を追加し たりすることで,3次元復元処理を最初からやり直す必要 があるため,3次元モデルの再計測に多くの時間を要して しまう.さらに,満足する3次元モデルを生成するための 画像撮影には,撮影位置や計測処理に関する技術的な知識 が必要となる.

このような理由から,非専門家でも手軽に3次元モデリ ングできるシステムは,画像の撮影と並行して3次元復元 できるようなオンラインのシステムであることが望ましい. オンラインの3次元計測システムを用いることで,利用者 は,3次元計測結果をリアルタイムに確認し,満足する3 次元モデルを生成するために必要な撮影位置を把握するこ とができる.これまでに提案されたオンラインの3次元計 測システムは,動画像を入力とするシステムが一般的であ る.このような,動画像の撮影に基づくオンラインの密な 3次元計測システムとして, [7-9]が提案されている.し かし,動画像の撮影に基づく3次元計測システムは,動画 像を処理するための高性能な計算資源が必要となったり、 モーションブラーを抑えて高品質な動画像を撮影するのが 難しかったりするため,利用の負担が大きい.また,静止 画像に比べると,動画像の解像度や画質が低いため,動画 像からでは高品質な3次元モデリングが難しいという問題

東北大学 大学院情報科学研究科 Graduate School of Information Sciences, Tohoku University, Sendai-shi, Miyagi, 980–8579, Japan

図 1 提案する 3 次元計測システムの構成例: (a) ディジタルカメラ と計算機, (b) スマートフォン, (c) タブレット端末

もある.

一方,半澤らは,静止画像の撮影に基づくオンラインの 3次元復元システムを提案している[10].半澤らは,カメ ラによる静止画像の撮影と並行して物体の3次元形状を復 元し,3次元復元の状況をリアルタイムに可視化すること で,誰でも手軽に使える3次元復元システムを実現してい る.しかし,半澤らのシステムでは,疎な3次元点群とし て物体の形状を復元する.物体の高品質な3次元形状を取 得するためには,疎な3次元点群ではなく,密な3次元点 群を復元するシステムであることが望ましい.しかしなが ら,静止画像から密な3次元点群をオンラインで計測する システムはこれまでに提案されていない.

本稿では,Structure from Motion (SfM) と位相限定相 関法 (Phase-Only Correlation: POC) に基づく画像対応付 け手法と組み合わせることで,静止画像から密な3次元点 群をオンラインで計測するシステムを提案する.提案シス テムは,新しい画像が撮影されると,SfM によってカメラ の撮影位置と姿勢を推定する.そして,撮影位置と姿勢が 判明したカメラの画像を用いて,POC に基づく画像対応付 けによって密な3次元点群を復元する.性能評価実験を通 して,従来の高精度な3次元計測手法に匹敵する精度で, 密な3次元点群をオンラインで計測できることを示す.

2. システムの概要

提案システムは,図1のように,ディジタルカメラと計 算機から構成される.図1(a)の場合,Wi-Fi通信機能を 搭載したカメラまたはメモリーカードを利用し,撮影した 画像を計算機へ自動的に送信することで,計測の利便性を 向上させることが可能である.また,図1(b),(c)の場合, スマートフォンやタブレット端末のように,カメラと汎用 プロセッサの両方を搭載した機器を用いることで,より小 型で携行性の高いシステムの構築が可能である.

提案システムを用いて安定に3次元形状を計測するた めには,ぼけやハレーションによる入力画像の画質の低下 を抑える必要がある.近年の消費者向けディジタルカメラ は,焦点距離やシャッタースピード,絞りを自動で調節す ることで,焦点の不整合や手ぶれ,ハレーションによる画 質の低下を抑制する.そのため,利用者は,撮影に関する 専門的な知識を持たなくても,3次元計測に適した静止画 像を撮影することができる.

図 2 静止画像から密な3次元点群を逐次的に計測するオンライン システムの処理フロー: i 番目に撮影した画像 I_i と,その直 前に撮影した画像 I_{i-1}から,i番目のカメラの位置と姿勢を 推定する. I_i と I_{i-1}が十分に近接する場合は,これらの画像 をステレオ平行化し,領域ベースの画像対応付け手法を用いて 密な3次元点群を復元する

図 2 に示すように,提案システムの処理は,大きく分け て,(i)静止画像の取得,(ii)カメラの位置・姿勢推定,(iii) 密な 3 次元復元の 3 つのステップから構成される.まず, 任意の視点から計測対象を撮影した画像 I_i を取得する.次 に,画像 I_i と,その直前に撮影した画像 I_{i-1} の間で,特 徴ベースの画像対応付けを行う.そして,SfM [11,12] に より,画像 I_i と I_{i-1} の対応点から, I_i を撮影したカメラ の位置と姿勢を推定する. I_i と I_{i-1} を撮影したカメラの 位置が十分に近いならば,画像 I_i と I_{i-1} をステレオ平行 化し,平行化されたステレオ画像ペアの間で,POC [13] に 基づく密な画像対応付けを行う.そして,得られた対応点 から物体の3次元点群を復元し,物体全体の3次元点群に 追加する.提案システムは,画像ごとに上述の処理を非同 期かつ並列に行うことで,カメラの移動撮影と並行して物 体全体の密な3次元点群を更新し,リアルタイムに計測の 状況を可視化する.

3. カメラの位置・姿勢推定

本章では,提案システムにおけるカメラの位置・姿勢推 定について説明する.カメラの位置・姿勢推定は,(i)特徴 ベースの画像対応付け,(ii)カメラパラメータの推定,(iii) バンドル調整による最適化から構成される.以下では,こ れらの具体的な処理を説明する.

(i) 特徴ベースの画像対応付け

新たに撮影した画像 *I_i* と,その直前に撮影した画像 *I_{i-1}*の対応関係を求める.これらの画像の間には,焦点距離の 変化や移動撮影の影響により,拡大縮小や回転,非線形な 変形が含まれる.そのため,提案システムでは,特徴ベー スの画像対応付け手法を用いて画像間の対応点を求める.

特徴点検出および特徴量記述には,Speeded Up Robust Features (SURF) [14] を利用する.SURF は,画像間の 幾何学的変形や輝度変化に対してロバストである Scale-Invariant Feature Transform (SIFT) [15] 特徴量を近似す ることで,SIFT に匹敵する性能で高速な特徴量記述を行 う.カメラパラメータの推定に必要な数の対応点が得られ なければ,画像 I_i を破棄し,もう一度 I_i の撮影を待機 する.

(ii) カメラパラメータの推定

特徴ベースの画像対応付けにより取得した対応点ペアから,画像 *I_i*のカメラパラメータを推定する.まず,画像 *I_i*を撮影したカメラの内部パラメータ *A_i*を求める.内部 パラメータ行列 *A* は次式で定義される.

$$\boldsymbol{A} = \begin{pmatrix} f \frac{w}{D} & 0 & \frac{w}{2} \\ 0 & f \frac{w}{D} & \frac{h}{2} \\ 0 & 0 & 1 \end{pmatrix}$$
(1)

ここで, f はカメラの焦点距離, w, h はそれぞれ画像の 幅と高さ, D はカメラの撮像素子の幅である. 焦点距離 fと画像の解像度 (w, h) は, Exif (Exchangeable image file format) [16] 情報から取得できる.また, 撮像素子の幅 Dは, カメラの仕様を参照することで知ることができる.

次に, I_i を撮影したカメラの外部パラメータを推定する. i = 2の場合,5点アルゴリズム[17]を用いて,対応点か ら I_i の外部パラメータを推定する.一方で,i > 2の場合 は,Kneipらの手法[18]を用いて,対応点における3次元 点と2次元点の幾何学的な関係から I_i の外部パラメータ を推定する.このとき,5点アルゴリズムとKneipらの手 法と,RANSAC (RANdom SAmple Consensus)[19]を組 み合わせることで,誤対応点に対してロバストにパラメー タを推定する.推定された *I_i*のカメラパラメータを用い て,*I_i*と*I_{i-1}*の対応点から,計測対象の疎な3次元点群 を復元する.このとき,*I_i*と*I_{i-1}*のカメラ位置とのなす 角が小さすぎたり大きすぎたりするような3次元点や,再 投影誤差が閾値よりも大きい3次元点を誤対応点として除 去する.また,後段の最適化処理の計算コストを抑えるた めに,近傍点との距離が十分に小さい3次元点については, それらの平均の座標を持つ3次元点として統合する.さら に,カメラの位置・姿勢推定の状況を確認できるように, カメラの位置・姿勢と3次元点群の様子をリアルタイムに 可視化する.

(iii) バンドル調整による最適化

求めたカメラパラメータと3次元点群の精度が後続の処 理の安定性に大きく影響するため,バンドル調整に基づく 再投影誤差の最小化により,これらのパラメータを最適化 する.本稿では,バンドル調整の対象範囲に応じて,大域 バンドル調整と局所バンドル調整の2種類を考える.

大域バンドル調整は,全ての画像のカメラパラメータと 3次元点群を最適化する.推定されたカメラパラメータの 集合を $P = \{p_i\}$ $(1 \le i \le K)$,復元された3次元点群の 座標の集合を $Q = \{q_j\}$ $(1 \le j \le L)$ とする.ここで,K は対象となるカメラの数,L は対象となる3次元点群 Qの点数である.大域バンドル調整は,次式で定義されるコ スト関数 $E_g(P, Q)$ を最小化する.

$$E_g(\boldsymbol{P}, \boldsymbol{Q}) = \frac{1}{2} \sum_{i=1}^{K} \sum_{j=1}^{L} ||\boldsymbol{m}_{i,j} - \boldsymbol{m}_{\text{rep}}(\boldsymbol{p}_i, \boldsymbol{q}_j)||^2 \qquad (2)$$

ここで, $m_{i,j}$ は,画像 I_i における q_j の画像座標である. また, $m_{rep}(p_i,q_j)$ は, p_i を用いて q_j を投影したときの 画像座標である.大域バンドル調整は,カメラの数や3次 元点数が多くなるにつれて計算量が急激に増加するため, 一定のフレーム間隔で繰り返し行う.

局所バンドル調整は, 画像 I_i のカメラパラメータと, I_i から観測される 3 次元点群を最適化する. 画像 I_i のカメラパラメータを p_i , I_i から観測される 3 次元点群の集合を $Q' = \{q'_j\} (1 \le j \le L')$ とする.ここで, L'は対象となる 3 次元点群 Q'の点数である.局所バンドル調整は,次式で定義されるコスト関数 $E_l(p_i, Q')$ の最小化を行う.

$$E_{l}(\boldsymbol{p}_{i}, \boldsymbol{Q}') = \frac{1}{2} \sum_{i=1}^{L'} ||\boldsymbol{m}_{j} - \boldsymbol{m}_{\text{rep}}(\boldsymbol{p}_{i}, \boldsymbol{q}'_{j})||^{2}$$
(3)

局所バンドル調整は,大域バンドル調整に比べて計算量 が少ないため,カメラパラメータを推定するたびに適用 する.バンドル調整で最適化するコスト関数は非線形関 数であるため,非線形最小二乗アルゴリズムの1つであ る Levenberg-Marquardt (LM) 法を用いる.このとき,ス パース行列を利用したバンドル調整[20]を用いることで大 幅な高速化が可能である 4.

密な3次元復元

本章では,提案システムにおける密な3次元復元につい て説明する.密な3次元復元は,(i)ステレオ平行化,(ii) 領域ベースの密な画像対応付け,(ii)密な3次元点群の復 元から構成される,ただし,3次元計測の品質の低下を抑 えるために,画像 $I_i \ge I_{i-1}$ のカメラの位置が十分に近接 する場合に密な3次元復元を行う.提案システムでは,3 次元点群の重心に対する $I_i \ge I_{i-1}$ のカメラの視差角が閾 値よりも小さい場合に,カメラが近接していると判定する. 以下では,ステレオ平行化と領域ベースの画像対応付けの 具体的な処理を説明する.

(i) ステレオ平行化

ステレオ画像ペア I_i , I_{i-1} をステレオ平行化すること で,平行化後のステレオ画像ペア I'_i , I'_{i-1} を求める.ステ レオ平行化は,平行ステレオカメラで撮影したような画像 となるように,画像ペアを変形する処理である [11].平行 化後のステレオ画像では,画像ペアの間の幾何学的変形が 画像の水平座標軸方向のみに縮退する.これにより,ステ レオ画像ペアの間の射影変形を軽減し,領域ベースの画像 対応付けの安定化を図ることができる.また,ステレオ画 像ペアの間の対応点探索が一次元の走査となるため,画像 対応付けの計算コストを抑えることができる.平行化後の ステレオ画像ペア I'_i , I'_{i-1} は,カメラパラメータから計算 される透視投影行列を用いて,ステレオ画像 I_i , I_{i-1} を変 形することで得られる.

(ii) 領域ベースの密な画像対応付け

領域ベースの画像対応付け手法を用いて,平行化後のス テレオ画像ペア I'_i , I'_{i-1} の間の密な対応点を求める.領域 ベースの画像対応付け手法は,特徴ベースの画像対応付け 手法とは異なり, I'_{i-1} 上の任意の位置に配置された参照点 と対応する I'_i 上の点を求めることができる. I'_{i-1} 上に多 くの参照点を配置することで,ステレオ画像ペアの間の密 な対応点を得られるため,高品質な3次元形状を計測する ことができる.

提案手法では,領域ベースの画像対応付け手法として, POC に基づく画像対応付け手法[13]を用いる.領域ベー スの画像対応付け手法の中でも,POC に基づく画像対応 付けは,画像間の輝度変化にロバストであることが知られ ている.この特徴は,照明条件の変化やカメラのオートゲ インにより生じる画像間の輝度変化に対して有効である. また,POC に基づく画像対応付けでは,相関ピークの解 析的なモデルに基づいて高精度に対応付けを行うため,高 精度な3次元形状の計測が可能である.

(iii) 密な3次元点群の復元

三角測量の原理に基づいて,ステレオ画像ペア *I_i*,*I_{i-1} の対応点を3次元復元する.そして,i番目より前に復元 した3次元点群に,<i>I_iと <i>I_{i-1}*から復元した密な3次元点

(c) Tile: 1,280 x 1,024 pixels, 20 images

図 3 性能評価実験で用いるデータセット: (a) 猫の置物,(b) 犬の 置物,(c) デコレーションタイル

図 4 3 次元レーザスキャナで計測した真値の 3 次元メッシュモデル: (a) 猫の置物, (b) 犬の置物, (c) デコレーションタイル

群を追加する.ここで,大域バンドル調整によって,i番 目より前に推定したカメラパラメータが更新されている可 能性があるため,物体全体の3次元点群の座標を計算し直 す.このとき,座標の再計算に要する処理時間を抑えるた めに,ステレオ平行化後の画像ペア I'_i , I'_{i-1} の対応点の座 標をステレオ平行化前の画像ペア I_i , I_{i-1} 上の座標に変 換して保持しておき,3次元座標の再計算に用いる.また, 計測の状況を確認できるように,復元した密な3次元点群 をリアルタイムに可視化する.最後に,物体全体の密な3 次元点群を復元し終えたら,3次元点群の品質を高めるた めに,近傍点との平均距離が大きい点をアウトライヤとし て除去する.

5. 性能評価実験

本章では,カメラの移動撮影によって用意したデータ セットを用いて,提案システムの3次元計測結果の品質 と3次元計測に要する処理時間を評価する.評価では,従 来の高精度かつ密な3次元計測システムとの比較を行う. 従来システムでは,(i) Scale Invariant Feature Transform (SIFT) に基づく SfM を用いたカメラの位置・姿勢推定と, (ii) Patch-based Multi-View Stereo (PMVS) [4] を用いた 密な3次元復元を行う.

5.1 実験環境

計測対象は、図 3 に示すような、猫の置物 (W30cm × D30cm × H10cm)、犬の置物 (W20cm × D15cm × H20cm)、デコレーションタイルの (W20cm×D10cm×H5cm)の3種類である.使用したカ

メラは Point Gray 社製の Flea 3 (FL3-U3-13E4C-C) であ リ,使用したレンズは,SPACECOM 社製の JHF12M-MP である.撮影した画像は,1,280×1,024 ピクセルのカラー 画像である.撮影した画像の枚数は,猫の置物,犬の置物, デコレーションタイルのそれぞれで 20, 30, 20 枚である。 従来システムがオフラインの処理から構成されるため,こ れらのデータセットをあらかじめ撮影して用意しておく. カメラから対象物体までの距離は約1m である.従来シ ステムにおいて, SfM によるカメラパラメータの推定が不 安定になることがあるため,カメラの内部パラメータ(焦 点距離および画像中心)は,事前に撮影したチェッカーパ ターンを用いて, Zhang らのキャリブレーション手法 [21] によって求めておく、3次元計測誤差を定量的に評価する ために,コニカミノルタ社の3次元レーザスキャナ VIVID 910 を用いて,計測対象の真値の3次元メッシュモデル (図 3) を計測しておく.

撮影した静止画像から,従来システムと提案システムを 用いて対象物体の密な3次元点群を計測する.提案システ ムに対しては,実際の撮影時間の影響を加味するために,2 秒間隔で順番に画像を入力する.画像はプルーバックで撮 影されており,青色領域を抽出することで背景領域のマス クを生成し,背景領域に対する処理を省略する.そして, 計測した3次元点群と真値の3次元メッシュモデルとの 間で ICP (Iterative Closest Point)による位置合わせを行 い,3次元計測誤差を評価する.このとき,計測した3次 元点群にはスケールの不定性が存在するため,ICPによる 位置合わせにおいて,回転と並進だけでなく,スケールも 推定する.

従来システムの実装では、SfM によるカメラの位置・姿勢 推定に Visual SFM [22] を、密な 3 次元復元に PMVS2 [4] を用いる.入力する画像は、ブルーバック領域をマスクし ておく.PMVS2 における画像ピラミッドの階層数を 0 と する.また、NCC (Normalized Cross-Correlation) に基づ く画像対応付けのウィンドウサイズを 7 × 7 ピクセルに、 NCC の相関値の閾値を 0.7 に、画像を分割するセルのサイ ズを 2 × 2 に設定する.その他のパラメータは、Furukawa らの手法 [4] で設定されている値と同じものを用いる.

提案システムは C++ で実装する. SURF に基づく対応 付けは, OpenCV [23] を用いて実装し, Fast-Hessian Detector の閾値を 100 とする. SfM におけるアウトライヤ 除去では,再投影誤差が 1,5 ピクセル以上の3次元点をア ウトライヤと判定する.また,隣接するカメラペアとの視 差角が 0.5 度以下あるいは 120 度以上となる3次元点につ いてもアウトライヤと判定する.大域バンドル調整と局所 バンドル調整は, Sparse Bundle Adjustment (SBA)を用 いて実装する.大域バンドル調整は,再投影誤差の RMS (Root Mean Square) が 0.5 ピクセルよりも大きいときに 実行する.密な3次元復元は,3次元点群に対するステレ

表 1 3 次元計測点数			
Data set	Conventional	Proposed	
Cat	284,289	572,876	
Dog	143,446	$239,\!107$	
Tile	81,418	243,640	

表 2 3次元計測誤差の RMS [mm]			
Data set	Conventional	Proposed	
Cat	0.59	0.71	
Dog	0.90	1.13	
Tile	0.85	0.54	

オ画像ペアの視差角が5度以下であるときに実行する.画像に配置する参照点は,1ピクセル間隔で格子状に配置する.POCに基づく画像対応付けのウィンドウサイズを 64×64ピクセルに,ピーク値の閾値を0.6に設定する.カ メラの位置・姿勢と3次元点群の可視化,および,統計的な フィルタによるアウトライヤ除去は,Point Cloud Library (PCL)[24]を用いて実装する.統計的なフィルタによるア ウトライヤ除去では,近傍30点とのユークリッド距離の RMS が1.5以上である点を除去する.

従来システムと提案システムの実行環境は、Windows 7 Professional, Intel[®] CoreTM i7-990X (3.47GHz), RAM 24 GB である.

5.2 3次元計測の品質の評価

表1,2に,従来システムと提案システムにおける,3次 元計測点群の点数と3次元計測誤差のRMSを示す.また, 図5に,3次元計測結果と3次元計測誤差のカラーマップ を示す.表1から,提案システムは,従来システムよりも 密な3次元点群を計測できることが確認できる.また,表 2から,提案システムは,従来システムに匹敵する精度で 3次元点群を計測できることが確認できる.従来システム が高精度な3次元計測システムの一つであることから,提 案システムの3次元計測精度は十分に高いと言える.

提案システムでは,計測処理の前半で復元された3次元 点群と後半で復元された3次元点群とが重なる領域で,3 次元計測精度が低下する傾向がある.これは,カメラパラ メータ推定の誤差が蓄積することで,異なるステレオ画像 ペアから復元された3次元点群が完全には重ならないこと に起因する.この問題に対して,ループクロージング処理 によりロバストなカメラの位置・姿勢推定を行ったり,最 終的に得られた3次元点群に ICP を適用したりすること で,3次元計測精度の向上が期待できる.

また,図6に,Poisson Surface Reconstruction [25] を 用いて,提案システムの3次元計測結果から生成した3次 元メッシュモデルを示す.図6から,提案システムは,従 来システムに匹敵する品質で3次元モデリングが可能であ

図 5 3次元計測点群 (1-2 列目) と 3次元計測誤差のカラーマップ (3-4 列目): 青 (0 mm), 赤 (3 mm)

Data set	Conventional	Proposed
Cat	620	66
Dog	435	96
Tile	285	58

ることが確認できる.

5.3 3次元計測に要する処理時間の評価

表3に,従来システムと提案システムにおける,物体全 体の3次元計測に要する処理時間を示す.表3から,従来 システムは,物体全体の3次元計測を終えるまでに数分の 処理時間を要することが確認できる.一方,提案システム は,従来システムに比べて 5~10 倍速く物体全体を 3次 元計測できる.

図7に,提案システムにおける,画像1枚あたりの処理 時間の内訳を示す.図7から,提案システムは,画像1枚 あたり 10 秒未満の処理で 3 次元点群を更新できることが わかる.内訳を見ると,提案システムでは,画像の読み込 みや,特徴ベースの画像対応付け,密な3次元復元に要す る処理時間が,入力画像の枚数によらずにほぼ一定である ことが確認できる.しかし,カメラの位置・姿勢推定につ いては,入力画像の枚数が増えるにつれて,処理時間も増 加する傾向がある.これは,入力画像の枚数が増えること で,バンドル調整の対象となるパラメータ数が指数的に増 加するためである.この問題を解消するためには,マルチ コアによる高速なバンドル調整 [26] を用いて,カメラの位 置・姿勢推定に要する時間を削減するのが有効である.

以上の評価により,提案システムは,従来の高精度な3 次元復元システムに匹敵する精度で,より密な3次元点群 をオンラインで計測できることを示した.

5.4 汎用ディジタルカメラによる3次元計測

図 8 に, 汎用ディジタルカメラ (Panasonic LUMIX DMC-GF1) で撮影した画像からの3次元計測結果を示す. 撮影した画像は,1,280×960 ピクセルのカラー画像であ る.カメラの内部パラメータは,画像のExif 情報から算出 したものを初期値として推定する.その他の設定は,従来 システムと提案システムの両方において,前述の実験と同 様である.従来手法については,猫の置物やウサギのぬい ぐるみのように,カメラの視点数が限られているために, 3次元点群が疎になっていることが確認できる.木製の立 方体については, Visual SFM によるカメラの位置・姿勢 推定に失敗してしまうため,側面の形状を計測できなかっ た.一方で,提案システムは,どの物体についても密な3 次元点群を計測できている.

(a) Ground truth

(b) Conventional system (c) Proposed system

図 6 真値の 3 次元メッシュモデル (左)と, 3 次元計測結果から生 成した3次元メッシュモデル(中央と右)

図 8 汎用ディジタルカメラで撮影した静止画像からの3次元計測 結果: (a) 猫の置物 (入力画像 15 枚), (b) 猫の置物 (入力画 像 24 枚), (c) ウサギのぬいぐるみ(入力画像 15 枚), (d) 木 製の立方体(入力画像16枚)

6. まとめ

本稿では,カメラで移動撮影した静止画像から密な3次 元点群を計測するオンラインシステムを提案した.性能評 価を通して,提案システムは,従来の高精度な3次元計測 システムに匹敵する精度で、より密な3次元点群をリアル タイムに計測できることを示した.今後は,計測状況をも とに,利用者に対して計測に適切な撮影方法をアドバイス するようなインタラクティブなシステムの開発や,大規模 な物体を対象とした3次元計測を考えている.

図 7 提案システムにおける画像一枚あたりの処理時間の内訳

参考文献

- Seitz, S. M., Curless, B., Diebel, J., Scharstein, D. and Szeliski, R.: A comparison and evaluation of multiviews stereo reconstruction algorithms, *Proc. Int'l Conf. Computer Vision and Pattern Recognition*, pp. 519–528 (2006).
- [2] Strecha, C., von Hansen, W., Gool, L. V., Fua, P. and Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery, *Proc. Int'l Conf. Computer Vision and Pattern Recognition*, pp. 1–8 (2008).
- [3] Agarwal, S., Snavely, N., Simon, I., Seitz, S. M. and Szeliski, R.: Building Rome in a day, *Proc. Int'l Conf. Computer Vision*, pp. 72–79 (2009).
- [4] Furukawa, Y. and Ponce, J.: Accurate, dense, and robust multiview stereopsis, *IEEE Trans. Pattern Analy*sis and Machine Intelligence, Vol. 32, No. 8, pp. 1362– 1376 (2010).
- [5] Autodesk 123D Catch 3D model from photos. http: //www.123dapp.com/catch.
- [6] Agisoft PhotoScan www.agisoft.ru. http://www. agisoft.ru/products/photoscan.
- [7] Newcombe, R.: DTAM: Dense tracking and mapping in real-time, Proc. Int'l Conf. Computer Vision (2011).
- [8] Wendel, A., Maurer, M., Graber, G., Pock, T. and Bischof, H.: Dense reconstruction on-the-fly, pp. 1450– 1457 (2012).
- [9] Tanskanen, P., Kolev, K., Meier, L., Camposeco, F., Saurer, O. and Pollefeys, M.: Live metric 3D reconstruction on mobile phones, *Proc. Int'l Conf. Computer Vi*sion, pp. 65–72 (2013).
- [10] 半澤悠樹,鳥居秋彦,奥富正敏:オンライン撮影に適し た実用的な SfM システム,電子情報通信学会論文誌 D, Vol. J96-D, No. 8, pp. 1753–1763 (2013).
- [11] Szeliski, R.: Computer Vision: Algorithms and Applications, Springer-Verlag New York Inc. (2010).
- [12] Hartley, R. and Zisserman, A.: Multiple View Geometry, Cambridge University Press (2004).
- [13] Takita, K., Muquit, M. A., Aoki, T. and Higuchi, T.: A sub-pixel correspondence search for computer vision applications, *IEICE Trans. Fundamentals*, Vol. E87-A, No. 8, pp. 1913–1923 (2004).
- [14] Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L.: Speeded-up robust features (SURF), *Computer Vision and Image Understanding*, Vol. 110, No. 3, pp. 346–359

(2008).

- [15] Lowe, D. G.: Distinctive image features from scaleinvariant keypoints, *Int'l J. Comput. Vision*, Vol. 60, No. 2, pp. 91–110 (2004).
- [16] Japan Electronics and Information Technology Industries Association: Exchangeable image file format for digital still cameras. http://www.jeita.or.jp/.
- [17] Nistér, D.: An Efficient Solution to the Five-Point Relative Pose Problem, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol. 26, No. 6, pp. 756–770 (2004).
- [18] Kneip, L., Scaramuzza, D. and Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation, IEEE, pp. 2969–2976 (2011).
- [19] Fischler, M. A. and Bolles, R. C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, *Comm. ACM*, Vol. 24, No. 6, pp. 381–395 (1981).
- [20] Lourakis, M. I. A. and Argyros, A. A.: SBA: A software package for generic sparse bundle adjustment, ACM Trans. Math. Software, Vol. 36, No. 1, pp. 1–30 (2009).
- [21] Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations, *Proc. Int'l Conf. Computer Vision*, Vol. 1, pp. 666–673 (1999).
- [22] Wu, C.: VisualSFM: A Visual Structure from Motion System, http://homes.cs.washington.edu/ ~ccwu/vsfm/.
- [23] Open Computer Vision Library. http://sourceforge. net/projects/opencvlibrary/.
- [24] Point Cloud Library. http://pointclouds.org/.
- [25] Kazhdan, M., Bolitho, M. and Hoppe, H.: Poisson surface reconstruction, *Proc. Symp. Geometry Processing*, pp. 61–70 (2006).
- [26] Wu, C., Agarwal, S., Curless, B. and Seitz, S.: Multicore Bundle Adjustment, Proc. Int'l Conf. Computer Vision and Pattern Recognition, pp. 3057–3064 (2011).